Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 21(1): 69, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36849924

RESUMO

BACKGROUND: The rapid increase in production and application of carbon nanotubes (CNTs) has led to wide public concerns in their potential risks to human health. Single-walled CNTs (SWCNTs), as an extensively applied type of CNTs, have shown strong capacity to induce pulmonary fibrosis in animal models, however, the intrinsic mechanisms remain uncertain. RESULTS: In vivo experiments, we showed that accelerated senescence of alveolar type II epithelial cells (AECIIs) was associated with pulmonary fibrosis in SWCNTs-exposed mice, as well as SWCNTs-induced fibrotic lungs exhibited impaired autophagic flux in AECIIs in a time dependent manner. In vitro, SWCNTs exposure resulted in profound dysfunctions of MLE-12 cells, characterized by impaired autophagic flux and accelerated cellular senescence. Furthermore, the conditioned medium from SWCNTs-exposed MLE-12 cells promoted fibroblast-myofibroblast transdifferentiation (FMT). Additionally, restoration of autophagy flux with rapamycin significantly alleviated SWCNTs-triggered senescence and subsequent FMT whereas inhibiting autophagy using 3-MA aggravated SWCNTs-triggered senescence in MLE-12 cells and FMT. CONCLUSION: SWCNTs trigger senescence of AECIIs by impairing autophagic flux mediated pulmonary fibrosis. The findings raise the possibility of senescence-related cytokines as potential biomarkers for the hazard of CNTs exposure and regulating autophagy as an appealing target to halt CNTs-induced development of pulmonary fibrosis.


Assuntos
Nanotubos de Carbono , Fibrose Pulmonar , Humanos , Animais , Camundongos , Nanotubos de Carbono/toxicidade , Fibrose Pulmonar/induzido quimicamente , Células Epiteliais Alveolares , Autofagia , Fibroblastos
2.
Nanotoxicology ; 15(5): 588-604, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33840345

RESUMO

With substantial progress of nanotechnology, carbon nanotubes (CNTs) are widely used in a variety of industrial and commercial applications. There is rising concern about potential adverse health effects, such as pulmonary fibrosis, related to inhalation of CNTs. The detailed cellular and molecular mechanisms of pulmonary fibrosis induced by CNTs are still not clear. Epithelial-mesenchymal transition (EMT) and fibroblast-to-myofibroblast transdifferentiation (FMT) are considered as critical events in pathogenesis of pulmonary fibrosis. Alveolar macrophages (AMs) polarization plays a key role of regulating EMT and FMT in pulmonary fibrosis. In this study, we applied CNTs to stimulate primary mouse AMs under M1 or M2 polarization conditions, then analyzed the proportion of F4/80+CD11c+ or F4/80+CD206+ AMs, mRNA expression and activities of iNOS or Arg-1, as well as mRNA expression and content of TNF-α and IL-6 or TGF-ß and IL-10 to evaluate dynamic phenotypic and functional changes of AMs. Single-walled CNT (SWCNT), short-type multi-walled CNT (MWCNT), and long-type MWCNT exposure at dose of 50 µg/ml promote AMs polarization toward M1 phenotype at early stage, while promote AMs polarization toward M2 phenotype at late stage. The roles of AMs polarization during development of EMT and FMT were further investigated by conditioned medium (CM) experiments. CNTs-activated M2 AMs promote progression of EMT and FMT via secreting TGF-ß. Furthermore, up-regulating IRF4 may be involved in CNTs-induced M2 AMs polarization. In conclusion, this study demonstrates a new insight that CNTs exposure promotes AMs polarization toward M2 phenotype which facilitate EMT and FMT through secreting TGF-ß.


Assuntos
Miofibroblastos , Nanotubos de Carbono , Animais , Transdiferenciação Celular , Transição Epitelial-Mesenquimal , Fibroblastos , Macrófagos Alveolares , Camundongos , Nanotubos de Carbono/toxicidade , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA