Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Virol ; 96(6): e0219321, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35044210

RESUMO

Classical swine fever virus (CSFV), a positive-sense, enveloped RNA virus that belongs to the Flaviviridae family, hijacks cell host proteins for its own replication. We previously demonstrated that Golgi-specific brefeldin A (BFA) resistance factor 1 (GBF1), a regulator of intracellular transport, mediates CSFV infection. However, the molecular mechanism by which this protein regulates CSFV proliferation remains unelucidated. In this study, we constructed a series of plasmids expressing GBF1 truncation mutants to investigate their behavior during CSFV infection and found that GBF1 truncation mutants containing the Sec7 domain could rescue CSFV replication in BFA- and GCA (golgicide A)-treated swine umbilical vein endothelial cells (SUVECs), demonstrating that the effect of GBF1 on CSFV infection depended on the activity of guanine nucleotide exchange factor (GEF). Additionally, it was found that ADP ribosylation factors (ARFs), which are known to be activated by the Sec7 domain of GBF1, also regulated CSFV proliferation. Furthermore, we demonstrated that ARF1 is more important for CSFV infection than other ARF members with Sec7 domain dependence. Subsequent experiments established the function of coatomer protein I (COP I), a downstream effector of ARF1 which is also required for CSFV infection by mediating CSFV invasion. Mechanistically, inhibition of COP I function impaired CSFV invasion by inhibiting cholesterol transport to the plasma membrane and regulating virion transport from early to late endosomes. Collectively, our results suggest that ARF1, with domain-dependent GBF1 Sec7, activates COP I to facilitate CSFV entry into SUVECs. IMPORTANCE Classical swine fever (CSF), a highly contact-infectious disease caused by classical swine fever virus (CSFV) infecting domestic pigs or wild boars, has caused huge economic losses to the pig industry. Our previous studies have revealed that GBF1 and class I and II ARFs are required for CSFV proliferation. However, a direct functional link between GBF1, ARF1, and COP I and the mechanism of the GBF1-ARF1-COP I complex in CSFV infection are still poorly understood. Here, our data support a model in which COP I supports CSFV entry into SUVECs in two different ways, depending on the GBF1-ARF1 function. On the one hand, the GBF1-ARF1-COP I complex mediates cholesterol trafficking to the plasma membrane to support CSFV entry. On the other hand, the GBF1-ARF1-COP I complex mediates CSFV transport from early to late endosomes during the entry steps.


Assuntos
Fatores de Ribosilação do ADP , Vírus da Febre Suína Clássica , Peste Suína Clássica , Proteína Coatomer , Fatores de Troca do Nucleotídeo Guanina , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Animais , Colesterol , Peste Suína Clássica/fisiopatologia , Peste Suína Clássica/virologia , Vírus da Febre Suína Clássica/fisiologia , Proteína Coatomer/genética , Proteína Coatomer/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Suínos , Internalização do Vírus , Replicação Viral/genética
2.
Int J Mol Sci ; 23(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36077566

RESUMO

Zearalenone (ZEA) is a fungal mycotoxin known to exert strong reproductive toxicity in animals. As a newly identified type of programmed cell death, necroptosis is regulated by receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3), and mixed-lineage kinase domain-like pseudokinase (MLKL). However, the role and mechanism of necroptosis in ZEA toxicity remain unclear. In this study, we confirmed the involvement of necroptosis in ZEA-induced cell death in goat endometrial stromal cells (gESCs). The release of lactate dehydrogenase (LDH) and the production of PI-positive cells markedly increased. At the same time, the expression of RIPK1 and RIPK3 mRNAs and P-RIPK3 and P-MLKL proteins were significantly upregulated in ZEA-treated gESCs. Importantly, the MLKL inhibitor necrosulfonamide (NSA) dramatically attenuated gESCs necroptosis and powerfully blocked ZEA-induced reactive oxygen species (ROS) generation and mitochondrial dysfunction. The reactive oxygen species (ROS) scavengers and N-acetylcysteine (NAC) inhibited ZEA-induced cell death. In addition, the inhibition of MLKL alleviated the intracellular Ca2+ overload caused by ZEA. The calcium chelator BAPTA-AM markedly suppressed ROS production and mitochondrial damage, thus inhibiting ZEA-induced necroptosis. Therefore, our results revealed the mechanism by which ZEA triggers gESCs necroptosis, which may provide a new therapeutic strategy for ZEA poisoning.


Assuntos
Necroptose , Zearalenona , Animais , Cálcio/metabolismo , Cálcio da Dieta , Cabras/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Células Estromais/metabolismo , Zearalenona/toxicidade
3.
Ecotoxicol Environ Saf ; 194: 110401, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32143102

RESUMO

Zearalenone (ZEA), a toxic substance produced by Fusarium fungi, accumulated in cereals grain and animal feed, causes injury to humans and animals. ZEA can induce obvious reproductive toxicity with the ovarian granulosa cells (GCs) as the main target. However, the study on exploring the protective compounds against ZEA-induced mouse primary ovarian GCs damage remains less. In the current study, the protective effect of 20 compounds derived from traditional Chinese medicines (TCMs) on the injury of mouse GCs caused by ZEA were evaluated using MTT assay and the cell morphology. Our results showed that chlorogenic acid (250, 500, and 1000 µg/mL) significantly suppress ZEA-induced GCs death. Western blot analysis suggested chlorogenic acid could rescue the up-regulated apoptosis of GCs induced by ZEA via attenuating the protein expression of cleaved caspase-3, the ratio of Bax/Bcl-2 and cleaved-PARP. Our results provide strong evidence that chlorogenic acid warrants further optimization for more potent and safer compounds for against the ZEA lead toxicity to humans and animals.


Assuntos
Apoptose/efeitos dos fármacos , Ácido Clorogênico/farmacologia , Células da Granulosa/efeitos dos fármacos , Zearalenona/toxicidade , Animais , Caspase 3/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Células da Granulosa/metabolismo , Células da Granulosa/patologia , Camundongos , Camundongos Endogâmicos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
4.
Vet Microbiol ; 278: 109668, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36709687

RESUMO

Classical swine fever virus (CSFV) is an enveloped positive-sense RNA virus belonging to the Flaviviridae family. The virus utilizes cellular lipids and manipulates host lipid metabolism to ensure its replication, especially during virus invasion and replication steps. Therefore, identification of the molecular lipid metabolism pathways that are suitable targets is critical for the development of anti-CSFV therapeutics. In this study, we screened the anti-CSFV activity of 12 compounds targeting synthesis of cholesterol and fatty acids, cholesterol esters, and cholesterol transport. We found that 25-hydroxycholesterol (25HC), a regulator of cholesterol metabolism and transport, has potent anti-CSFV activity. Mechanistically, we showed that 25HC inhibited CSFV proliferation by blocking the entry of virions into porcine alveolar macrophages (3D4/21) by decreasing cholesterol abundance in the plasma membrane through activation of acyl-CoA:cholesterol acyltransferase (ACAT). Finally, we revealed that cholesterol 25-hydroxylase (CH25H), a redox enzyme that mediates 25HC production, also restricted CSFV infection via both enzyme activity-dependent and -independent mechanisms. Collectively, our results shed light on the mechanisms by which 25HC inhibits CSFV entry into cells and suggests a potential new therapeutic method against CSFV infection.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Doenças dos Suínos , Animais , Suínos , Vírus da Febre Suína Clássica/fisiologia , Macrófagos Alveolares , Internalização do Vírus , Colesterol/metabolismo , Membrana Celular , Replicação Viral
5.
Theriogenology ; 210: 119-132, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37494784

RESUMO

After delivery, bacterial contamination and uterine tissue degeneration in animals can lead to the development of uterine diseases, such as endometritis, accompanied by endoplasmic reticulum stress (ERS). Increasing evidence suggests that spliced X-box binding protein 1 (XBP1s), a critical component of ERS, is involved in several pathological processes in various organisms. However, the specific molecular mechanisms by which XBP1s mediates the inflammatory response in goat endometrial epithelial cells (gEECs) remain largely unknown. In the present study, XBP1s protein was induced into the nucleus in the lipopolysaccharide (LPS, 5 µg/mL)-induced inflammatory response of gEECs. Lipopolysaccharide-induced expression and nucleation of XBP1s were reduced by the inhibition of Toll-like receptor 4 (TLR4) using TAK-242 (1 µM; a TLR4 inhibitor). Expression and nucleation of XBP1s were similarly reduced when the activity of inositol-requiring enzyme 1α (IRE1α) was inhibited using 4µ8C (10 µM; an IRE1α inhibitor). In addition, inhibition of IRE1a increased IL-1ß, TNF-α, and IL-8 levels and secretion of IL-6 induced by LPS. Notably, phosphorylation of nuclear factor kappa-B (NF-κB) P65 protein and expression of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) were similarly increased. Furthermore, knockdown of XBP1s in gEECs consistently promoted NF-κB P65 protein phosphorylation, NLRP3 protein expression, and inflammatory cytokine secretion. In summary, the current results suggest that in the LPS-induced inflammatory response in gEECs, LPS generates intracellular signaling cascades in gEECs via TLR4, which may promote XBP1s protein expression and nucleation by activating IRE1a. However, downregulation of XBP1s expression exacerbates inflammation by promoting activation of the NF-κB and NLRP3 inflammatory vesicle pathways. These results will potentially contribute to the treatment and prevention of endometritis in ruminants.


Assuntos
Endometrite , Doenças das Cabras , Feminino , Animais , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Lipopolissacarídeos/farmacologia , Endorribonucleases/genética , Endorribonucleases/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Regulação para Baixo , Endometrite/genética , Endometrite/veterinária , Cabras/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/veterinária , Células Epiteliais/metabolismo
6.
Animals (Basel) ; 12(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36077938

RESUMO

Endometrial cell death is induced by bacterial infection, resulting in damage to the physical barriers and immune function. An in-depth understanding of the mechanisms of endometrial epithelial cell necroptosis might provide new insights into the treatment of uterine diseases. In the present study, we investigated the effect of Staphylococcus aureus on goat endometrial epithelial cell (gEEC) necroptosis, and the underlying molecular mechanism. We found that S. aureus induced significant necroptosis in gEECs by increasing the expression of key proteins of the RIPK1/RIPK3/MLKL axis; importantly, this effect was alleviated by inhibitors of RIPK1, RIPK3, and MLKL. Moreover, we found that the main triggers of gEEC necroptosis induced by S. aureus were not the toll-like receptors (TLRs) and tumor necrosis factor receptor (TNFR), but membrane disruption and ion imbalance. Moreover, we observed a significant decrease in the mitochondrial membrane potential, indicating mitochondrial damage, in addition to increased cytochrome c levels and reactive oxygen species (ROS) generation in S. aureus-infected gEECs; these, effects were also suppressed by the inhibitors of RIPK1, RIPK3, and MLKL. Taken together, these data revealed the molecular mechanism of S. aureus-induced gEEC necroptosis and provided potential new targeted therapies for clinical intervention in bacterial infections.

7.
Animals (Basel) ; 12(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35327108

RESUMO

Increasing evidence indicates that autophagy and endoplasmic reticulum (ER) stress are involved in the regulation of cell death; however, the role of autophagy and ER stress in Staphylococcus aureus-induced endometrial epithelial cell damage is still unelucidated. In the present study, our results showed that infection with S. aureus increased the cytotoxicity and the protein expression of Bax, caspase-3, and cleaved-PARP-1 in goat endometrial epithelial cells (gEECs). Moreover, after infection, the expression of LC3II and autophagosomes were markedly increased. The autophagosome inhibitor 3-methyladenine (3-MA) significantly decreased the cytotoxicity and the expression of caspase-3, and cleaved-PARP-1; however, the autophagosome-lysosome fusion inhibitor chloroquine (CQ) increased their expression. Additionally, the protein expression of GRP78, EIF2α, and ATF4 were also markedly increased after infection. The ER stress inhibitor 4-PBA decreased the cytotoxicity and the expression of LC3II and apoptosis-related proteins in S. aureus-infected gEECs. Collectively, our findings prove that the accumulation of autophagosomes exacerbated S. aureus-induced gEECs apoptosis, and that ER stress was involved in the regulation of the autophagy and apoptosis.

8.
Food Chem Toxicol ; 170: 113481, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36252740

RESUMO

Zearalenone (ZEA), a mycotoxin produced by Fusarium, can cause reproductive disorders by targeting ovarian granulosa cells (GCs). We previous showed that scutellarin (Scu) rescues ZEA-induced GCs damage in mice. In this study, we employed iTRAQ-based proteomics to investigate the mechanism underlying the restorative effects of Scu in this model. Compared to the model group, we identified 415 differentially expressed proteins (DEPs) in both the control and Scu-treated groups, and found that these were enriched mainly in the biosynthesis and metabolism, drug metabolism, and pentose phosphate pathway. Moreover, the MAPK and heat shock protein-necroptosis pathway were implicated in regulating ZEA toxicity and the protective effect of Scu. Receptor-interacting serine threonine-protein kinase 1 (RIPK1) showed the highest fold-change in expression in the Scu-treated group. Small-interfering RNA-mediated RIPK1 knockdown further promoted the increase in cleaved-caspase-3 expression induced by ZEA, but not in the cells treated with Scu. These data indicated the involvement of multiple targets and pathways in the protective effect of Scu against ZEA-induced damage. Our findings also indicated that RIPK1 may be involved in the inhibition of GCs apoptosis induced by ZEA.


Assuntos
Zearalenona , Feminino , Camundongos , Animais , Zearalenona/toxicidade , Zea mays , Apigenina/farmacologia , Células da Granulosa , Apoptose
9.
Food Funct ; 12(3): 1252-1261, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33433546

RESUMO

Zearalenone (ZEA), present in animal grain feed is produced by Fusarium fungi and this toxin targets ovarian granulosa cells (GCs) to cause reproductive disorders in female animals. Current research on drugs that can rescue ZEA-induced ovarian GC damage is limited. The purpose of this study was to explore the effect of scutellarin (Scu) on ZEA-induced apoptosis of mouse ovarian GCs and its mechanism. In one set of experiments, the primary cultured mouse ovarian GCs were co-treated with ZEA and Scu for 24 h. The results showed that Scu significantly alleviated ZEA-induced cell damage, restored cell cycle arrest, and inhibited apoptosis by reducing the ratio of cleaved-caspase-3, cleaved-PARP, and Bax/Bcl-2. In another set of experiments, six-week-old mice were intragastrically administered with 40 mg kg-1 ZEA for 2 h, followed by 100 mg kg-1 Scu for 3 days. It was observed that Scu inhibited ZEA-induced apoptosis and positive signal expression of cleaved-caspase-3 in the ovarian granulosa layer, with the involvement of the mitochondrial apoptotic pathway. These data provide strong evidence that Scu can be further developed as a potential new therapeutic drug for preventing or treating reproductive toxicity caused by the exposure of animals to ZEA found in the grains of animal feeds.


Assuntos
Apigenina/farmacologia , Glucuronatos/farmacologia , Células da Granulosa/efeitos dos fármacos , Zearalenona/toxicidade , Animais , Sobrevivência Celular , Células Cultivadas , Feminino , Camundongos
10.
Animals (Basel) ; 10(11)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158008

RESUMO

Osthole (Ost) is an active constituent of Cnidium monnieri (L.) Cusson which possesses anti-inflammatory and anti-oxidative properties. It also has estrogen-like activity and can stimulate corticosterone secretion. The present study was aimed to check the role of Ost on progesterone (P4) secretion in cultured granulosa cells obtained from hen preovulatory follicles. Different concentrations (5, 2.5, and 1.25 µg/mL) of Ost was added to granulosa cells for 6, 12, 18, and 24 h to investigate the level of progesterone secretions using enzyme linked immunosorbent assay (ELISA). The results showed that progesterone secretion was significantly increased in cells treated with Ost at 2.5 µg/mL. Also, qRT-PCR showed that mRNA expression of steroidogenic acute regulatory protein (StAR) was significantly up-regulated by Ost at 2.5 µg/mL concentration. Cytochrome P450 side-chain cleavage (P450scc) and 3ß-hydroxysteroid dehydrogenase (3ß-HSD) was significantly up-regulated by Ost. However, no significant differences were observed for the expression of proliferating cell nuclear antigen (PCNA). The protein expression of StAR, P450scc and 3ß-HSD were significantly up-regulated by Ost treatment. The concentration of cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) in cell lysates showed no change with Ost treatment at 2.5 µg/mL by ELISA. An ROS kit showed non-significant difference in the level of reactive oxygen species (ROS). In conclusion, Ost treatment at a concentration of 2.5 µg/mL for 24 h had significantly up-regulated P4 secretion by elevating P450scc, 3ß-HSD and StAR at both gene and protein level in granulosa cells obtained from hen preovulatory follicles.

11.
Front Plant Sci ; 8: 83, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28197161

RESUMO

To survive, plants must respond rapidly and effectively to various stress factors, including biotic and abiotic stresses. Salinity stress triggers the increase of cytosolic free Ca2+ concentration ([Ca2+]i) via Ca2+ influx across the plasma membrane, as well as bacterial flg22 and plant endogenous peptide Pep1. However, the interaction between abiotic stress-induced [Ca2+]i increases and biotic stress-induced [Ca2+]i increases is still not clear. Employing an aequorin-based Ca2+ imaging assay, in this work, we investigated the [Ca2+]i changes in response to flg22, Pep1, and NaCl treatments in Arabidopsis thaliana. We observed an additive effect on the [Ca2+]i increase which induced by flg22, Pep1, and NaCl. Our results indicate that biotic and abiotic stresses may activate different Ca2+ permeable channels. Further, calcium signal induced by biotic and abiotic stresses was independent in terms of spatial and temporal patterning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA