Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37960471

RESUMO

In wireless communication, small cells are low-powered cellular base stations that can be used to enhance the coverage and capacity of wireless networks in areas where traditional cell towers may not be practical or cost-effective. Unmanned aerial vehicles (UAVs) can be used to quickly deploy and position small cells in areas that are difficult to access or where traditional infrastructure is not feasible. UAVs are deployed by telecommunication service providers to provide aerial network access in remote rural areas, disaster-affected areas, or massive-attendance events. In this paper, we focus on the scheduling of beaconing periods as an efficient means of energy consumption optimization. The conducted study provides a sub-modular game perspective of the problem and investigates its structural properties. We also provide a learning algorithm that ensures convergence of the considered UAV network to a Nash equilibrium operating point. Finally, we conduct extensive numerical investigations to assist our claims about the energy and data rate efficiency of the strategic beaconing policy (at Nash equilibrium).

2.
Sensors (Basel) ; 23(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37112218

RESUMO

Due to the complex underwater environment, conventional measurement and sensing methods used for land are difficult to apply directly in the underwater environment. Especially for seabed topography, it is impossible to perform long-distance and accurate detection by electromagnetic waves. Therefore, various types of acoustic and even optical sensing devices for underwater applications have been used. Equipped with submersibles, these underwater sensors can detect a wide underwater range accurately. In addition, the development of sensor technology will be modified and optimized according to the needs of ocean exploitation. In this paper, we propose a multiagent approach for optimizing the quality of monitoring (QoM) in underwater sensor networks. Our framework aspires to optimize the QoM by resorting to the machine learning concept of diversity. We devise a multiagent optimization procedure which is able to both reduce the redundancy among the sensor readings and maximize the diversity in a distributed and adaptive manner. The mobile sensor positions are adjusted iteratively using a gradient type of updates. The overall framework is tested through simulations based on realistic environment conditions. The proposed approach is compared to other placement approaches and is found to achieve a higher QoM with a smaller number of sensors.

3.
Appl Soft Comput ; 125: 109109, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35693544

RESUMO

The COVID-19 pandemic has posed an unprecedented threat to the global public health system, primarily infecting the airway epithelial cells in the respiratory tract. Chest X-ray (CXR) is widely available, faster, and less expensive therefore it is preferred to monitor the lungs for COVID-19 diagnosis over other techniques such as molecular test, antigen test, antibody test, and chest computed tomography (CT). As the pandemic continues to reveal the limitations of our current ecosystems, researchers are coming together to share their knowledge and experience in order to develop new systems to tackle it. In this work, an end-to-end IoT infrastructure is designed and built to diagnose patients remotely in the case of a pandemic, limiting COVID-19 dissemination while also improving measurement science. The proposed framework comprises six steps. In the last step, a model is designed to interpret CXR images and intelligently measure the severity of COVID-19 lung infections using a novel deep neural network (DNN). The proposed DNN employs multi-scale sampling filters to extract reliable and noise-invariant features from a variety of image patches. Experiments are conducted on five publicly available databases, including COVIDx, COVID-19 Radiography, COVID-XRay-5K, COVID-19-CXR, and COVIDchestxray, with classification accuracies of 96.01%, 99.62%, 99.22%, 98.83%, and 100%, and testing times of 0.541, 0.692, 1.28, 0.461, and 0.202 s, respectively. The obtained results show that the proposed model surpasses fourteen baseline techniques. As a result, the newly developed model could be utilized to evaluate treatment efficacy, particularly in remote locations.

4.
Appl Intell (Dordr) ; 52(12): 14362-14373, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35280108

RESUMO

This research work introduces a new intelligent framework for infectious disease detection by exploring various emerging and intelligent paradigms. We propose new deep learning architectures such as entity embedding networks, long-short term memory, and convolution neural networks, for accurately learning heterogeneous medical data in identifying disease infection. The multi-agent system is also consolidated for increasing the autonomy behaviours of the proposed framework, where each agent can easily share the derived learning outputs with the other agents in the system. Furthermore, evolutionary computation algorithms, such as memetic algorithms, and bee swarm optimization controlled the exploration of the hyper-optimization parameter space of the proposed framework. Intensive experimentation has been established on medical data. Strong results obtained confirm the superiority of our framework against the solutions that are state of the art, in both detection rate, and runtime performance, where the detection rate reaches 98% for handling real use cases.

5.
Neural Comput ; 33(9): 2550-2577, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34412117

RESUMO

Associative memories enjoy many interesting properties in terms of error correction capabilities, robustness to noise, storage capacity, and retrieval performance, and their usage spans over a large set of applications. In this letter, we investigate and extend tournament-based neural networks, originally proposed by Jiang, Gripon, Berrou, and Rabbat (2016), a novel sequence storage associative memory architecture with high memory efficiency and accurate sequence retrieval. We propose a more general method for learning the sequences, which we call feedback tournament-based neural networks. The retrieval process is also extended to both directions: forward and backward-in other words, any large-enough segment of a sequence can produce the whole sequence. Furthermore, two retrieval algorithms, cache-winner and explore-winner, are introduced to increase the retrieval performance. Through simulation results, we shed light on the strengths and weaknesses of each algorithm.


Assuntos
Memória , Redes Neurais de Computação , Algoritmos , Simulação por Computador , Retroalimentação
6.
Neural Comput ; 33(2): 483-527, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33253033

RESUMO

Formation of stimulus equivalence classes has been recently modeled through equivalence projective simulation (EPS), a modified version of a projective simulation (PS) learning agent. PS is endowed with an episodic memory that resembles the internal representation in the brain and the concept of cognitive maps. PS flexibility and interpretability enable the EPS model and, consequently the model we explore in this letter, to simulate a broad range of behaviors in matching-to-sample experiments. The episodic memory, the basis for agent decision making, is formed during the training phase. Derived relations in the EPS model that are not trained directly but can be established via the network's connections are computed on demand during the test phase trials by likelihood reasoning. In this letter, we investigate the formation of derived relations in the EPS model using network enhancement (NE), an iterative diffusion process, that yields an offline approach to the agent decision making at the testing phase. The NE process is applied after the training phase to denoise the memory network so that derived relations are formed in the memory network and retrieved during the testing phase. During the NE phase, indirect relations are enhanced, and the structure of episodic memory changes. This approach can also be interpreted as the agent's replay after the training phase, which is in line with recent findings in behavioral and neuroscience studies. In comparison with EPS, our model is able to model the formation of derived relations and other features such as the nodal effect in a more intrinsic manner. Decision making in the test phase is not an ad hoc computational method, but rather a retrieval and update process of the cached relations from the memory network based on the test trial. In order to study the role of parameters on agent performance, the proposed model is simulated and the results discussed through various experimental settings.

7.
Sensors (Basel) ; 21(23)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34883949

RESUMO

Functional near-infrared spectroscopy (fNIRS) is a comparatively new noninvasive, portable, and easy-to-use brain imaging modality. However, complicated dexterous tasks such as individual finger-tapping, particularly using one hand, have been not investigated using fNIRS technology. Twenty-four healthy volunteers participated in the individual finger-tapping experiment. Data were acquired from the motor cortex using sixteen sources and sixteen detectors. In this preliminary study, we applied standard fNIRS data processing pipeline, i.e., optical densities conversation, signal processing, feature extraction, and classification algorithm implementation. Physiological and non-physiological noise is removed using 4th order band-pass Butter-worth and 3rd order Savitzky-Golay filters. Eight spatial statistical features were selected: signal-mean, peak, minimum, Skewness, Kurtosis, variance, median, and peak-to-peak form data of oxygenated haemoglobin changes. Sophisticated machine learning algorithms were applied, such as support vector machine (SVM), random forests (RF), decision trees (DT), AdaBoost, quadratic discriminant analysis (QDA), Artificial neural networks (ANN), k-nearest neighbors (kNN), and extreme gradient boosting (XGBoost). The average classification accuracies achieved were 0.75±0.04, 0.75±0.05, and 0.77±0.06 using k-nearest neighbors (kNN), Random forest (RF) and XGBoost, respectively. KNN, RF and XGBoost classifiers performed exceptionally well on such a high-class problem. The results need to be further investigated. In the future, a more in-depth analysis of the signal in both temporal and spatial domains will be conducted to investigate the underlying facts. The accuracies achieved are promising results and could open up a new research direction leading to enrichment of control commands generation for fNIRS-based brain-computer interface applications.


Assuntos
Interfaces Cérebro-Computador , Espectroscopia de Luz Próxima ao Infravermelho , Análise Discriminante , Humanos , Movimento , Máquina de Vetores de Suporte
8.
Neural Comput ; 32(5): 912-968, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32186999

RESUMO

Stimulus equivalence (SE) and projective simulation (PS) study complex behavior, the former in human subjects and the latter in artificial agents. We apply the PS learning framework for modeling the formation of equivalence classes. For this purpose, we first modify the PS model to accommodate imitating the emergence of equivalence relations. Later, we formulate the SE formation through the matching-to-sample (MTS) procedure. The proposed version of PS model, called the equivalence projective simulation (EPS) model, is able to act within a varying action set and derive new relations without receiving feedback from the environment. To the best of our knowledge, it is the first time that the field of equivalence theory in behavior analysis has been linked to an artificial agent in a machine learning context. This model has many advantages over existing neural network models. Briefly, our EPS model is not a black box model, but rather a model with the capability of easy interpretation and flexibility for further modifications. To validate the model, some experimental results performed by prominent behavior analysts are simulated. The results confirm that the EPS model is able to reliably simulate and replicate the same behavior as real experiments in various settings, including formation of equivalence relations in typical participants, nonformation of equivalence relations in language-disabled children, and nodal effect in a linear series with nodal distance five. Moreover, through a hypothetical experiment, we discuss the possibility of applying EPS in further equivalence theory research.

9.
Front Hum Neurosci ; 18: 1354143, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435744

RESUMO

In this study, we explore the potential of using functional near-infrared spectroscopy (fNIRS) signals in conjunction with modern machine-learning techniques to classify specific anatomical movements to increase the number of control commands for a possible fNIRS-based brain-computer interface (BCI) applications. The study focuses on novel individual finger-tapping, a well-known task in fNIRS and fMRI studies, but limited to left/right or few fingers. Twenty-four right-handed participants performed the individual finger-tapping task. Data were recorded by using sixteen sources and detectors placed over the motor cortex according to the 10-10 international system. The event's average oxygenated Δ HbO and deoxygenated Δ HbR hemoglobin data were utilized as features to assess the performance of diverse machine learning (ML) models in a challenging multi-class classification setting. These methods include LDA, QDA, MNLR, XGBoost, and RF. A new DL-based model named "Hemo-Net" has been proposed which consists of multiple parallel convolution layers with different filters to extract the features. This paper aims to explore the efficacy of using fNRIS along with ML/DL methods in a multi-class classification task. Complex models like RF, XGBoost, and Hemo-Net produce relatively higher test set accuracy when compared to LDA, MNLR, and QDA. Hemo-Net has depicted a superior performance achieving the highest test set accuracy of 76%, however, in this work, we do not aim at improving the accuracies of models rather we are interested in exploring if fNIRS has the neural signatures to help modern ML/DL methods in multi-class classification which can lead to applications like brain-computer interfaces. Multi-class classification of fine anatomical movements, such as individual finger movements, is difficult to classify with fNIRS data. Traditional ML models like MNLR and LDA show inferior performance compared to the ensemble-based methods of RF and XGBoost. DL-based method Hemo-Net outperforms all methods evaluated in this study and demonstrates a promising future for fNIRS-based BCI applications.

10.
IEEE Trans Neural Netw Learn Syst ; 34(2): 650-661, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34347605

RESUMO

Learning automata (LA) with artificially absorbing barriers was a completely new horizon of research in the 1980s (Oommen, 1986). These new machines yielded properties that were previously unknown. More recently, absorbing barriers have been introduced in continuous estimator algorithms so that the proofs could follow a martingale property, as opposed to monotonicity (Zhang et al., 2014), (Zhang et al., 2015). However, the applications of LA with artificial barriers are almost nonexistent. In that regard, this article is pioneering in that it provides effective and accurate solutions to an extremely complex application domain, namely that of solving two-person zero-sum stochastic games that are provided with incomplete information. LA have been previously used (Sastry et al., 1994) to design algorithms capable of converging to the game's Nash equilibrium under limited information. Those algorithms have focused on the case where the saddle point of the game exists in a pure strategy. However, the majority of the LA algorithms used for games are absorbing in the probability simplex space, and thus, they converge to an exclusive choice of a single action. These LA are thus unable to converge to other mixed Nash equilibria when the game possesses no saddle point for a pure strategy. The pioneering contribution of this article is that we propose an LA solution that is able to converge to an optimal mixed Nash equilibrium even though there may be no saddle point when a pure strategy is invoked. The scheme, being of the linear reward-inaction ( LR-I ) paradigm, is in and of itself, absorbing. However, by incorporating artificial barriers, we prevent it from being "stuck" or getting absorbed in pure strategies. Unlike the linear reward- ϵ penalty ( LR-ϵP ) scheme proposed by Lakshmivarahan and Narendra almost four decades ago, our new scheme achieves the same goal with much less parameter tuning and in a more elegant manner. This article includes the nontrial proofs of the theoretical results characterizing our scheme and also contains experimental verification that confirms our theoretical findings.

11.
Heliyon ; 9(2): e13628, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36846707

RESUMO

Maintaining body balance, whether static or dynamic, is critical in performing everyday activities and developing and optimizing basic motor skills. This study investigates how a professional alpine skier's brain activates on the contralateral side during a single-leg stance. Continuous-wave functional near-infrared spectroscopy (fNIRS) signals were recorded with sixteen sources and detectors over the motor cortex to investigate brain hemodynamics. Three different tasks were performed: barefooted walk (BFW), right-leg stance (RLS), and left-leg stance (LLS). The signal processing pipeline includes channel rejection, the conversation of raw intensities into hemoglobin concentration changes using modified Beer-Lambert law, baseline zero-adjustments, z-normalization, and temporal filtration. The hemodynamic brain signal was estimated using a general linear model with a 2-gamma function. Measured activations (t-values) with p-value <0.05 were only considered as statistically significant active channels. Compared to all other conditions, BFW has the lowest brain activation. LLS is associated with more contralateral brain activation than RLS. During LLS, higher brain activation was observed across all brain regions. The right hemisphere has comparatively more activated regions-of-interest. Higher ΔHbO demands in the dorsolateral prefrontal, pre-motor, supplementary motor cortex, and primary motor cortex were observed in the right hemisphere relative to the left which explains higher energy demands for balancing during LLS. Broca's temporal lobe was also activated during both LLS and RLS. Comparing the results with BFW- which is considered the most realistic walking condition-, it is concluded that higher demands of ΔHbO predict higher motor control demands for balancing. The participant struggled with balance during the LLS, showing higher ΔHbO in both hemispheres compared to two other conditions, which indicates the higher requirement for motor control to maintain balance. A post-physiotherapy exercise program is expected to improve balance during LLS, leading to fewer changes to ΔHbO.

12.
Diagnostics (Basel) ; 13(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37998548

RESUMO

An important part of diagnostics is to gain insight into properties that characterize a disease. Machine learning has been used for this purpose, for instance, to identify biomarkers in genomics. However, when patient data are presented as images, identifying properties that characterize a disease becomes far more challenging. A common strategy involves extracting features from the images and analyzing their occurrence in healthy versus pathological images. A limitation of this approach is that the ability to gain new insights into the disease from the data is constrained by the information in the extracted features. Typically, these features are manually extracted by humans, which further limits the potential for new insights. To overcome these limitations, in this paper, we propose a novel framework that provides insights into diseases without relying on handcrafted features or human intervention. Our framework is based on deep learning (DL), explainable artificial intelligence (XAI), and clustering. DL is employed to learn deep patterns, enabling efficient differentiation between healthy and pathological images. Explainable artificial intelligence (XAI) visualizes these patterns, and a novel "explanation-weighted" clustering technique is introduced to gain an overview of these patterns across multiple patients. We applied the method to images from the gastrointestinal tract. In addition to real healthy images and real images of polyps, some of the images had synthetic shapes added to represent other types of pathologies than polyps. The results show that our proposed method was capable of organizing the images based on the reasons they were diagnosed as pathological, achieving high cluster quality and a rand index close to or equal to one.

13.
Front Neuroinform ; 17: 1272791, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38351907

RESUMO

Introduction: A challenge when applying an artificial intelligence (AI) deep learning (DL) approach to novel electroencephalography (EEG) data, is the DL architecture's lack of adaptability to changing numbers of EEG channels. That is, the number of channels cannot vary neither in the training data, nor upon deployment. Such highly specific hardware constraints put major limitations on the clinical usability and scalability of the DL models. Methods: In this work, we propose a technique for handling such varied numbers of EEG channels by splitting the EEG montages into distinct regions and merge the channels within the same region to a region representation. The solution is termed Region Based Pooling (RBP). The procedure of splitting the montage into regions is performed repeatedly with different region configurations, to minimize potential loss of information. As RBP maps a varied number of EEG channels to a fixed number of region representations, both current and future DL architectures may apply RBP with ease. To demonstrate and evaluate the adequacy of RBP to handle a varied number of EEG channels, sex classification based solely on EEG was used as a test example. The DL models were trained on 129 channels, and tested on 32, 65, and 129-channels versions of the data using the same channel positions scheme. The baselines for comparison were zero-filling the missing channels and applying spherical spline interpolation. The performances were estimated using 5-fold cross validation. Results: For the 32-channel system version, the mean AUC values across the folds were: RBP (93.34%), spherical spline interpolation (93.36%), and zero-filling (76.82%). Similarly, on the 65-channel system version, the performances were: RBP (93.66%), spherical spline interpolation (93.50%), and zero-filling (85.58%). Finally, the 129-channel system version produced the following results: RBP (94.68%), spherical spline interpolation (93.86%), and zero-filling (91.92%). Conclusion: In conclusion, RBP obtained similar results to spherical spline interpolation, and superior results to zero-filling. We encourage further research and development of DL models in the cross-dataset setting, including the use of methods such as RBP and spherical spline interpolation to handle a varied number of EEG channels.

14.
Front Big Data ; 5: 686416, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35647535

RESUMO

Elasticsearch is currently the most popular search engine for full-text database management systems. By default, its configuration does not change while it receives data. However, when Elasticsearch stores a large amount of data over time, the default configuration becomes an obstacle to improving performance. In addition, the servers that host Elasticsearch may have limited resources, such as internal memory and CPU. A general solution to these problems is to dynamically tune the configuration parameters of Elasticsearch in order to improve its performance. The sheer number of parameters involved in this configuration makes it a complex task. In this work, we apply the Simultaneous Perturbation Stochastic Approximation method for optimizing Elasticsearch with multiple unknown parameters. Using this algorithm, our implementation optimizes the Elasticsearch configuration parameters by observing the performance and automatically changing the configuration to improve performance. The proposed solution makes it possible to change the configuration parameters of Elasticsearch automatically without having to restart the currently running instance of Elasticsearch. The results show a higher than 40% improvement in the combined data insertion capacity and the system's response time.

15.
Comput Biol Med ; 145: 105420, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35390744

RESUMO

Depression is a major depressive disorder characterized by persistent sadness and a sense of worthlessness, as well as a loss of interest in pleasurable activities, which leads to a variety of physical and emotional problems. It is a worldwide illness that affects millions of people and should be detected at an early stage to prevent negative effects on an individual's life. Electroencephalogram (EEG) is a non-invasive technique for detecting depression that analyses brain signals to determine the current mental state of depressed subjects. In this study, we propose a method for automatic feature extraction to detect depression by first constructing a graph from the dataset where the nodes represent the subjects in the dataset and where the edge weights obtained using the Euclidean distance reflect the relationship between them. The Node2vec algorithmic framework is then used to compute feature representations for nodes in a graph in the form of node embeddings ensuring that similar nodes in the graph remain near in the embedding. These node embeddings act as useful features which can be directly used by classification algorithms to determine whether a subject is depressed thus reducing the effort required for manual handcrafted feature extraction. To combine the features collected from the multiple channels of the EEG data, the method proposes three types of fusion methods: graph-level fusion, feature-level fusion, and decision-level fusion. The proposed method is tested on three publicly available datasets with 3, 20, and 128 channels, respectively, and compared to five state-of-the-art methods. The results show that the proposed method detects depression effectively with a peak accuracy of 0.933 in decision-level fusion, which is the highest among the state-of-the-art methods.


Assuntos
Interfaces Cérebro-Computador , Transtorno Depressivo Maior , Algoritmos , Depressão/diagnóstico , Transtorno Depressivo Maior/diagnóstico , Eletroencefalografia , Humanos
16.
Sci Data ; 9(1): 752, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463232

RESUMO

We present a dataset of eye-movement recordings collected from 60 participants, along with their empathy levels, towards people with movement impairments. During each round of gaze recording, participants were divided into two groups, each one completing one task. One group performed a task of free exploration of structureless images, and a second group performed a task consisting of gaze typing, i.e. writing sentences using eye-gaze movements on a card board. The eye-tracking data recorded from both tasks is stored in two datasets, which, besides gaze position, also include pupil diameter measurements. The empathy levels of participants towards non-verbal movement-impaired people were assessed twice through a questionnaire, before and after each task. The questionnaire is composed of forty questions, extending a established questionnaire of cognitive and affective empathy. Finally, our dataset presents an opportunity for analysing and evaluating, among other, the statistical features of eye-gaze trajectories in free-viewing as well as how empathy is reflected in eye features.


Assuntos
Empatia , Movimentos Oculares , Humanos , Tecnologia de Rastreamento Ocular , Fixação Ocular
17.
Artigo em Inglês | MEDLINE | ID: mdl-37015672

RESUMO

Since the early 1960s, the paradigm of learning automata (LA) has experienced abundant interest. Arguably, it has also served as the foundation for the phenomenon and field of reinforcement learning (RL). Over the decades, new concepts and fundamental principles have been introduced to increase the LA's speed and accuracy. These include using probability updating functions, discretizing the probability space, and using the "Pursuit" concept. Very recently, the concept of incorporating "structure" into the ordering of the LA's actions has improved both the speed and accuracy of the corresponding hierarchical machines, when the number of actions is large. This has led to the ϵ -optimal hierarchical continuous pursuit LA (HCPA). This article pioneers the inclusion of all the above-mentioned phenomena into a new single LA, leading to the novel hierarchical discretized pursuit LA (HDPA). Indeed, although the previously proposed HCPA is powerful, its speed has an impediment when any action probability is close to unity, because the updates of the components of the probability vector are correspondingly smaller when any action probability becomes closer to unity. We propose here, the novel HDPA, where we infuse the phenomenon of discretization into the action probability vector's updating functionality, and which is invoked recursively at every stage of the machine's hierarchical structure. This discretized functionality does not possess the same impediment, because discretization prohibits it. We demonstrate the HDPA's robustness and validity by formally proving the ϵ -optimality by utilizing the moderation property. We also invoke the submartingale characteristic at every level, to prove that the action probability of the optimal action converges to unity as time goes to infinity. Apart from the new machine being ϵ -optimal, the numerical results demonstrate that the number of iterations required for convergence is significantly reduced for the HDPA, when compared to the state-of-the-art HCPA scheme.

18.
IEEE Trans Cybern ; 52(1): 16-24, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31905160

RESUMO

In this article, we consider an emergent problem in the sensor fusion area in which unreliable sensors need to be identified in the absence of the ground truth. We devise a novel solution to the problem using the theory of replicator dynamics that require mild conditions compared to the available state-of-the-art approaches. The solution has a low computational complexity that is linear in terms of the number of involved sensors. We provide some sound theoretical results that catalog the convergence of our approach to a solution where we can clearly unveil the sensor type. Furthermore, we present some experimental results that demonstrate the convergence of our approach in concordance with our theoretical findings.

19.
Front Physiol ; 13: 1097204, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714314

RESUMO

In the quest of training complicated medical data for Internet of Medical Things (IoMT) scenarios, this study develops an end-to-end intelligent framework that incorporates ensemble learning, genetic algorithms, blockchain technology, and various U-Net based architectures. Genetic algorithms are used to optimize the hyper-parameters of the used architectures. The training process was also protected with the help of blockchain technology. Finally, an ensemble learning system based on voting mechanism was developed to combine local outputs of various segmentation models into a global output. Our method shows that strong performance in a condensed number of epochs may be achieved with a high learning rate and a small batch size. As a result, we are able to perform better than standard solutions for well-known medical databases. In fact, the proposed solution reaches 95% of intersection over the union, compared to the baseline solutions where they are below 80%. Moreover, with the proposed blockchain strategy, the detected attacks reached 76%.

20.
Front Robot AI ; 9: 1007547, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313249

RESUMO

In this work, we argue that the search for Artificial General Intelligence should start from a much lower level than human-level intelligence. The circumstances of intelligent behavior in nature resulted from an organism interacting with its surrounding environment, which could change over time and exert pressure on the organism to allow for learning of new behaviors or environment models. Our hypothesis is that learning occurs through interpreting sensory feedback when an agent acts in an environment. For that to happen, a body and a reactive environment are needed. We evaluate a method to evolve a biologically-inspired artificial neural network that learns from environment reactions named Neuroevolution of Artificial General Intelligence, a framework for low-level artificial general intelligence. This method allows the evolutionary complexification of a randomly-initialized spiking neural network with adaptive synapses, which controls agents instantiated in mutable environments. Such a configuration allows us to benchmark the adaptivity and generality of the controllers. The chosen tasks in the mutable environments are food foraging, emulation of logic gates, and cart-pole balancing. The three tasks are successfully solved with rather small network topologies and therefore it opens up the possibility of experimenting with more complex tasks and scenarios where curriculum learning is beneficial.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA