Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37299766

RESUMO

Artificial intelligence (AI) technology is crucial for developing autonomous ships in the maritime industry. Autonomous ships, based on the collected information, recognize the environment without any human intervention and operate themselves using their own judgment. However, ship-to-land connectivity increased, owing to the real-time monitoring and remote control (for unexpected circumstances) from land; this poses a potential cyberthreat to various data collected inside and outside the ships and to the applied AI technology. For the safety of autonomous ships, cybersecurity around AI technology needs to be considered, in addition to the cybersecurity of the ship systems. By identifying various vulnerabilities and via research cases of the ship systems and AI technologies, this study presents possible cyberattack scenarios on the AI technologies applied to autonomous ships. Based on these attack scenarios, cyberthreats and cybersecurity requirements are formulated for autonomous ships by employing the security quality requirements engineering (SQUARE) methodology.


Assuntos
Inteligência Artificial , Navios , Humanos , Engenharia , Tecnologia , Segurança Computacional
2.
Biomaterials ; 34(4): 995-1003, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23127335

RESUMO

Endothelial progenitor cells (EPCs) promote new blood vessel formation and increase angiogenesis by secreting growth factors and cytokines in ischemic tissues. Therefore, EPCs have been highlighted as an alternative cell source for wound healing. EPCs can be isolated from various sources, including the bone marrow, cord blood, and adipose tissue. However, several recent studies have reported that isolating EPCs from these sources has limitations, such as the isolation of insufficient cell numbers and the difficulty of expanding these cells in culture. Thus, human embryonic stem cells (hESCs) have generated great interest as an alternative source of EPCs. Previously, we established an efficient preparation method to obtain EPCs from hESCs (hESC-EPCs). These hESC-EPCs secreted growth factors and cytokines, which are known to be important in angiogenesis and wound healing. In this study, we directly compared the capacity of hESC-EPCs and human cord blood-derived EPCs (hCB-EPCs) to benefit wound healing. The number of hESC-EPCs increased during culture and was always higher than the number of hCB-EPCs during the culture period. In addition, the levels of VEGF and Ang-1 secreted by hESC-EPCs were significantly higher than those produced by hCB-EPCs. After transplantation in a mouse dermal excisional wound model, all EPC-transplanted wounds exhibited better regeneration than in the control group. More importantly, we found that the wounds transplanted with hESC-EPCs showed significantly accelerated re-epithelialization. Thus, hESC-EPCs may be a promising cell source for the treatment of chronic wounds.


Assuntos
Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/transplante , Células Endoteliais/citologia , Células Endoteliais/transplante , Ferimentos Penetrantes/patologia , Ferimentos Penetrantes/cirurgia , Animais , Diferenciação Celular , Linhagem Celular , Doença Crônica , Humanos , Masculino , Camundongos , Camundongos Nus , Resultado do Tratamento , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA