Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pediatr Res ; 95(3): 647-659, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37935884

RESUMO

BACKGROUND: Fetal growth restriction (FGR) increases risk for development of obesity and type 2 diabetes. Using a mouse model of FGR, we tested whether metabolic outcomes were exacerbated by high-fat diet challenge or associated with fecal microbial taxa. METHODS: FGR was induced by maternal calorie restriction from gestation day 9 to 19. Control and FGR offspring were weaned to control (CON) or 45% fat diet (HFD). At age 16 weeks, offspring underwent intraperitoneal glucose tolerance testing, quantitative MRI body composition assessment, and energy balance studies. Total microbial DNA was used for amplification of the V4 variable region of the 16 S rRNA gene. Multivariable associations between groups and genera abundance were assessed using MaAsLin2. RESULTS: Adult male FGR mice fed HFD gained weight faster and had impaired glucose tolerance compared to control HFD males, without differences among females. Irrespective of weaning diet, adult FGR males had depletion of Akkermansia, a mucin-residing genus known to be associated with weight gain and glucose handling. FGR females had diminished Bifidobacterium. Metabolic changes in FGR offspring were associated with persistent gut microbial changes. CONCLUSION: FGR results in persistent gut microbial dysbiosis that may be a therapeutic target to improve metabolic outcomes. IMPACT: Fetal growth restriction increases risk for metabolic syndrome later in life, especially if followed by rapid postnatal weight gain. We report that a high fat diet impacts weight and glucose handling in a mouse model of fetal growth restriction in a sexually dimorphic manner. Adult growth-restricted offspring had persistent changes in fecal microbial taxa known to be associated with weight, glucose homeostasis, and bile acid metabolism, particularly Akkermansia, Bilophilia and Bifidobacteria. The gut microbiome may represent a therapeutic target to improve long-term metabolic outcomes related to fetal growth restriction.


Assuntos
Diabetes Mellitus Tipo 2 , Retardo do Crescimento Fetal , Humanos , Feminino , Adulto , Masculino , Lactente , Retardo do Crescimento Fetal/metabolismo , Dieta Hiperlipídica , Aumento de Peso , Glucose , Desenvolvimento Fetal
2.
PNAS Nexus ; 2(1): pgac309, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36744021

RESUMO

Rapid changes in the global climate are deepening existing health disparities from resource scarcity and malnutrition. Rising ambient temperatures represent an imminent risk to pregnant women and infants. Both maternal malnutrition and heat stress during pregnancy contribute to poor fetal growth, the leading cause of diminished child development in low-resource settings. However, studies explicitly examining interactions between these two important environmental factors are lacking. We leveraged maternal and neonatal anthropometry data from a randomized controlled trial focused on improving preconception maternal nutrition (Women First Preconception Nutrition trial) conducted in Thatta, Pakistan, where both nutritional deficits and heat stress are prevalent. Multiple linear regression of ambient temperature and neonatal anthropometry at birth (n = 459) showed a negative association between daily maximal temperatures in the first trimester and Z-scores of birth length and head circumference. Placental mRNA-sequencing and protein analysis showed transcriptomic changes in protein translation, ribosomal proteins, and mTORC1 signaling components in term placenta exposed to excessive heat in the first trimester. Targeted metabolomic analysis indicated ambient temperature associated alterations in maternal circulation with decreases in choline concentrations. Notably, negative impacts of heat on birth length were in part mitigated in women randomized to comprehensive maternal nutritional supplementation before pregnancy suggesting potential interactions between heat stress and nutritional status of the mother. Collectively, the findings bridge critical gaps in our current understanding of how maternal nutrition may provide resilience against adverse effects of heat stress in pregnancy.

3.
Obesity (Silver Spring) ; 30(11): 2134-2145, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36321274

RESUMO

OBJECTIVE: Identifying associations among circulating proteins, dietary intakes, and clinically relevant indicators of cardiometabolic health during weight loss may elucidate biologically relevant pathways affected by diet, allowing for an incorporation of precision nutrition approaches when designing future interventions. This study hypothesized that plasma proteins would be associated with diet and cardiometabolic health indicators within a behavioral weight-loss intervention. METHODS: This secondary data analysis included participants (n = 20, mean [SD], age: 40.1 [9.5] years, BMI: 34.2 [4.0] kg/m2 ) who completed a 1-year behavioral weight-loss intervention. Cardiovascular disease-related plasma proteins, diet, and cardiometabolic health indicators were evaluated at baseline and 3 months. Associations were determined via linear regression and integrated networks created using Visualization Of LineAr Regression Elements (VOLARE). RESULTS: A total of 16 plasma proteins were associated with ≥1 diet or health indicator at baseline (p < 0.001); changes in 42 proteins were associated with changes in diet or health indicators from baseline to 3 months (p < 0.005). Baseline tumor necrosis factor receptor superfamily member 10C (TNFRSF10C) was associated with intakes of dark green vegetables (r = -0.712), and fatty acid-binding protein 4 (FABP4) was associated with intakes of unsweetened coffee (r = -0.689). Changes in refined-grain intakes were associated with changes in scavenger receptor cysteine-rich type 1 protein M130 (CD163; r = 0.725), interleukin-1 receptor type 1 (IL1R-T1; r = 0.624), insulin (r = 0.656), and triglycerides (r = 0.648). CONCLUSIONS: Circulating cardiovascular disease-related proteins were associated with diet and cardiometabolic health indicators prior to and in response to weight loss.


Assuntos
Doenças Cardiovasculares , Humanos , Adulto , Projetos Piloto , Proteômica , Ingestão de Alimentos , Dieta , Redução de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA