Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(12): e2119945119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35290115

RESUMO

Aptamers have proven to be valuable tools for the detection of small molecules due to their remarkable ability to specifically discriminate between structurally similar molecules. Most aptamer selection efforts have relied on counterselection to eliminate aptamers that exhibit unwanted cross-reactivity to interferents or structurally similar relatives to the target of interest. However, because the affinity and specificity characteristics of an aptamer library are fundamentally unknowable a priori, it is not possible to determine the optimal counterselection parameters. As a result, counterselection experiments require trial-and-error approaches that are inherently inefficient and may not result in aptamers with the best combination of affinity and specificity. In this work, we describe a high-throughput screening process for generating high-specificity aptamers to multiple targets in parallel while also eliminating the need for counterselection. We employ a platform based on a modified benchtop sequencer to conduct a massively parallel aptamer screening process that enables the selection of highly specific aptamers against multiple structurally similar molecules in a single experiment, without any counterselection. As a demonstration, we have selected aptamers with high affinity and exquisite specificity for three structurally similar kynurenine metabolites that differ by a single hydroxyl group in a single selection experiment. This process can easily be adapted to other small-molecule analytes and should greatly accelerate the development of aptamer reagents that achieve exquisite specificity for their target analytes.


Assuntos
Aptâmeros de Nucleotídeos , Técnica de Seleção de Aptâmeros , Aptâmeros de Nucleotídeos/metabolismo , Ensaios de Triagem em Larga Escala
2.
Nat Commun ; 14(1): 2336, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095144

RESUMO

Aptamer-based molecular switches that undergo a binding-induced conformational change have proven valuable for a wide range of applications, such as imaging metabolites in cells, targeted drug delivery, and real-time detection of biomolecules. Since conventional aptamer selection methods do not typically produce aptamers with inherent structure-switching functionality, the aptamers must be converted to molecular switches in a post-selection process. Efforts to engineer such aptamer switches often use rational design approaches based on in silico secondary structure predictions. Unfortunately, existing software cannot accurately model three-dimensional oligonucleotide structures or non-canonical base-pairing, limiting the ability to identify appropriate sequence elements for targeted modification. Here, we describe a massively parallel screening-based strategy that enables the conversion of virtually any aptamer into a molecular switch without requiring any prior knowledge of aptamer structure. Using this approach, we generate multiple switches from a previously published ATP aptamer as well as a newly-selected boronic acid base-modified aptamer for glucose, which respectively undergo signal-on and signal-off switching upon binding their molecular targets with second-scale kinetics. Notably, our glucose-responsive switch achieves ~30-fold greater sensitivity than a previously-reported natural DNA-based switch. We believe our approach could offer a generalizable strategy for producing target-specific switches from a wide range of aptamers.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , DNA/metabolismo , Pareamento de Bases , Física
3.
Nat Commun ; 12(1): 7106, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876561

RESUMO

Glycosylation is one of the most abundant forms of post-translational modification, and can have a profound impact on a wide range of biological processes and diseases. Unfortunately, efforts to characterize the biological function of such modifications have been greatly hampered by the lack of affinity reagents that can differentiate protein glycoforms with robust affinity and specificity. In this work, we use a fluorescence-activated cell sorting (FACS)-based approach to generate and screen aptamers with indole-modified bases, which are capable of recognizing and differentiating between specific protein glycoforms. Using this approach, we were able to select base-modified aptamers that exhibit strong selectivity for specific glycoforms of two different proteins. These aptamers can discriminate between molecules that differ only in their glycan modifications, and can also be used to label glycoproteins on the surface of cultured cells. We believe our strategy should offer a generally-applicable approach for developing useful reagents for glycobiology research.


Assuntos
Glicoproteínas/química , Indóis/química , Proteínas/química , Sítios de Ligação , Cristalografia por Raios X , Dictyostelium , Fetuínas , Citometria de Fluxo , Glicoproteínas/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Indóis/metabolismo , Polissacarídeos/química , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA