Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Bacteriol ; 194(2): 534-5, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22207743

RESUMO

Sphingobium sp. strain SYK-6 is able to grow on an extensive variety of lignin-derived biaryls and monoaryls, and the catabolic genes for these compounds are useful for the production of industrially valuable metabolites from lignin. Here we report the complete nucleotide sequence of the SYK-6 genome which consists of the 4,199,332-bp-long chromosome and the 148,801-bp-long plasmid.


Assuntos
Genoma Bacteriano , Lignina/química , Sphingomonadaceae/genética , Sphingomonadaceae/metabolismo , Dados de Sequência Molecular
2.
Genome Res ; 19(10): 1801-8, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19675025

RESUMO

Magnetotactic bacteria are ubiquitous microorganisms that synthesize intracellular magnetite particles (magnetosomes) by accumulating Fe ions from aquatic environments. Recent molecular studies, including comprehensive proteomic, transcriptomic, and genomic analyses, have considerably improved our hypotheses of the magnetosome-formation mechanism. However, most of these studies have been conducted using pure-cultured bacterial strains of alpha-proteobacteria. Here, we report the whole-genome sequence of Desulfovibrio magneticus strain RS-1, the only isolate of magnetotactic microorganisms classified under delta-proteobacteria. Comparative genomics of the RS-1 and four alpha-proteobacterial strains revealed the presence of three separate gene regions (nuo and mamAB-like gene clusters, and gene region of a cryptic plasmid) conserved in all magnetotactic bacteria. The nuo gene cluster, encoding NADH dehydrogenase (complex I), was also common to the genomes of three iron-reducing bacteria exhibiting uncontrolled extracellular and/or intracellular magnetite synthesis. A cryptic plasmid, pDMC1, encodes three homologous genes that exhibit high similarities with those of other magnetotactic bacterial strains. In addition, the mamAB-like gene cluster, encoding the key components for magnetosome formation such as iron transport and magnetosome alignment, was conserved only in the genomes of magnetotactic bacteria as a similar genomic island-like structure. Our findings suggest the presence of core genetic components for magnetosome biosynthesis; these genes may have been acquired into the magnetotactic bacterial genomes by multiple gene-transfer events during proteobacterial evolution.


Assuntos
Desulfovibrio/genética , Genes Bacterianos , Genoma Bacteriano , Magnetospirillum/genética , Família Multigênica , Desulfovibrio/metabolismo , Metabolismo Energético/genética , Genes Bacterianos/fisiologia , Genômica/métodos , Magnetossomos/genética , Magnetospirillum/metabolismo , Família Multigênica/fisiologia
3.
DNA Res ; 18(6): 423-34, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21900213

RESUMO

The term 'sake yeast' is generally used to indicate the Saccharomyces cerevisiae strains that possess characteristics distinct from others including the laboratory strain S288C and are well suited for sake brewery. Here, we report the draft whole-genome shotgun sequence of a commonly used diploid sake yeast strain, Kyokai no. 7 (K7). The assembled sequence of K7 was nearly identical to that of the S288C, except for several subtelomeric polymorphisms and two large inversions in K7. A survey of heterozygous bases between the homologous chromosomes revealed the presence of mosaic-like uneven distribution of heterozygosity in K7. The distribution patterns appeared to have resulted from repeated losses of heterozygosity in the ancestral lineage of K7. Analysis of genes revealed the presence of both K7-acquired and K7-lost genes, in addition to numerous others with segmentations and terminal discrepancies in comparison with those of S288C. The distribution of Ty element also largely differed in the two strains. Interestingly, two regions in chromosomes I and VII of S288C have apparently been replaced by Ty elements in K7. Sequence comparisons suggest that these gene conversions were caused by cDNA-mediated recombination of Ty elements. The present study advances our understanding of the functional and evolutionary genomics of the sake yeast.


Assuntos
Genoma Fúngico , Saccharomyces cerevisiae/genética , Inversão Cromossômica , Cromossomos Fúngicos , Genes Fúngicos , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Saccharomyces cerevisiae/classificação , Análise de Sequência de DNA
4.
DNA Res ; 17(2): 85-103, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20203057

RESUMO

A filamentous non-N(2)-fixing cyanobacterium, Arthrospira (Spirulina) platensis, is an important organism for industrial applications and as a food supply. Almost the complete genome of A. platensis NIES-39 was determined in this study. The genome structure of A. platensis is estimated to be a single, circular chromosome of 6.8 Mb, based on optical mapping. Annotation of this 6.7 Mb sequence yielded 6630 protein-coding genes as well as two sets of rRNA genes and 40 tRNA genes. Of the protein-coding genes, 78% are similar to those of other organisms; the remaining 22% are currently unknown. A total 612 kb of the genome comprise group II introns, insertion sequences and some repetitive elements. Group I introns are located in a protein-coding region. Abundant restriction-modification systems were determined. Unique features in the gene composition were noted, particularly in a large number of genes for adenylate cyclase and haemolysin-like Ca(2+)-binding proteins and in chemotaxis proteins. Filament-specific genes were highlighted by comparative genomic analysis.


Assuntos
Genoma Bacteriano , Spirulina/genética , Proteínas de Bactérias/genética , Mapeamento Cromossômico , Genes Bacterianos , RNA Bacteriano/genética , RNA de Transferência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA