Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Lab Invest ; 102(7): 741-752, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35351965

RESUMO

Invasive growth of glioblastoma makes residual tumor unremovable by surgery and leads to disease relapse. Temozolomide is widely used first-line chemotherapy drug to treat glioma patients, but development of temozolomide resistance is almost inevitable. Ferroptosis, an iron-dependent form of non-apoptotic cell death, is found to be related to temozolomide response of gliomas. However, whether inducing ferroptosis could affect invasive growth of glioblastoma cells and which ferroptosis-related regulators were involved in temozolomide resistance are still unclear. In this study, we treated glioblastoma cells with RSL3, a ferroptosis inducer, in vitro (cell lines) and in vivo (subcutaneous and orthotopic animal models). The treated glioblastoma cells with wild-type or mutant IDH1 were subjected to RNA sequencing for transcriptomic profiling. We then analyze data from our RNA sequencing and public TCGA glioma database to identify ferroptosis-related biomarkers for prediction of prognosis and temozolomide resistance in gliomas. Analysis of transcriptome data from RSL3-treated glioblastoma cells suggested that RSL3 could inhibit glioblastoma cell growth and suppress expression of genes involved in cell cycle. RSL3 effectively reduced mobility of glioblastoma cells through downregulation of critical genes involved in epithelial-mesenchymal transition. Moreover, RSL3 in combination with temozolomide showed suppressive efficacy on glioblastoma cell growth, providing a promising therapeutic strategy for glioblastoma treatment. Although temozolomide attenuated invasion of glioblastoma cells with mutant IDH1 more than those with wild-type IDH1, the combination of RSL3 and temozolomide similarly impaired invasive ability of glioblastoma cells in spite of IDH1 status. Finally, we noticed that both ferritin heavy chain 1 and ferritin light chain predicted unfavorable prognosis of glioma patients and were significantly correlated with mRNA levels of methylguanine methyltransferase as well as temozolomide resistance. Altogether, our study provided rationale for combination of RSL3 with temozolomide to suppress glioblastoma cells and revealed ferritin heavy chain 1 and ferritin light chain as biomarkers to predict prognosis and temozolomide resistance of glioma patients.


Assuntos
Neoplasias Encefálicas , Ferroptose , Glioblastoma , Glioma , Animais , Apoferritinas/farmacologia , Apoferritinas/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Temozolomida/farmacologia , Temozolomida/uso terapêutico
2.
BMC Plant Biol ; 22(1): 89, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35227218

RESUMO

BACKGROUND: Refugia is considered to be critical for maintaining biodiversity; while discerning the type and pattern of refugia is pivotal for our understanding of evolutionary processes in the context of conservation. Interglacial and glacial refugia have been studied throughout subtropical China. However, studies on refugia along the oceanic-continental gradient have largely been ignored. We used a liana Actinidia eriantha, which occurs across the eastern moist evergreen broad-leaved forests of subtropical China, as a case study to test hypotheses of refugia along the oceanic-continental gradient and 'oceanic' adaptation. RESULTS: The phylogeographic pattern of A. eriantha was explored using a combination of three cpDNA markers and 38 nuclear microsatellite loci, Species distribution modelling and dispersal corridors analysis. Our data showed intermediate levels of genetic diversity [haplotype diversity (hT) = 0.498; unbiased expected heterozygosity (UHE) = 0.510] both at the species and population level. Microsatellite loci revealed five clusters largely corresponding to geographic regions. Coalescent time of cpDNA lineages was dated to the middle Pliocene (ca. 4.03 Ma). Both geographic distance and climate difference have important roles for intraspecific divergence of the species. The Zhejiang-Fujian Hilly Region was demonstrated to be a refugium along the oceanic-continental gradient of the species and fit the 'refugia in refugia' pattern. Species distribution modelling analysis indicated that Precipitation of Coldest Quarter (importance of 44%), Temperature Seasonality (29%) and Mean Temperature of Wettest Quarter (25%) contributed the most to model development. By checking the isolines in the three climate layers, we found that A. eriantha prefer higher precipitation during the coldest quarter, lower seasonal temperature difference and lower mean temperature during the wettest quarter, which correspond to 'oceanic' adaptation. Actinidia eriantha expanded to its western distribution range along the dispersal corridor repeatedly during the glacial periods. CONCLUSIONS: Overall, our results provide integrated evidence demonstrating that the Zhejiang-Fujian Hilly Region is a refugium along the oceanic-continental gradient of Actinidia eriantha in subtropical China and that speciation is attributed to 'oceanic' adaptation. This study gives a deeper understanding of the refugia in subtropical China and will contribute to the conservation and utilization of kiwifruit wild resources in the context of climate change.


Assuntos
Actinidia/genética , Actinidia/fisiologia , Adaptação Biológica , Biodiversidade , Evolução Molecular , Refúgio de Vida Selvagem , China , Clima , DNA de Cloroplastos , Genes de Plantas , Marcadores Genéticos , Haplótipos , Repetições de Microssatélites , Filogeografia
3.
PLoS Biol ; 16(7): e2005869, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30052635

RESUMO

Chemotherapeutic resistance in triple-negative breast cancer (TNBC) has brought great challenges to the improvement of patient survival. The mechanisms of taxane chemoresistance in TNBC have not been well investigated. Our results illustrated C-C motif chemokine ligand 20 (CCL20) was significantly elevated during taxane-containing chemotherapy in breast cancer patients with nonpathologic complete response. Furthermore, CCL20 promoted the self-renewal and maintenance of breast cancer stem cells (BCSCs) or breast cancer stem-like cells through protein kinase Cζ (PKCζ) or p38 mitogen-activated protein kinase (MAPK)-mediated activation of p65 nuclear factor kappa B (NF-κB) pathway, significantly increasing the frequency and taxane resistance of BCSCs. Moreover, CCL20-promoted NF-κB activation increased ATP-binding cassette subfamily B member 1 (ABCB1)/multidrug resistance 1 (MDR1) expression, leading to the extracellular efflux of taxane. These results suggested that chemotherapy-induced CCL20 mediated chemoresistance via up-regulating ABCB1. In addition, NF-κB activation increased CCL20 expression, forming a positive feedback loop between NF-κB and CCL20 pathways, which provides sustained impetus for chemoresistance in breast cancer cells. Our results suggest that CCL20 can be a novel predictive marker for taxane response, and the blockade of CCL20 or its downstream pathway might reverse the taxane resistance in breast cancer patients.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Quimiocina CCL20/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Aldeído Desidrogenase/metabolismo , Animais , Neoplasias da Mama/genética , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Hidrocarbonetos Aromáticos com Pontes/uso terapêutico , Linhagem Celular Tumoral , Quimioterapia Adjuvante , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , NF-kappa B/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Prognóstico , Proteína Quinase C/metabolismo , Indução de Remissão , Taxoides/farmacologia , Taxoides/uso terapêutico , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
Lab Invest ; 100(4): 619-629, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31748682

RESUMO

Tumor-associated macrophages (TAMs) constitute a large population of glioblastoma and facilitate tumor growth and invasion of tumor cells, but the underlying mechanism remains undefined. In this study, we demonstrate that chemokine (C-C motif) ligand 8 (CCL8) is highly expressed by TAMs and contributes to pseudopodia formation by GBM cells. The presence of CCL8 in the glioma microenvironment promotes progression of tumor cells. Moreover, CCL8 induces invasion and stem-like traits of GBM cells, and CCR1 and CCR5 are the main receptors that mediate CCL8-induced biological behavior. Finally, CCL8 dramatically activates ERK1/2 phosphorylation in GBM cells, and blocking TAM-secreted CCL8 by neutralized antibody significantly decreases invasion of glioma cells. Taken together, our data reveal that CCL8 is a TAM-associated factor to mediate invasion and stemness of GBM, and targeting CCL8 may provide an insight strategy for GBM treatment.


Assuntos
Quimiocina CCL8/metabolismo , Glioblastoma/metabolismo , Macrófagos/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Invasividade Neoplásica/fisiopatologia , Células-Tronco Neoplásicas/citologia , Células Tumorais Cultivadas
5.
J Pathol ; 247(2): 266-278, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30357833

RESUMO

Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) deficiency in primary human glioblastoma (GBM) is associated with increased invasiveness and poor prognosis with unknown mechanisms. Therefore, how loss of PTEN promotes GBM progression remains to be elucidated. Herein, we identified that ADP-ribosylation factor like-4C (ARL4C) was highly expressed in PTEN-deficient human GBM cells and tissues. Mechanistically, loss of PTEN stabilized ARL4C protein due to AKT/mTOR pathway-mediated inhibition of ARL4C ubiquitination. Functionally, ARL4C enhanced the progression of GBM cells in vitro and in vivo. Moreover, microarray profiling and GST pull-down assay identified that ARL4C accelerated tumor progression via RAC1-mediated filopodium formation. Importantly, targeting PTEN potently inhibited GBM tumor progression in vitro and in vivo, whereas overexpression of ARL4C reversed the tumor progression impaired by PTEN overexpression. Clinically, analyses with patients' specimens validated a negative correlation between PTEN and ARL4C expression. Elevated ARL4C expression but PTEN deficiency in tumor was associated with poorer disease-free survival and overall survival of GBM patients. Taken together, ARL4C is critical for PTEN-deficient GBM progression and acts as a novel prognostic biomarker and a potential therapeutic candidate. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Neoplasias Encefálicas/enzimologia , Glioblastoma/enzimologia , PTEN Fosfo-Hidrolase/deficiência , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fatores de Ribosilação do ADP/genética , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Movimento Celular , Proliferação de Células , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Invasividade Neoplásica , PTEN Fosfo-Hidrolase/genética , Estabilidade Proteica , Pseudópodes/enzimologia , Pseudópodes/genética , Pseudópodes/patologia , Transdução de Sinais , Células Tumorais Cultivadas , Ubiquitinação , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
6.
Lab Invest ; 98(8): 989-998, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29884911

RESUMO

Epithelial-mesenchymal transition (EMT) plays a critical role in initiating tumor invasion and metastasis of colorectal cancer (CRC), although the underlying mechanisms remain to be clarified. Herein, we demonstrate that the active form of Rac family small GTPase 1 (RAC1-GTP) is overexpressed in CRCs and promotes the EMT-mediated invasion of CRC cells through activation of the signal transducers and activators of transcription 3 (STAT3) pathway. Increased expression of RAC1-GTP in CRC tissues was positively correlated with the TNM stages of CRCs and indicated poor prognosis of CRC patients. Targeting RAC1-GTP activity by its specific inhibitor NSC23766 markedly suppressed the migration and invasion of CRC cells. Mechanistically, RAC1-GTP directly interacted with STAT3 to promote STAT3 phosphorylation, thus promoted EMT of CRC cells. Enforced expression of constitutively activated STAT3 (STAT3-C) abrogated the suppressive effect of RAC1-GTP disruption on the migration and invasion of CRC cells. Importantly, NSC23766 disrupted EMT in CRC cells and significantly diminished growth of CRC xenografts. Taken together, our data indicate that RAC1-GTP is an important player in EMT-mediated tumor invasion and a potential therapeutic target for CRCs.


Assuntos
Neoplasias Colorretais/metabolismo , Transição Epitelial-Mesenquimal , Fator de Transcrição STAT3/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Aminoquinolinas/farmacologia , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Neoplasias Colorretais/patologia , Feminino , Células HCT116 , Humanos , Masculino , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica , Fosforilação , Ligação Proteica , Pirimidinas/farmacologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores
7.
Lab Invest ; 98(7): 924-934, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29765109

RESUMO

The microvascular profile has been included in the WHO glioma grading criteria. Nevertheless, microvessels in gliomas of the same WHO grade, e.g., WHO IV glioblastoma (GBM), exhibit heterogeneous and polymorphic morphology, whose possible clinical significance remains to be determined. In this study, we employed a fractal geometry-derived parameter, microvascular fractal dimension (mvFD), to quantify microvessel complexity and developed a home-made macro in Image J software to automatically determine mvFD from the microvessel-stained immunohistochemical images of GBM. We found that mvFD effectively quantified the morphological complexity of GBM microvasculature. Furthermore, high mvFD favored the survival of GBM patients as an independent prognostic indicator and predicted a better response to chemotherapy of GBM patients. When investigating the underlying relations between mvFD and tumor growth by deploying Ki67/mvFD as an index for microvasculature-normalized tumor proliferation, we discovered an inverse correlation between mvFD and Ki67/mvFD. Furthermore, mvFD inversely correlated with the expressions of a glycolytic marker, LDHA, which indicated poor prognosis of GBM patients. Conclusively, we developed an automatic approach for mvFD measurement, and demonstrated that mvFD could predict the prognosis and response to chemotherapy of GBM patients.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas , Glioma , Interpretação de Imagem Assistida por Computador/métodos , Microvasos/patologia , Neovascularização Patológica/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Fractais , Glioma/diagnóstico por imagem , Glioma/tratamento farmacológico , Glioma/patologia , Humanos , Imuno-Histoquímica , Microvasos/diagnóstico por imagem , Gradação de Tumores/métodos , Neovascularização Patológica/diagnóstico por imagem , Prognóstico
8.
J Pathol ; 243(3): 376-389, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28802057

RESUMO

Cancer stem cells/cancer-initiating cells (CICs) and their microenvironmental niche play a vital role in malignant tumour recurrence and metastasis. Cancer-associated fibroblasts (CAFs) are major components of the niche of breast cancer-initiating cells (BCICs), and their interactions may profoundly affect breast cancer progression. Autophagy has been considered to be a critical process for CIC maintenance, but whether it is involved in the cross-talk between CAFs and CICs to affect tumourigenesis and pathological significance has not been determined. In this study, we found that the presence of CAFs containing high levels of microtubule-associated protein 1 light chain 3 (LC3II), a marker of autophagosomes, was associated with more aggressive luminal human breast cancer. CAFs in human luminal breast cancer tissues with high autophagy activity enriched BCICs with increased tumourigenicity. Mechanistically, autophagic CAFs released high-mobility group box 1 (HMGB1), which activated its receptor, Toll-like receptor (TLR) 4, expressed by luminal breast cancer cells, to enhance their stemness and tumourigenicity. Furthermore, immunohistochemistry of 180 luminal breast cancers revealed that high LC3II/TLR4 levels predicted an increased relapse rate and a poorer prognosis. Our findings demonstrate that autophagic CAFs play a critical role in promoting the progression of luminal breast cancer through an HMGB1-TLR4 axis, and that both autophagy in CAFs and TLR4 on breast cancer cells constitute potential therapeutic targets. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Neoplasias da Mama/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Transformação Celular Neoplásica/patologia , Proteína HMGB1/metabolismo , Recidiva Local de Neoplasia/metabolismo , Células-Tronco Neoplásicas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Autofagia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Feminino , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/patologia , Receptor 4 Toll-Like/metabolismo , Microambiente Tumoral/fisiologia
9.
J Pathol ; 234(1): 11-22, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24604164

RESUMO

Microenvironmental regulation of cancer stem cells (CSCs) strongly influences the onset and spread of cancer. The way in which glioma cells interact with their microenvironment and acquire the phenotypes of CSCs remains elusive. We investigated how communication between vascular endothelial cells and glioma cells promoted the properties of glioma stem cells (GSCs). We observed that CD133(+) GSCs were located closely to Shh(+) endothelial cells in specimens of human glioblastoma multiforme (GBM). In both in vitro and in vivo studies, we found that endothelial cells promoted the appearance of CSC-like glioma cells, as demonstrated by increases in tumourigenicity and expression of stemness genes such as Sox2, Olig2, Bmi1 and CD133 in glioma cells that were co-cultured with endothelial cells. Knockdown of Smo in glioma cells led to a significant reduction of their CSC-like phenotype formation in vitro and in vivo. Endothelial cells with Shh knockdown failed to promote Hedgehog (HH) pathway activation and CSC-like phenotype formation in co-cultured glioma cells. By examination of glioma tissue specimens from 65 patients, we found that the survival of glioma patients was closely correlated with the expression of both Shh by endothelial cells and Gli1 by perivascular glioma cells. Taken together, our study demonstrates that endothelial cells in the tumour microenvironment provide Shh to activate the HH signalling pathway in glioma cells, thereby promoting GSC properties and glioma propagation.


Assuntos
Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Glioma/patologia , Proteínas Hedgehog/metabolismo , Células-Tronco Neoplásicas/patologia , Antígeno AC133 , Aloenxertos , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Linhagem Celular Tumoral , Células Endoteliais/patologia , Feminino , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteínas Hedgehog/genética , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Peptídeos/genética , Peptídeos/metabolismo , Fenótipo , Transdução de Sinais , Nicho de Células-Tronco , Microambiente Tumoral
10.
Pathol Res Pract ; 256: 155251, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490097

RESUMO

Aberrant adrenal function has been frequently reported in COVID-19 patients, but histopathological evidence remains limited. This retrospective autopsy study aims to scrutinize the impact of COVID-19 duration on adrenocortical zonational architecture and peripheral corticosteroid reactivity. The adrenal glands procured from 15 long intensive care unit (ICU)-stay COVID-19 patients, 9 short ICU-stay COVID-19 patients, and 20 matched controls. Subjects who had received glucocorticoid treatment prior to sampling were excluded. Applying hematoxylin and eosin (H&E) and immunohistochemical (IHC) staining, we disclosed that the adrenocortical zonational structure was substantially disorganized in COVID-19 patients, which long ICU-stay patients manifested a higher prevalence of severe disorganization (67%) than short ICU-stay patients (11%; P = 0.0058). The adrenal cortex of COVID-19 patients exhibited a 40% decrease in the zona glomerulosa (ZG) area and a 74% increase in the zona fasciculata (ZF) area (both P < 0.0001) relative to controls. Furthermore, among long ICU-stay COVID-19 patients, the ZG area diminished by 31% (P = 0.0004), and the ZF area expanded by 27% (P = 0.0004) in comparison to short ICU-stay patients. The zona reticularis (ZR) area remained unaltered. Nuclear translocation of corticosteroid receptors in the liver and kidney of long ICU-stay COVID-19 patients was at least 43% lower than in short ICU-stay patients (both P < 0.05). These findings underscore the necessity for clinicians to monitor adrenal function in long-stay COVID-19 patients.


Assuntos
Córtex Suprarrenal , COVID-19 , Humanos , Estado Terminal , Estudos Retrospectivos , Glândulas Suprarrenais , Corticosteroides
11.
Metabolism ; : 155980, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39053691

RESUMO

BACKGROUND: The effect of coronavirus disease 2019 (COVID-19) on adrenal endocrine metabolism in critically ill patients remains unclear. This study aimed to investigate the alterations in adrenal steroidogenic activity, elucidate underlying mechanisms, provide in situ histopathological evidence, and examine the clinical implications. METHODS: The comparative analyses of the adrenal cortices from 24 patients with fatal COVID-19 and 20 matched controls was performed, excluding patients previously treated with glucocorticoids. Several SARS-CoV-2 and its receptors were identified and pathological alterations were examined. Furthermore, histological examinations, immunohistochemical staining and ultrastructural analyses were performed to assess corticosteroid biosynthesis. The zona glomerulosa (ZG) and zona fasciculata (ZF) were then dissected for proteomic analyses. The biological processes that affected steroidogenesis were analyzed by integrating histological, proteomic, and clinical data. Finally, the immunoreactivity of mineralocorticoids and glucocorticoid receptors in essential tissues were quantitatively measured to evaluate corticosteroid responsiveness. FINDINGS: The demographic characteristics of COVID-19 patients were comparable with those of controls, excluding those that affected adrenal function. SARS-CoV-2-like particles were identified in the adrenocortical cells of three patients; however, these particles did not affect cellular morphology or steroid synthesis compared with those in SARS-CoV-2-negative specimens. Although the adrenals exhibited focal necrosis, vacuolization, microthrombi, and inflammation, widespread degeneration was not evident. Notably, corticosteroid biosynthesis was significantly enhanced in both the ZG and ZF of COVID-19 patients. The increase in the inflammatory response and cellular differentiation in the adrenal cortices of patients with critical COVID-19 was positively correlated with heightened steroidogenic activity. Additionally, the appearance of more dual-ZG/ZF identity cells in COVID-19 adrenals was in accordance with the increased steroidogenic function. However, activated mineralocorticoid and glucocorticoid receptors in vital tissues were markedly reduced in patients with critical COVID-19. INTERPRETATION: Critical COVID-19 was characterized by potentiated adrenal steroidogenesis, associated with exacerbation of inflammation, differentiation and the presence of dual-ZG/ZF identity cells. These alterations implied the reduced effectiveness of conventional corticosteroid therapy and underscored the need for evaluation of adrenal axis and the corticosteroid sensitivity.

12.
Stem Cells ; 30(2): 108-20, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22131169

RESUMO

Malfunctioned gap junctional intercellular communication (GJIC) has been thought associated with malignant transformation of normal cells. However, the role of GJIC-related proteins such as connexins in sustaining the malignant behavior of cancer stem cells remains unclear. In this study, we obtained tumorspheres formed by glioma stem cells (GSCs) and adherent GSCs and then examined their GJIC. All GSCs showed reduced GJIC, and differentiated glioma cells had more gap junction-like structures than GSCs. GSCs expressed very low level of connexins, Cx43 in particular, which are key components of gap junction. We observed hypermethylation in the promoter of gap junction protein α1, which encodes Cx43 in GSCs. Reconstitution of Cx43 in GSCs inhibited their capacity of self-renewal, invasiveness, and tumorigenicity via influencing E-cadherin and its coding protein, which leads to changes in the expression of Wnt/ß-catenin targeting genes. Our results suggest that GSCs require the low expression of Cx43 for maintaining their malignant phenotype, and upregulation of Cx43 might be a potential strategy for treatment of malignant glioma.


Assuntos
Caderinas/metabolismo , Conexina 43/metabolismo , Glioma/patologia , Células-Tronco Neoplásicas/metabolismo , Adulto , Animais , Caderinas/genética , Comunicação Celular , Proliferação de Células , Conexina 43/genética , Metilação de DNA , Feminino , Junções Comunicantes/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica , Transplante de Neoplasias , Fenótipo , Regiões Promotoras Genéticas , Ligação Proteica , Esferoides Celulares/metabolismo , Esferoides Celulares/ultraestrutura , Células Tumorais Cultivadas , Via de Sinalização Wnt
13.
Int J Urol ; 20(11): 1085-91, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23551612

RESUMO

OBJECTIVES: To determine the accuracy of contrast-enhanced transrectal ultrasonography for tumor size measurements of hypoechoic prostate cancer foci located in the peripheral zone. METHODS: A total of 55 men scheduled for radical prostatectomy, with biopsy-proven cancer in hypoechoic foci located in the peripheral zone, were consecutively enrolled in the present prospective study. Each patient underwent grayscale ultrasound and contrast-enhanced transrectal ultrasonography of the prostate according to a standardized protocol. The maximum tumor diameter on grayscale imaging and contrast-enhanced transrectal ultrasonography was compared with that determined using histopathology. RESULTS: A mean underestimation was documented to be approximately 3.9 mm and 0.6 mm for grayscale and contrast-enhanced transrectal ultrasonography imaging, respectively. Grayscale and contrast-enhanced transrectal ultrasonography imaging underestimated measurements by 76.67% (46 of 60) and 48.33% (29 of 60), whereas overestimated measurements were 20% (12 of 60) and 26.67% (16 of 60), respectively. A strong correlation was observed between contrast-enhanced transrectal ultrasonography and histopathological measurements (r = 0.91, P < 0.0001). A weak linear correlation was found between grayscale and histopathological measurements (r = 0.59, P < 0.0001). Bland-Altman analysis results were in complete accordance with correlation analysis results. For cases with maximum histopathological tumor diameters ≤10 mm and >10 mm, 40% (6 of 15) and 86.67% (39 of 45) were index tumors, respectively (P < 0.0001). CONCLUSIONS: Contrast-enhanced transrectal ultrasonography is significantly more accurate than conventional grayscale imaging for measuring prostate tumor size, especially for tumors with a diameter >10 mm, and it might have a role in preoperative assessment of prostatic index tumor sizes.


Assuntos
Fosfolipídeos , Próstata/patologia , Neoplasias da Próstata/diagnóstico por imagem , Hexafluoreto de Enxofre , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Prostatectomia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Ultrassonografia
14.
Trop Anim Health Prod ; 45(4): 987-93, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23224950

RESUMO

Two experiments were conducted to test the feeding value of fermented cottonseed meal (FCSM) in broilers. In experiment 1, 480 1-day-old male yellow-feathered broilers were allocated into 4 dietary treatments with 6 replicates (20 birds per replicate) to examine the effects of FCSM on the growth response of chickens. Experimental feeding was performed for 6 weeks in two phases (starter, days 0 to 21; finisher, days 22 to 42). FCSM was used at 0, 40, 80, and 120 g/kg levels to replace soybean meal in the basal diet. The dietary inclusion of 40 and 80 g/kg FCSM increased (quadratic (Q): p<0.01) the body weight gain of broilers in the starter and in the overall feeding periods. Experiment 2 determined the effect of FCSM on the cecal microbial populations, intestinal morphology, and digestive enzyme activity of broilers. The number of lactobacilli in the cecal digesta increased at day 21 (p<0.01) and day 42 (linear (L): p=0.01). Coliform bacteria counts decreased (L: p<0.05) with the increasing inclusion of FCSM at day 21. The inclusion of FCSM increased (L-Q: p<0.05) villus height in the duodenum and linearly elevated (p<0.05) villus height and the villus height to crypt depth ratio in the jejunum at day 21. Similar improvement (L: p<0.05) was noted in jejunal villus height at day 42. The inclusion of FCSM improved (p<0.05) the activities of amylase and protease at day 21, as well as protease at day 42. In conclusion, the appropriate inclusion of FCSM improves growth, cecal microflora, intestinal morphology, and digestive enzyme activity in yellow-feathered broilers.


Assuntos
Ceco/microbiologia , Galinhas/crescimento & desenvolvimento , Óleo de Sementes de Algodão , Intestino Delgado/microbiologia , Amilases/metabolismo , Animais , Ceco/enzimologia , Galinhas/metabolismo , China , Contagem de Colônia Microbiana/veterinária , Histocitoquímica/veterinária , Intestino Delgado/anatomia & histologia , Lipase/metabolismo , Masculino , Peptídeo Hidrolases/metabolismo , Distribuição Aleatória
15.
Zhonghua Yi Xue Za Zhi ; 93(36): 2867-70, 2013 Sep 24.
Artigo em Zh | MEDLINE | ID: mdl-24373397

RESUMO

OBJECTIVE: To explore the relationship between body fat distribution, insulin resistance, islet ß cell function and metabolic disorders in adult population. METHODS: From February to November 2012, a total of 174 subjects aged 20-68 years were recruited. Their anthropometric parameters, blood biochemical indices and the results of oral glucose tolerance test (OGTT) and insulin releasing test (IRT) were collected. Body fat distribution was measured with dual energy X-ray absorptiometry (DEXA). RESULTS: The values of trunk/total fat mass (T/B) and android/gynoid fat mass ratio (A/G) were positively correlated with blood pressure, blood lipid, plasma glucose, insulin resistance index (HOMA-IR) and high-sensitivity C-reactive protein. Compared with the group of normal metabolism, the group of metabolic disorders had higher T/B and A/G (P < 0.05). After multiple stepwise regression analysis, the main influencing factors of lnHOMA-IR and lnHOMA-ß were T/B and Grespectively.Logistic regression showed that A (OR = 3.01, 95%CI 1.86-8.17) was a risk factor for diabetes and A/G (OR = 2.71, 95%CI 1.75-6.56) a risk factor for dyslipidemia. CONCLUSIONS: Trunk and android fat deposition aggravates insulin resistance, metabolic disorders. And the main influencing factors of insulin resistance and islet ß cell function are trunk and gynoid fat respectively. Android fat mass is a major risk factor for glycolipid metabolism.


Assuntos
Distribuição da Gordura Corporal , Resistência à Insulina , Ilhotas Pancreáticas/metabolismo , Doenças Metabólicas/metabolismo , Adulto , Idoso , Feminino , Teste de Tolerância a Glucose , Humanos , Masculino , Doenças Metabólicas/fisiopatologia , Pessoa de Meia-Idade , Adulto Jovem
16.
Zhonghua Yi Xue Za Zhi ; 93(30): 2359-63, 2013 Aug 13.
Artigo em Zh | MEDLINE | ID: mdl-24300202

RESUMO

OBJECTIVE: To explore the relationship between the changes of estrogen, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels and bone mineral density (BMD) decreasing rate (BDR) at different skeletal regions and examine the effects of hormones levels on BDR. METHODS: An age cross-sectional study was conducted in 694 healthy adult women excluded from diseases and drugs affecting bone metabolism. Their age range was 20-80 years. The serum concentrations of FSH, LH and estradiol (E2) were measured with radioimmunoassay. And BDR was measured with a DXA fan-beam bone densitometer at various skeletal regions including lumbar spine, left hip and left forearm. RESULTS: The serum levels of FSH (r = -0.597 to -0.479, all P < 0.01) and LH r = -0.452 to -0.283, all P < 0.01) were significantly negatively correlated with BDR at various skeletal regions. Meanwhile, the serum level of E2 only had slightly positive correlation with hip and distal forearm (r = 0.077 to 0.122, all P < 0.05). After adjusting age and body mass index (BMI), serum FSH still had markedly negative correlation with BDR at various skeletal regions. However, the correlation coefficients became weak. Multiple line regression stepwise analysis revealed that serum FSH was a negative determinant factor of BDR at various skeletal regions: 20%-32% changes in BDR of various skeletal regions were determined by FSH, while LH only produced very small negative effects (0.6%-0.8%) on BDR of lumbar spine. Serum E2 seemed to be a positive determinant factor of skeletal regions and 2.5%-5.4% changes in BDR were determined by E2. The effects of serum FSH on BDR were approximately 3.8-12.8 folds than those of serum E2. CONCLUSIONS: BDR is correlated with increased FSH in women. The most critical factor for aging-related BDR is FSH in women while a decreased level of estrogen may be secondary.


Assuntos
Fatores Etários , Densidade Óssea , Hormônio Foliculoestimulante/sangue , Hormônio Luteinizante/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Estradiol/sangue , Feminino , Humanos , Pessoa de Meia-Idade , Adulto Jovem
17.
Signal Transduct Target Ther ; 8(1): 24, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609561

RESUMO

Severe neurological symptoms are associated with Coronavirus disease 2019 (COVID-19). However, the morphologic features, pathological nature and their potential mechanisms in patient brains have not been revealed despite evidence of neurotropic infection. In this study, neuropathological damages and infiltrating inflammatory cells were quantitatively evaluated by immunohistochemical staining, ultrastructural examination under electron microscopy, and an image threshold method, in postmortem brains from nine critically ill COVID-19 patients and nine age-matched cadavers of healthy individuals. Differentially expressed proteins were identified by quantitative proteomic assays. Histopathological findings included neurophagocytosis, microglia nodules, satellite phenomena, extensive edema, focal hemorrhage, and infarction, as well as infiltrating mononuclear cells. Immunostaining of COVID-19 brains revealed extensive activation of both microglia and astrocytes, severe damage of the blood-brain barrier (BBB) and various degrees of perivascular infiltration by predominantly CD14+/CD16+/CD141+/CCR7+/CD11c+ monocytes and occasionally CD4+/CD8+ T lymphocytes. Quantitative proteomic assays combined with bioinformatics analysis identified upregulated proteins predominantly involved in immune responses, autophagy and cellular metabolism in COVID-19 patient brains compared with control brains. Proteins involved in brain development, neuroprotection, and extracellular matrix proteins of the basement membrane were downregulated, potentially caused by the activation of transforming growth factor ß receptor and vascular endothelial growth factor signaling pathways. Thus, our results define histopathological and molecular profiles of COVID-19-associated monocytic encephalitis (CAME) and suggest potential therapeutic targets.


Assuntos
COVID-19 , Encefalite , Humanos , Monócitos , COVID-19/genética , Autopsia , Proteômica , Fator A de Crescimento do Endotélio Vascular
18.
Cell Res ; 33(3): 215-228, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36627348

RESUMO

Only a small proportion of patients with triple-negative breast cancer benefit from immune checkpoint inhibitor (ICI) targeting PD-1/PD-L1 signaling in combination with chemotherapy. Here, we discovered that therapeutic response to ICI plus paclitaxel was associated with subcellular redistribution of PD-L1. In our immunotherapy cohort of ICI in combination with nab-paclitaxel, tumor samples from responders showed significant distribution of PD-L1 at mitochondria, while non-responders showed increased accumulation of PD-L1 on tumor cell membrane instead of mitochondria. Our results also revealed that the distribution pattern of PD-L1 was regulated by an ATAD3A-PINK1 axis. Mechanistically, PINK1 recruited PD-L1 to mitochondria for degradation via a mitophagy pathway. Importantly, paclitaxel increased ATAD3A expression to disrupt proteostasis of PD-L1 by restraining PINK1-dependent mitophagy. Clinically, patients with tumors exhibiting high expression of ATAD3A detected before the treatment with ICI in combination with paclitaxel had markedly shorter progression-free survival compared with those with ATAD3A-low tumors. Preclinical results further demonstrated that targeting ATAD3A reset a favorable antitumor immune microenvironment and increased the efficacy of combination therapy of ICI plus paclitaxel. In summary, our results indicate that ATAD3A serves not only as a resistant factor for the combination therapy of ICI plus paclitaxel through preventing PD-L1 mitochondrial distribution, but also as a promising target for increasing the therapeutic responses to chemoimmunotherapy.


Assuntos
Antígeno B7-H1 , Mitofagia , Humanos , ATPases Associadas a Diversas Atividades Celulares , Imunoterapia , Proteínas de Membrana , Mitocôndrias , Proteínas Mitocondriais , Paclitaxel/farmacologia , Proteínas Quinases
19.
Pathol Res Pract ; 252: 154920, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37948998

RESUMO

Clinical data indicates that SARS-CoV-2 infection-induced respiratory failure is a fatal condition for severe COVID-19 patients. However, the pathological alterations of different types of respiratory failure remained unknown for severe COVID-19 patients. This study aims to evaluate whether there are differences in the performance of various types of respiratory failure in severe COVID-19 patients and investigate the pathological basis for these differences. The lung tissue sections of severe COVID-19 patients were assessed for the degree of injury and immune responses. Transcriptome data were used to analyze the molecular basis in severe COVID-19 patients. Severe COVID-19 patients with combined oxygenation and ventilatory failure presented more severe pulmonary fibrosis, airway obstruction, and prolonged disease course. The number of M2 macrophages increased with the degree of fibrosis in patients, suggesting that it may be closely related to the development of pulmonary fibrosis. The co-existence of pro-inflammatory and anti-inflammatory cytokines in the pulmonary environment could also participate in the progression of pulmonary fibrosis. Furthermore, the increased apoptosis in the lungs of COVID-19 patients with severe pulmonary fibrosis may represent a critical factor linking sustained inflammatory responses to fibrosis. Our findings indicate that during the extended phase of COVID-19, antifibrotic and antiapoptotic treatments should be considered in conjunction with the progression of the disease.


Assuntos
COVID-19 , Fibrose Pulmonar , Insuficiência Respiratória , Humanos , COVID-19/complicações , COVID-19/patologia , Fibrose Pulmonar/patologia , Autopsia , SARS-CoV-2 , Pulmão/patologia , Macrófagos/patologia , Insuficiência Respiratória/patologia , Apoptose
20.
Cancer Cell ; 41(4): 693-710.e8, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36963400

RESUMO

Malignant gliomas are largely refractory to immune checkpoint blockade (ICB) therapy. To explore the underlying immune regulators, we examine the microenvironment in glioma and find that tumor-infiltrating T cells are mainly confined to the perivascular cuffs and express high levels of CCR5, CXCR3, and programmed cell death protein 1 (PD-1). Combined analysis of T cell clustering with T cell receptor (TCR) clone expansion shows that potential tumor-killing T cells are mainly categorized into pre-exhausted/exhausted and effector CD8+ T subsets, as well as cytotoxic CD4+ T subsets. Notably, a distinct subpopulation of CD4+ T cells exhibits innate-like features with preferential interleukin-8 (IL-8) expression. With IL-8-humanized mouse strain, we demonstrate that IL-8-producing CD4+ T, myeloid, and tumor cells orchestrate myeloid-derived suppressor cell infiltration and angiogenesis, which results in enhanced tumor growth but reduced ICB efficacy. Antibody-mediated IL-8 blockade or the inhibition of its receptor, CXCR1/2, unleashes anti-PD-1-mediated antitumor immunity. Our findings thus highlight IL-8 as a combinational immunotherapy target for glioma.


Assuntos
Glioma , Inibidores de Checkpoint Imunológico , Interleucina-8 , Animais , Camundongos , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/patologia , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia/métodos , Interleucina-8/metabolismo , Linfócitos T , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA