Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 164(3): 406-19, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26824654

RESUMO

The Hippo signaling pathway functions through Yorkie to control tissue growth and homeostasis. How this pathway regulates non-developmental processes remains largely unexplored. Here, we report an essential role for Hippo signaling in innate immunity whereby Yorkie directly regulates the transcription of the Drosophila IκB homolog, Cactus, in Toll receptor-mediated antimicrobial response. Loss of Hippo pathway tumor suppressors or activation of Yorkie in fat bodies, the Drosophila immune organ, leads to elevated cactus mRNA levels, decreased expression of antimicrobial peptides, and vulnerability to infection by Gram-positive bacteria. Furthermore, Gram-positive bacteria acutely activate Hippo-Yorkie signaling in fat bodies via the Toll-Myd88-Pelle cascade through Pelle-mediated phosphorylation and degradation of the Cka subunit of the Hippo-inhibitory STRIPAK PP2A complex. Our studies elucidate a Toll-mediated Hippo signaling pathway in antimicrobial response, highlight the importance of regulating IκB/Cactus transcription in innate immunity, and identify Gram-positive bacteria as extracellular stimuli of Hippo signaling under physiological settings.


Assuntos
Drosophila melanogaster/imunologia , Imunidade Inata , Transdução de Sinais , Animais , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Drosophila melanogaster/microbiologia , Escherichia coli/fisiologia , Corpo Adiposo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Larva/metabolismo , Masculino , Pectobacterium carotovorum/fisiologia , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Staphylococcus aureus/fisiologia , Receptores Toll-Like/metabolismo
2.
Cell ; 154(6): 1342-55, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-24012335

RESUMO

Although Merlin/NF2 was discovered two decades ago as a tumor suppressor underlying Neurofibromatosis type II, its precise molecular mechanism remains poorly understood. Recent studies in Drosophila revealed a potential link between Merlin and the Hippo pathway by placing Merlin genetically upstream of the kinase Hpo/Mst. In contrast to the commonly depicted linear model of Merlin functioning through Hpo/Mst, here we show that in both Drosophila and mammals, Merlin promotes downstream Hippo signaling without activating the intrinsic kinase activity of Hpo/Mst. Instead, Merlin directly binds and recruits the effector kinase Wts/Lats to the plasma membrane. Membrane recruitment, in turn, promotes Wts phosphorylation by the Hpo-Sav kinase complex. We further show that disruption of the actin cytoskeleton promotes Merlin-Wts interactions, which implicates Merlin in actin-mediated regulation of Hippo signaling. Our findings elucidate an important molecular function of Merlin and highlight the plasma membrane as a critical subcellular compartment for Hippo signal transduction.


Assuntos
Membrana Celular/metabolismo , Drosophila melanogaster/metabolismo , Neurofibromina 2/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Evolução Biológica , Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Dados de Sequência Molecular , Proteínas Serina-Treonina Quinases/metabolismo , Alinhamento de Sequência
3.
EMBO J ; 42(15): e113410, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37366237

RESUMO

Mutations in LRRK2 are the most common genetic causes of Parkinson's disease (PD). While the enzymatic activity of LRRK2 has been linked to PD, previous work has also provided support for an important role of elevated LRRK2 protein levels, independent of enzymatic activity, in PD pathogenesis. However, the mechanisms underlying the regulation of LRRK2 protein levels remain unclear. Here, we identify a role for the purine biosynthesis pathway enzyme ATIC in the regulation of LRRK2 levels and toxicity. AICAr, the precursor of ATIC substrate, regulates LRRK2 levels in a cell-type-specific manner in vitro and in mouse tissue. AICAr regulates LRRK2 levels through AUF1-mediated mRNA decay. Upon AICAr treatment, the RNA binding protein AUF1 is recruited to the AU-rich elements (ARE) of LRRK2 mRNA leading to the recruitment of the decapping enzyme complex DCP1/2 and decay of LRRK2 mRNA. AICAr suppresses LRRK2 expression and rescues LRRK2-induced dopaminergic neurodegeneration and neuroinflammation in PD Drosophila and mouse models. Together, this study provides insight into a novel regulatory mechanism of LRRK2 protein levels and function via LRRK2 mRNA decay that is distinct from LRRK2 enzymatic functions.


Assuntos
Doença de Parkinson , Animais , Camundongos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade de RNA , RNA Mensageiro/genética , Mutação
4.
EMBO Rep ; 23(12): e55851, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36285521

RESUMO

The Hippo pathway is an evolutionarily conserved developmental pathway that controls organ size by integrating diverse regulatory inputs, including actomyosin-mediated cytoskeletal tension. Despite established connections between the actomyosin cytoskeleton and the Hippo pathway, the upstream regulation of actomyosin in the Hippo pathway is less defined. Here, we identify the phosphoinositide-3-phosphatase Myotubularin (Mtm) as a novel upstream regulator of actomyosin that functions synergistically with the Hippo pathway during growth control. Mechanistically, Mtm regulates membrane phospholipid PI(3)P dynamics, which, in turn, modulates actomyosin activity through Rab11-mediated vesicular trafficking. We reveal PI(3)P dynamics as a novel mode of upstream regulation of actomyosin and establish Rab11-mediated vesicular trafficking as a functional link between membrane lipid dynamics and actomyosin activation in the context of growth control. Our study also shows that MTMR2, the human counterpart of Drosophila Mtm, has conserved functions in regulating actomyosin activity and tissue growth, providing new insights into the molecular basis of MTMR2-related peripheral nerve myelination and human disorders.


Assuntos
Actomiosina , Via de Sinalização Hippo , Humanos
5.
Cell ; 139(4): 757-69, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19914168

RESUMO

TGF-beta and BMP receptor kinases activate Smad transcription factors by C-terminal phosphorylation. We have identified a subsequent agonist-induced phosphorylation that plays a central dual role in Smad transcriptional activation and turnover. As receptor-activated Smads form transcriptional complexes, they are phosphorylated at an interdomain linker region by CDK8 and CDK9, which are components of transcriptional mediator and elongation complexes. These phosphorylations promote Smad transcriptional action, which in the case of Smad1 is mediated by the recruitment of YAP to the phosphorylated linker sites. An effector of the highly conserved Hippo organ size control pathway, YAP supports Smad1-dependent transcription and is required for BMP suppression of neural differentiation of mouse embryonic stem cells. The phosphorylated linker is ultimately recognized by specific ubiquitin ligases, leading to proteasome-mediated turnover of activated Smad proteins. Thus, nuclear CDK8/9 drive a cycle of Smad utilization and disposal that is an integral part of canonical BMP and TGF-beta pathways.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Quinase 8 Dependente de Ciclina/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , Proteínas Smad/genética , Ativação Transcricional , Fator de Crescimento Transformador beta/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular , Linhagem Celular , Inibição de Contato , Embrião de Mamíferos/citologia , Humanos , Camundongos , Tamanho do Órgão , Fosfoproteínas/metabolismo , Fosforilação , Estrutura Terciária de Proteína , Transdução de Sinais , Proteínas Smad/química , Proteína Smad1/genética , Proteínas de Sinalização YAP
6.
Molecules ; 28(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36985589

RESUMO

A simple and sensitive method for the simultaneous quantitation of prohexadione-Ca and uniconazole in the field experiment of Oryza sativa L. and Citrus reticulata Blanco was established using solid-phase extraction (SPE) with polymer anion exchange (PAX) and Florisil followed by LC-MS/MS. The method demonstrated excellent linearity (R2 > 0.999 0), trueness (recoveries between 95~105%), precision (CVs between 0.8~12%), sensitivity, and repeatability (LOQ of 0.05 and 0.01 mg/kg, respectively). Residue tests were conducted in the field at 12 representative sites in China, revealing final concentrations of prohexadione-Ca and uniconazole in brown rice, rice hull, and rice straw to be below 0.05 mg/kg, while in whole citrus fruit and citrus pulp, they were below 0.01 mg/kg. These were below the maximum residue limits specified in China. The chronic dietary risks of prohexadione-Ca and uniconazole in rice crops and citrus fruits were calculated to be 0.48% and 0.91%, respectively. Our research suggests that the chronic risk associated with the daily consumption of rice crops and citrus fruit at the recommended dosage is acceptable.


Assuntos
Citrus , Oryza , Resíduos de Praguicidas , Cromatografia Líquida/métodos , Oryza/química , Espectrometria de Massas em Tandem/métodos , Citrus/química , Resíduos de Praguicidas/análise , Cromatografia Líquida de Alta Pressão/métodos , Medição de Risco
7.
Development ; 145(4)2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29467233

RESUMO

Genetic studies in Drosophila have been instrumental in characterizing the Hippo pathway, which converges on the co-activator Yorkie to regulate target gene transcription. A routinely used strategy to interrogate upstream regulators of Yorkie involves the examination of selected Hippo target genes upon loss or gain of function of a suspected pathway regulator. A caveat with this strategy is that aberrant expression of a given Hippo target per se does not distinguish whether it is caused by changes in Yorkie or Yorkie-independent inputs converging on the same target gene. Building on previous findings that the DNA-binding transcription factor Scalloped mediates both Yorkie overexpression and loss-of-function phenotypes yet is itself dispensable for normal eye development, we describe a simple strategy to distinguish these possibilities by analyzing double-mutant clones of scalloped and a suspected Yorkie regulator. We provide proof of principle that this strategy can be used effectively to validate canonical Yorkie regulators and to exclude proteins that impact target expression independent of Yorkie. The described methodology and reagents should facilitate efforts to assess the expanding repertoire of proteins implicated in regulation of Yorkie activity.


Assuntos
Proteínas de Drosophila/metabolismo , Epistasia Genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Clonagem de Organismos , Drosophila/genética , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinases/genética , Reprodutibilidade dos Testes , Transdução de Sinais , Transativadores/genética , Fatores de Transcrição/genética , Proteínas de Sinalização YAP
8.
J Environ Sci Health B ; 56(6): 587-593, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34102954

RESUMO

The dissipation and residue of validamycin A in grapes were investigated under field conditions. An ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for the determination of validamycin A in grapes was established and validated. Methanol and water (90/10, v/v) were used for validamycin A extraction and purification used MCX solid-phase extraction cartridges. The average recoveries of validamycin A in grapes at 0.01, 0.50, and 5.0 mg/kg levels were between 83.8 and 91.4%, with relative standard deviations of 2.3-3.0%. The half-lives of validamycin A in grape were 4.4-6.1 days. The terminal residues in grapes over a range of harvest times (7, 14, and 21 days) were no more than 0.73 mg/kg. According to Chinese consumption data, the risk quotient (RQ) of validamycin A was 3.22%, demonstrating a low risk to consumers. The current study may offer guidance for validamycin A use and could aid the government in determining the maximum residue level (MRL) values for validamycin A in grapes.


Assuntos
Frutas/química , Fungicidas Industriais/análise , Inositol/análogos & derivados , Resíduos de Praguicidas/análise , Vitis/química , Cromatografia Líquida de Alta Pressão , Exposição Dietética/análise , Contaminação de Alimentos/análise , Humanos , Inositol/análise , Medição de Risco , Extração em Fase Sólida , Espectrometria de Massas em Tandem
9.
Eur Neurol ; 83(3): 242-250, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32610314

RESUMO

INTRODUCTION: RBM5 acts as a tumor suppressor gene in lung and breast cancers; however, its role in the pathogenesis of medulloblastoma (MB) remains unclear. We previously identified 4 RBM5 mutations in whole exome sequencing analysis of 40 MB patients. This study examined the role of RBM5 in MB progression. METHODS: The expression patterns of RBM5 in tissues of 40 MB patients were analyzed using immunohistochemistry. Associations between RBM5 expression and overall survival (OS) were evaluated using Kaplan-Meier analysis. The RBM5 role in Daoy cells' proliferation, migration, and Wnt/ß-catenin signaling was analyzed after RBM5 knockdown and overexpression. RESULTS: The expression level of RBM5 mRNA and protein was significantly lower in MB than that in adjacent normal control tissues, and low RBM5 expression was significantly associated with reduced OS (p = 0.034). RBM5 knockdown induced Daoy and ONS-76 cells proliferation, while RBM5 overexpression repressed cell proliferation and migration in vitro (all p < 0.05). ß-Catenin, LEF1, and cyclin D1 mRNA levels were upregulated, while DKK1 expression was downregulated in Daoy cells following RBM5 knockdown. CONCLUSION: RBM5 may function as a tumor suppressor in MB by regulating Wnt/ß-catenin signaling, and its reduced expression is associated with lower OS.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteínas de Ciclo Celular/metabolismo , Neoplasias Cerebelares/patologia , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Meduloblastoma/patologia , Proteínas de Ligação a RNA/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Via de Sinalização Wnt , Biomarcadores Tumorais/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Proteínas de Ligação a DNA/genética , Genes Supressores de Tumor , Humanos , Meduloblastoma/genética , Meduloblastoma/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Supressoras de Tumor/genética , Via de Sinalização Wnt/fisiologia
10.
Opt Express ; 27(26): 38159-38167, 2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31878587

RESUMO

Molecular-like silver nanoclusters (ML-Ag NCs) with size dependent tunable luminescence properties and high-quantum yield has been explored as a new type of sensitizer for rare earth (RE) ions in glasses recently. In this research, the borosilicate glasses containing ML-Ag NCs and RE3+ (RE = Sm, Eu, Tb) ions were prepared with melt-quenching method. The absorption, TEM and steady spectra measurements indicated that compare with Sm3+ and Tb3+, the introduction of Eu3+ can more effectively promote the formation of luminescent ML-Ag NCs and their further aggregation. Besides the predictable efficient energy transfer from ML-Ag NCs to a single type of RE3+ ion in the codoped glasses, the simultaneously sensitization of Sm3+/Eu3+ and Sm3+/Tb3+ couples by ML-Ag NCs were further realized in the tri-doped glasses. Benefited from the excitation wavelength dependence of energy transfer from ML-Ag NCs to Sm3+/Eu3+ and Sm3+/Tb3+ couples and excitation efficiency on ML-Ag NCs and RE3+ ions, the tri-doped glasses exhibit broad tunable emission simply by changing the excitation wavelength, and the white light emission was achieved in GAgSmEu under UV excitation.

11.
Nat Chem Biol ; 12(4): 282-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26900866

RESUMO

TEA domain (TEAD) transcription factors bind to the coactivators YAP and TAZ and regulate the transcriptional output of the Hippo pathway, playing critical roles in organ size control and tumorigenesis. Protein S-palmitoylation attaches a fatty acid, palmitate, to cysteine residues and regulates protein trafficking, membrane localization and signaling activities. Using activity-based chemical probes, we discovered that human TEADs possess intrinsic palmitoylating enzyme-like activities and undergo autopalmitoylation at evolutionarily conserved cysteine residues under physiological conditions. We determined the crystal structures of lipid-bound TEADs and found that the lipid chain of palmitate inserts into a conserved deep hydrophobic pocket. Strikingly, palmitoylation did not alter TEAD's localization, but it was required for TEAD's binding to YAP and TAZ and was dispensable for its binding to the Vgll4 tumor suppressor. Moreover, palmitoylation-deficient TEAD mutants impaired TAZ-mediated muscle differentiation in vitro and tissue overgrowth mediated by the Drosophila YAP homolog Yorkie in vivo. Our study directly links autopalmitoylation to the transcriptional regulation of the Hippo pathway.


Assuntos
Cisteína/metabolismo , Proteínas de Ligação a DNA/metabolismo , Lipoilação , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Sequência Conservada , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ácidos Graxos Insaturados/química , Via de Sinalização Hippo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Proteínas Nucleares/genética , Palmitatos/química , Ligação Proteica , Transporte Proteico , Alinhamento de Sequência , Fatores de Transcrição de Domínio TEA , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Proteínas de Sinalização YAP
12.
J Gene Med ; 19(1-2)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27936511

RESUMO

BACKGROUND: Ischemic stroke is one of the most common diseases with a high burden of neurological deficits, disability and death. Zinc finger protein 208 (ZNF208) was found to be involved in coronary heart disease, although little information is available about its association with ischemic stroke. We performed the present case-control study to clarify the association between single-nucleotide polymorphisms (SNPs) within ZNF208 and the risk of ischemic stroke in a southern Chinese Han population. METHODS: A total of 799 subjects (400 cases and 399 healthy controls) were enrolled in the present study. Five SNPs within ZNF208 gene were selected and genotyped using Sequenom MassARRY technology (Sequenom, Inc., San Diego, CA, USA). Data management and statistical analyses were conducted using Sequenom Typer, version 4.0, and a chi-squared test, as well as unconditional logistic regression. RESULTS: Statistical results showed that three variants were associated with the risk of ischemic stroke under allele models (rs2188971, rs2188972, rs8103163 and rs7248488). The variant rs2188972 was also associated with the risk of ischemic stroke in a recessive model after adjustment for age and sex. Haplotype analysis suggested that a significant difference existed between the Ars2188972 Trs2188971 Ars8103163 Ars7248488 haplotype and the risk of ischemic stroke, although this disappeared after adjustment for sex and age. CONCLUSIONS: The results obtained in the present study indicate a potential association between ZNF208 variants and the risk of ischemic risk in a southern Chinese Han population.


Assuntos
Povo Asiático/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Isquemia/complicações , Fatores de Transcrição Kruppel-Like/genética , Polimorfismo de Nucleotídeo Único , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/etiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Estudos de Casos e Controles , China/epidemiologia , Proteínas de Ligação a DNA , Feminino , Genótipo , Haplótipos , Humanos , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Risco , Acidente Vascular Cerebral/diagnóstico , Fatores de Transcrição
13.
Sci Total Environ ; 937: 173421, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38788955

RESUMO

The health risks induced by chronic exposure to low concentrations of imidacloprid (IMI) to zebrafish were investigated in this study. The results indicated that the growth of zebrafish was inhibited after being exposed to 10, 100, and 500 µg/L of IMI for 90 days. Moreover, the blood glucose levels in the IMI-exposed groups were significantly higher compared to the control group. Investigation into the development of zebrafish larvae revealed that IMI exposure hindered the development of the liver and pancreatic islets, organs crucial for glucose metabolism. In addition, the IMI-exposed groups exhibited reduced liver glycogen and plasma insulin levels, along with changes in the activity of enzymes and the transcription levels of genes associated with liver glucose metabolism. These findings suggest that IMI induces glycometabolic disorders in zebrafish. The analysis of intestinal flora revealed that several key bacteria associated with an elevated risk of diabetes were significantly altered in IMI-exposed fish. Specifically, a remarkable decrease was found in the abundance of the genera Aeromonas and Shewanella, which have been found closely related to the development of pancreatic islets. This implies that the alteration of key bacteria in the fish gut by IMI, which in turn affects the development of organs such as the pancreatic islets, may be the initial trigger for abnormalities in glucose metabolism. Our results revealed that chronic exposure to low concentrations of IMI led to glycometabolic disorder in fish. Therefore, considering the pervasive existence of IMI residues in the environment, the health hazards posed by low-concentration IMI to fish cannot be overlooked.


Assuntos
Inseticidas , Neonicotinoides , Nitrocompostos , Poluentes Químicos da Água , Peixe-Zebra , Animais , Nitrocompostos/toxicidade , Poluentes Químicos da Água/toxicidade , Neonicotinoides/toxicidade , Inseticidas/toxicidade , Glicemia
14.
Se Pu ; 42(3): 256-263, 2024 Mar 08.
Artigo em Zh | MEDLINE | ID: mdl-38503702

RESUMO

Herbicides play an important role in preventing and controlling weeds and harmful plants and are increasingly used in agriculture, forestry, landscaping, and other fields. However, the effective utilization rate of herbicides is only 20%-30%, and most herbicides enter the atmosphere, soil, sediment, and water environments through drift, leaching, and runoff after field application. Herbicide residues in the environment pose potential risks to ecological safety and human health. Therefore, establishing analytical methods to determine herbicide residues in environmental samples is of great importance. In this study, an analytical method based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) in positive electrospray ionization mode (ESI+) was developed for the determination of isoxaflutole, metazachlor, and saflufenacil residues in soil, sediment, and water. The instrumental detection parameters, including electrospray ionization mode, mobile phase, and chromatographic column, were optimized. The mobile phases were methanol (A) and 0.1% formic acid aqueous solution (B). Gradient elution was performed as follows: 0-1.0 min, 60%A; 1.0-2.0 min, 60%A-90%A; 2.0-3.0 min, 90%A; 3.0-4.0 min, 90%A-60%A; 4.0-5.0 min, 60%A. The samples were salted after extraction with acetonitrile and cleaned using a C18 solid-phase extraction column. Different solid-phase extraction columns and leaching conditions were investigated during sample pretreatment. Working curves in the neat solvent and matrix were constructed by plotting the measured peak areas as a function of the concentrations of the analytes in the neat solvent and matrix. Good linearities were found for isoxaflutole, metazachlor, and saflufenacil in the solvent and matrix-matched standards in the range of 0.0005-0.02 mg/L, with r≥0.9961. The matrix effects of the three herbicides in soil, sediment, and water ranged from -10.1% to 16.5%. The limits of detection (LODs, S/N=3) for isoxaflutole, metazachlor, and saflufenacil were 0.05, 0.01, and 0.02 µg/kg, respectively. The limits of quantification (LOQs, S/N=10) for isoxaflutole, metazachlor, and saflufenacil were 0.2, 0.05, and 0.05 µg/kg, respectively. The herbicides were applied to soil, sediment, and water at spiked levels of 0.005, 0.1, and 2.0 mg/kg, respectively. The average recoveries for isoxaflutole, metazachlor, and saflufenacil in soil, sediment, and water were in the ranges of 77.2%-101.9%, 77.9%-105.1%, and 80.8%-107.1%, respectively. The RSDs for isoxaflutole, metazachlor, and saflufenacil were in the ranges of 1.4%-12.8%, 1.2%-7.7%, and 1.5%-11.5%, respectively. The established method was used to analyze actual samples collected from four different sites in Zhejiang Province (Xiaoshan, Taizhou, Dongyang, and Yuhang) and one site in Heilongjiang (Jiamusi). The proposed method is simple, rapid, accurate, stable, and highly practical. It can be used to detect isoxaflutole, metazachlor, and saflufenacil residues in soil, sediment, and water and provides a reference for monitoring the residual pollution and environmental behavior of herbicides.


Assuntos
Acetamidas , Herbicidas , Pirimidinonas , Sulfonamidas , Humanos , Cromatografia Líquida , Herbicidas/análise , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem/métodos , Água/análise , Solo/química , Solventes/análise , Extração em Fase Sólida
15.
Environ Pollut ; 346: 123601, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38373624

RESUMO

The pesticide application method is one of the important factors affecting its effectiveness and residues, and the risk of pesticides to non-target organisms. To elucidate the effect of application methods on the efficacy and residue of cyenopyrafen, and the toxic effects on pollinators honeybees in strawberry cultivation, the efficacy and residual behavior of cyenopyrafen were investigated using foliar spray and backward leaf spray in field trials. The results showed that the initial deposition of cyenopyrafen using backward leaf spray on target leaves reached 5.06-9.81 mg/kg at the dose of 67.5-101.25 g a.i./ha, which was higher than that using foliar spray (2.62-3.71 mg/kg). The half-lives of cyenopyrafen in leaves for foliar and backward leaf spray was 2.3-3.3 and 5.3-5.9 d, respectively. The residues (10 d) of cyenopyrafen in leaves after backward leaf spray was 1.41-3.02 mg/kg, which was higher than that after foliar spraying (0.25-0.37 mg/kg). It is the main reason for the better efficacy after backward leaf spray. However, the residues (10 d) in strawberry after backward leaf spray and foliar spray was 0.04-0.10 and < 0.01 mg/kg, which were well below the established maximum residue levels of cyenopyrafen in Japan and South Korea for food safety. To further investigate the effects of cyenopyrafen residues after backward leaf spray application on pollinator honeybees, sublethal effects of cyenopyrafen on honeybees were studied. The results indicated a significant inhibition in the detoxification metabolic enzymes of honeybees under continuous exposure of cyenopyrafen (0.54 and 5.4 mg/L) over 8 d. The cyenopyrafen exposure also alters the composition of honeybee gut microbiota, such as increasing the relative abundance of Rhizobiales and decreasing the relative abundance of Acetobacterales. The comprehensive data on cyenopyrafen provide basic theoretical for environmental and ecological risk assessment, while backward leaf spray proved to be effective and safe for strawberry cultivation.


Assuntos
Acrilonitrila/análogos & derivados , Fragaria , Praguicidas , Abelhas , Animais , Pirazóis
16.
J Hazard Mater ; 464: 132954, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-37972496

RESUMO

Short chain chlorinated paraffins (SCCPs) are ubiquitous persistent organic pollutants. They have been widely detected in plant-based foods and might cause adverse impacts on humans. Nevertheless, uptake and accumulation mechanisms of SCCPs in plants remain unclear. In this study, the soil culture data indicated that SCCPs were strongly absorbed by roots (root concentration factor, RCF>1) yet limited translocated to shoots (translocation factor<1). The uptake mechanism was explored by hydroponic exposure, showing that hydrophobicity and molecular size influenced the root uptake and translocation of SCCPs. RCFs were significantly correlated with logKow values and molecular weights in a parabolic curve relationship. Besides, it was extremely difficult for SCCPs to translocate from shoots back to roots via phloem. An active energy-dependent process was proposed to be involved in the root uptake of SCCPs, which was supported by the uptake inhibition by the low temperature and metabolic inhibitor. Though SCCPs at environmentally relevant concentrations had no negative impacts on root morphology and chlorophyll contents, it caused obvious changes in cellular ultrastructure of root tip cells and induced a significant increase in superoxide dismutase activity. This information may be beneficial to moderate crop contamination by SCCPs, and to remedy soils polluted by SCCPs with plants.


Assuntos
Hidrocarbonetos Clorados , Triticum , Humanos , Parafina/química , Monitoramento Ambiental , Hidrocarbonetos Clorados/análise , Transporte Biológico , Solo/química , China
17.
Proc Natl Acad Sci U S A ; 107(16): 7293-8, 2010 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-20368466

RESUMO

The Hippo pathway controls organ size and suppresses tumorigenesis in metazoans by blocking cell proliferation and promoting apoptosis. The TEAD1-4 proteins (which contain a DNA-binding domain but lack an activation domain) interact with YAP (which lacks a DNA-binding domain but contains an activation domain) to form functional heterodimeric transcription factors that activate proliferative and prosurvival gene expression programs. The Hippo pathway inhibits the YAP-TEAD hybrid transcription factors by phosphorylating and promoting cytoplasmic retention of YAP. Here we report the crystal structure of the YAP-binding domain (YBD) of human TEAD2. TEAD2 YBD adopts an immunoglobulin-like beta-sandwich fold with two extra helix-turn-helix inserts. NMR studies reveal that the TEAD-binding domain of YAP is natively unfolded and that TEAD binding causes localized conformational changes in YAP. In vitro binding and in vivo functional assays define an extensive conserved surface of TEAD2 YBD as the YAP-binding site. Therefore, our studies suggest that a short segment of YAP adopts an extended conformation and forms extensive contacts with a rigid surface of TEAD. Targeting a surface-exposed pocket of TEAD might be an effective strategy to disrupt the YAP-TEAD interaction and to reduce the oncogenic potential of YAP.


Assuntos
Proteínas de Ligação a DNA/química , Fatores de Transcrição/química , Sequência de Aminoácidos , Sítios de Ligação , Citoplasma/metabolismo , DNA/química , Dimerização , Humanos , Dados de Sequência Molecular , Fosforilação , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Propriedades de Superfície , Fatores de Transcrição de Domínio TEA
18.
Proc Natl Acad Sci U S A ; 107(23): 10532-7, 2010 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-20498073

RESUMO

The Hippo signaling pathway regulates organ size and tissue homeostasis from Drosophila to mammals. At the core of the Hippo pathway is a kinase cascade extending from the Hippo (Hpo) tumor suppressor to the Yorkie (Yki) oncoprotein. The Hippo kinase cascade, in turn, is regulated by apical membrane-associated proteins such as the FERM domain proteins Merlin and Expanded (Ex), and the WW- and C2-domain protein Kibra. How these apical proteins are themselves regulated remains poorly understood. Here, we identify the transmembrane protein Crumbs (Crb), a determinant of epithelial apical-basal polarity in Drosophila embryos, as an upstream component of the Hippo pathway in imaginal disk growth control. Loss of Crb leads to tissue overgrowth and target gene expression characteristic of defective Hippo signaling. Crb directly binds to Ex through its juxtamembrane FERM-binding motif (FBM). Loss of Crb or mutation of its FBM leads to mislocalization of Ex to basolateral domain of imaginal disk epithelial cells. These results shed light on the mechanism of Ex regulation and provide a molecular link between apical-basal polarity and tissue growth. Furthermore, our studies implicate Crb as a putative cell surface receptor for Hippo signaling by uncovering a transmembrane protein that directly binds to an apical component of the Hippo pathway.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Polaridade Celular , Sequência Conservada , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutação , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética
19.
Cell Oncol (Dordr) ; 46(1): 179-193, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36464713

RESUMO

BACKGROUND: Glioblastoma multiforma (GBM) is the most malignant intrinsic tumor of the central nervous system (CNS), with high morbidity of 3.19/100,000 per year and a poor 5-year survival rate (< 5%) worldwide. Numerous studies have indicated that GBM shows remarkable radioresistance and aggressive recurrence. However, the mechanisms to endow GBM cells with radioresistance are complex and unclear. METHODS: Cell growth curve and colony formation assays were used to analyze the radioresistance of GBM. Immunoprecipitation and immunoblotting experiments were carried out to analyze protein expression and interaction. RESULTS: In the present study, we found that LITAF, lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-α factor, is up-regulated both in mRNA and protein in GBM tumors. Meanwhile, we observed that high LITAF expression contributes to radioresistance of GBM cell lines (including U87, U251, DK, and AM38 cells), indicated by knockout or knockdown of LITAF in cells sensitizing them to radiation treatment both in vitro and in vivo. Furthermore, we demonstrated that kavain, an active constituent of Piper methysticum Forst., effectively ablates GSC-like cells' (such as CD133 + U87, U251, DK, and AM38 populations) radioresistance in a LITAF-dependent manner. CONCLUSION: In mechanism, our results indicated that 1) the elevation of LITAF in GBM cells activates the NF-κB pathway to promote mesenchymal transition, and 2) kavain disturbs STAT6B/LITAF protein interaction and then expels LITAF from the nucleus. Therefore, we consider that kavain may be a potential candidate to develop an irradiation therapy adjuvant for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , NF-kappa B/metabolismo , Glioblastoma/genética , Pironas , Fator de Necrose Tumoral alfa/metabolismo , Linhagem Celular Tumoral , Neoplasias Encefálicas/genética , Proteínas Nucleares/genética , Fatores de Transcrição/metabolismo
20.
Environ Sci Pollut Res Int ; 30(60): 125907-125914, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38008836

RESUMO

Cyclaniliprole, a novel diamide insecticide, can successfully control Spodoptera litura (Fabricius, 1775) in cabbage. Understanding the residual level of cyclaniliprole in crops and the risk related to its dietary intake is imperative for safe application. Here, we established a simplified, sensitive method for simultaneous analysis of cyclaniliprole and its metabolite NK-1375 (3-bromo-2-((2-bromo-4H-pyrazolo[1,5-d]pyrido[3,2-b]-[1,4]oxazin-4-ylidene)amino)-5-chloro-N-(1-cyclopropylethyl)benzamide) in cabbage by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to investigate their dissipation behavior and residual characteristics. Cyclaniliprole showed rapid dissipation in cabbage and had a half-life of 1.8-2.7 days. The highest residue of total cyclaniliprole (sum of cyclaniliprole and NK-1375) in cabbage from different pre-harvest intervals (3 and 5 days) was 0.25 mg/kg. Our results confirmed the generally low dietary risk quotient of cyclaniliprole (0.243-1.036%) among different age and gender groups in China. Therefore, cyclaniliprole did not pose an unacceptable risk to consumers. This study contributes to setting cyclaniliprole maximum residue limit in cabbage by assessing its dissipation fate and food safety risks.


Assuntos
Brassica , Resíduos de Praguicidas , Brassica/metabolismo , Cromatografia Líquida , Resíduos de Praguicidas/análise , Espectrometria de Massas em Tandem , Medição de Risco , Meia-Vida , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA