Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 449
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 34: 335-68, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-26907215

RESUMO

Although T cell help for B cells was described several decades ago, it was the identification of CXCR5 expression by B follicular helper T (Tfh) cells and the subsequent discovery of their dependence on BCL6 that led to the recognition of Tfh cells as an independent helper subset and accelerated the pace of discovery. More than 20 transcription factors, together with RNA-binding proteins and microRNAs, control the expression of chemotactic receptors and molecules important for the function and homeostasis of Tfh cells. Tfh cells prime B cells to initiate extrafollicular and germinal center antibody responses and are crucial for affinity maturation and maintenance of humoral memory. In addition to the roles that Tfh cells have in antimicrobial defense, in cancer, and as HIV reservoirs, regulation of these cells is critical to prevent autoimmunity. The realization that follicular T cells are heterogeneous, comprising helper and regulatory subsets, has raised questions regarding a possible division of labor in germinal center B cell selection and elimination.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Imunidade Humoral , Subpopulações de Linfócitos T/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Diferenciação Celular , Regulação da Expressão Gênica , Humanos , Memória Imunológica , Ativação Linfocitária , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Receptores CXCR5/metabolismo
2.
Nat Immunol ; 23(8): 1157-1168, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35817844

RESUMO

The identification of CD4+ T cells localizing to B cell follicles has revolutionized the knowledge of how humoral immunity is generated. Follicular helper T (TFH) cells support germinal center (GC) formation and regulate clonal selection and differentiation of memory and antibody-secreting B cells, thus controlling antibody affinity maturation and memory. TFH cells are essential in sustaining protective antibody responses necessary for pathogen clearance in infection and vaccine-mediated protection. Conversely, aberrant and excessive TFH cell responses mediate and sustain pathogenic antibodies to autoantigens, alloantigens, and allergens, facilitate lymphomagenesis, and even harbor viral reservoirs. TFH cell generation and function are determined by T cell antigen receptor (TCR), costimulation, and cytokine signals, together with specific metabolic and survival mechanisms. Such regulation is crucial to understanding disease pathogenesis and informing the development of emerging therapies for disease or novel approaches to boost vaccine efficacy.


Assuntos
Centro Germinativo , Linfócitos T Auxiliares-Indutores , Formação de Anticorpos , Linfócitos B , Diferenciação Celular , Humanos , Vacinação
3.
Nat Immunol ; 22(9): 1127-1139, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34413521

RESUMO

Follicular helper T (TFH) cells are a specialized subset of CD4+ T cells that essentially support germinal center responses where high-affinity and long-lived humoral immunity is generated. The regulation of TFH cell survival remains unclear. Here we report that TFH cells show intensified lipid peroxidation and altered mitochondrial morphology, resembling the features of ferroptosis, a form of programmed cell death that is driven by iron-dependent accumulation of lipid peroxidation. Glutathione peroxidase 4 (GPX4) is the major lipid peroxidation scavenger and is necessary for TFH cell survival. The deletion of GPX4 in T cells selectively abrogated TFH cells and germinal center responses in immunized mice. Selenium supplementation enhanced GPX4 expression in T cells, increased TFH cell numbers and promoted antibody responses in immunized mice and young adults after influenza vaccination. Our findings reveal the central role of the selenium-GPX4-ferroptosis axis in regulating TFH homeostasis, which can be targeted to enhance TFH cell function in infection and following vaccination.


Assuntos
Ferroptose/fisiologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Selênio/farmacologia , Células T Auxiliares Foliculares/fisiologia , Adolescente , Adulto , Animais , Sobrevivência Celular/imunologia , Criança , Feminino , Centro Germinativo/citologia , Centro Germinativo/imunologia , Homeostase/efeitos dos fármacos , Homeostase/genética , Humanos , Imunidade Humoral/imunologia , Vacinas contra Influenza/imunologia , Peroxidação de Lipídeos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/fisiologia , Ovalbumina , Células T Auxiliares Foliculares/imunologia , Vacinação , Adulto Jovem
5.
Nature ; 618(7967): 1033-1040, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37316667

RESUMO

Most clinically applied cancer immunotherapies rely on the ability of CD8+ cytolytic T cells to directly recognize and kill tumour cells1-3. These strategies are limited by the emergence of major histocompatibility complex (MHC)-deficient tumour cells and the formation of an immunosuppressive tumour microenvironment4-6. The ability of CD4+ effector cells to contribute to antitumour immunity independently of CD8+ T cells is increasingly recognized, but strategies to unleash their full potential remain to be identified7-10. Here, we describe a mechanism whereby a small number of CD4+ T cells is sufficient to eradicate MHC-deficient tumours that escape direct CD8+ T cell targeting. The CD4+ effector T cells preferentially cluster at tumour invasive margins where they interact with MHC-II+CD11c+ antigen-presenting cells. We show that T helper type 1 cell-directed CD4+ T cells and innate immune stimulation reprogramme the tumour-associated myeloid cell network towards interferon-activated antigen-presenting and iNOS-expressing tumouricidal effector phenotypes. Together, CD4+ T cells and tumouricidal myeloid cells orchestrate the induction of remote inflammatory cell death that indirectly eradicates interferon-unresponsive and MHC-deficient tumours. These results warrant the clinical exploitation of this ability of CD4+ T cells and innate immune stimulators in a strategy to complement the direct cytolytic activity of CD8+ T cells and natural killer cells and advance cancer immunotherapies.


Assuntos
Linfócitos T CD4-Positivos , Morte Celular , Imunoterapia , Inflamação , Neoplasias , Microambiente Tumoral , Humanos , Células Apresentadoras de Antígenos/imunologia , Antígeno CD11c/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Morte Celular/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Imunidade Inata , Inflamação/imunologia , Interferons/imunologia , Complexo Principal de Histocompatibilidade/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Microambiente Tumoral/imunologia , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Células Mieloides/imunologia , Células Th1/citologia , Células Th1/imunologia
6.
Nature ; 624(7992): 630-638, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38093012

RESUMO

The COVID-19 pandemic has fostered major advances in vaccination technologies1-4; however, there are urgent needs for vaccines that induce mucosal immune responses and for single-dose, non-invasive administration4-6. Here we develop an inhalable, single-dose, dry powder aerosol SARS-CoV-2 vaccine that induces potent systemic and mucosal immune responses. The vaccine encapsulates assembled nanoparticles comprising proteinaceous cholera toxin B subunits displaying the SARS-CoV-2 RBD antigen within microcapsules of optimal aerodynamic size, and this unique nano-micro coupled structure supports efficient alveoli delivery, sustained antigen release and antigen-presenting cell uptake, which are favourable features for the induction of immune responses. Moreover, this vaccine induces strong production of IgG and IgA, as well as a local T cell response, collectively conferring effective protection against SARS-CoV-2 in mice, hamsters and nonhuman primates. Finally, we also demonstrate a mosaic iteration of the vaccine that co-displays ancestral and Omicron antigens, extending the breadth of antibody response against co-circulating strains and transmission of the Omicron variant. These findings support the use of this inhaled vaccine as a promising multivalent platform for fighting COVID-19 and other respiratory infectious diseases.


Assuntos
Vacinas contra COVID-19 , Imunidade nas Mucosas , Animais , Cricetinae , Humanos , Camundongos , Administração por Inalação , Aerossóis , Anticorpos Antivirais/imunologia , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Antígenos Virais/imunologia , Toxina da Cólera , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/administração & dosagem , Imunidade nas Mucosas/imunologia , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Nanopartículas , Pós , Primatas/virologia , SARS-CoV-2/classificação , SARS-CoV-2/imunologia , Linfócitos T/imunologia , Vacinação , Cápsulas
8.
Nat Immunol ; 17(10): 1187-96, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27487330

RESUMO

During unresolved infections, some viruses escape immunological control and establish a persistant reservoir in certain cell types, such as human immunodeficiency virus (HIV), which persists in follicular helper T cells (TFH cells), and Epstein-Barr virus (EBV), which persists in B cells. Here we identified a specialized group of cytotoxic T cells (TC cells) that expressed the chemokine receptor CXCR5, selectively entered B cell follicles and eradicated infected TFH cells and B cells. The differentiation of these cells, which we have called 'follicular cytotoxic T cells' (TFC cells), required the transcription factors Bcl6, E2A and TCF-1 but was inhibited by the transcriptional regulators Blimp1, Id2 and Id3. Blimp1 and E2A directly regulated Cxcr5 expression and, together with Bcl6 and TCF-1, formed a transcriptional circuit that guided TFC cell development. The identification of TFC cells has far-reaching implications for the development of strategies to control infections that target B cells and TFH cells and to treat B cell-derived malignancies.


Assuntos
Infecções por Arenaviridae/imunologia , Linfócitos B/imunologia , Infecções por Vírus Epstein-Barr/imunologia , HIV/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Células Cultivadas , Regulação da Expressão Gênica , Centro Germinativo/patologia , Centro Germinativo/virologia , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator 1 de Ligação ao Domínio I Regulador Positivo , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Receptores CXCR5/genética , Receptores CXCR5/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Circulation ; 149(21): 1670-1688, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38314577

RESUMO

BACKGROUND: Preeclampsia is a serious disease of pregnancy that lacks early diagnosis methods or effective treatment, except delivery. Dysregulated uterine immune cells and spiral arteries are implicated in preeclampsia, but the mechanistic link remains unclear. METHODS: Single-cell RNA sequencing and spatial transcriptomics were used to identify immune cell subsets associated with preeclampsia. Cell-based studies and animal models including conditional knockout mice and a new preeclampsia mouse model induced by recombinant mouse galectin-9 were applied to validate the pathogenic role of a CD11chigh subpopulation of decidual macrophages (dMφ) and to determine its underlying regulatory mechanisms in preeclampsia. A retrospective preeclampsia cohort study was performed to determine the value of circulating galectin-9 in predicting preeclampsia. RESULTS: We discovered a distinct CD11chigh dMφ subset that inhibits spiral artery remodeling in preeclampsia. The proinflammatory CD11chigh dMφ exhibits perivascular enrichment in the decidua from patients with preeclampsia. We also showed that trophoblast-derived galectin-9 activates CD11chigh dMφ by means of CD44 binding to suppress spiral artery remodeling. In 3 independent preeclampsia mouse models, placental and plasma galectin-9 levels were elevated. Galectin-9 administration in mice induces preeclampsia-like phenotypes with increased CD11chigh dMφ and defective spiral arteries, whereas galectin-9 blockade or macrophage-specific CD44 deletion prevents such phenotypes. In pregnant women, increased circulating galectin-9 levels in the first trimester and at 16 to 20 gestational weeks can predict subsequent preeclampsia onset. CONCLUSIONS: These findings highlight a key role of a distinct perivascular inflammatory CD11chigh dMφ subpopulation in the pathogenesis of preeclampsia. CD11chigh dMφ activated by increased galectin-9 from trophoblasts suppresses uterine spiral artery remodeling, contributing to preeclampsia. Increased circulating galectin-9 may be a biomarker for preeclampsia prediction and intervention.


Assuntos
Decídua , Galectinas , Macrófagos , Pré-Eclâmpsia , Remodelação Vascular , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/imunologia , Gravidez , Feminino , Animais , Galectinas/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Humanos , Decídua/metabolismo , Decídua/patologia , Camundongos Knockout , Útero/metabolismo , Útero/irrigação sanguínea , Modelos Animais de Doenças , Receptores de Hialuronatos/metabolismo , Receptores de Hialuronatos/genética , Estudos Retrospectivos , Camundongos Endogâmicos C57BL , Antígenos CD11
10.
Trends Immunol ; 43(4): 309-321, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35249831

RESUMO

Follicular helper T (TFH) cells are a specialized subset of CD4+ T cells that support germinal centers in producing high-affinity antibody-secreting and memory B cells in mammals and birds. Therefore, mechanisms have evolved to control the life and death of TFH cells for balanced humoral immunity. Recent studies have collectively revealed at least two programmed cell death pathways, ferroptosis and pyroptosis, which govern TFH cell survival under diverse physiopathological conditions including immunization, infection, gut homeostasis, and autoimmunity. We review major recent advances in our understanding of the context-dependent regulation of TFH cell survival via cell death pathways that are closely connected with cellular metabolism. Such knowledge might be applied to inform new strategies aimed at modulating humoral immunity, potentially including enhancement of vaccine efficacies.


Assuntos
Centro Germinativo , Células T Auxiliares Foliculares , Animais , Autoimunidade , Diferenciação Celular , Humanos , Imunidade Humoral , Imunização , Mamíferos , Linfócitos T Auxiliares-Indutores
11.
Microb Pathog ; 190: 106614, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492825

RESUMO

Lactic acid bacteria (LAB) have been recognized as safe microorganism that improve micro-flora disturbances and enhance immune response. A well-know traditional herbal medicine, Acanthopanax senticosus (As) was extensively utilized in aquaculture to improve growth performance and disease resistance. Particularly, the septicemia, skin wound and gastroenteritis caused by Aeromonas hydrophila threaten the health of aquatic animals and human. However, the effects of probiotic fermented with A. senticosus product on the immune regulation and pathogen prevention in fish remain unclear. Here, the aim of the present study was to elucidate whether the A. senticosus fermentation by Lactobacillus rhamnosus improve immune barrier function. The crucian carp were fed with basal diet supplemented with L. rhamnosus fermented A. senticosus cultures at 2 %, 4 %, 6 % and 8 % bacterial inoculum for 8 weeks. After trials, the weight gain rate (WGR), specific growth rate (SGR) were significantly increased, especially in LGG-6 group. The results confirmed that the level of the CAT, GSH-PX, SOD, lysozyme, and MDA was enhanced in fish received with probiotic fermented product. Moreover, the L. rhamnosus fermented A. senticosus cultures could trigger innate and adaptive immunity, including the up-regulation of the C3, C4, and IgM concentration. The results of qRT-PCR revealed that stronger mRNA transcription of IL-1ß, IL-10, IFN-γ, TNF-α, and MyD88 genes in the liver, spleen, kidney, intestine and gills tissues of fish treated with probiotic fermented with A. senticosus product. After infected with A. hydrophila, the survival rate of the LGG-2 (40 %), LGG-4 (50 %), LGG-6 (60 %), LGG-8 (50 %) groups was higher than the control group. Meanwhile, the pathological damage of the liver, spleen, head-kidney, and intestine tissues of probiotic fermentation-fed fish could be alleviated after pathogen infection. Therefore, the present work indicated that L. rhamnosus fermented A. senticosus could be regard as a potential intestine-target therapy strategy to protecting fish from pathogenic bacteria infection.


Assuntos
Aeromonas hydrophila , Antioxidantes , Carpas , Eleutherococcus , Fermentação , Doenças dos Peixes , Lacticaseibacillus rhamnosus , Probióticos , Animais , Lacticaseibacillus rhamnosus/metabolismo , Carpas/microbiologia , Probióticos/farmacologia , Probióticos/administração & dosagem , Antioxidantes/metabolismo , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/microbiologia , Doenças dos Peixes/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/imunologia , Ração Animal , Inflamação/prevenção & controle , Citocinas/metabolismo , Aquicultura
12.
Int Immunol ; 35(12): 571-582, 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-37330692

RESUMO

Vaccination stands as the cornerstone in the battle against infectious diseases, and its efficacy hinges on several host-related factors like genetics, age, and metabolic status. Vulnerable populations, such as malnourished individuals, the obese, and the elderly, commonly exhibit diminished vaccine responses and efficacy. While the specific factors contributing to this impairment may vary, these individuals typically display a degree of metabolic dysregulation, thereby underscoring its potential significance as a fundamental determinant of suboptimal vaccine responses. The emerging field of immunometabolism aims to unravel the intricate interplay between immune regulation and metabolic pathways, and recent research has revealed diverse metabolic signatures linked to various vaccine responses and outcomes. In this review, we summarize the major metabolic pathways utilized by B and T cells during vaccine responses, their complex and varied metabolic requirements, and the impact of micronutrients and metabolic hormones on vaccine outcomes. Furthermore, we examine how systemic metabolism influences vaccine responses and the evidence suggesting that metabolic dysregulation in vulnerable populations can lead to impaired vaccine responses. Lastly, we reflect on the challenge of proving causality with respect to the contribution of metabolic dysregulation to poor vaccine outcomes, and highlight the need for a systems biology approach that combines multimodal profiling and mathematical modelling to reveal the underlying mechanisms of such complex interactions.


Assuntos
Doenças Transmissíveis , Vacinas , Humanos , Idoso , Vacinação
13.
Int J Biometeorol ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105775

RESUMO

Long time series of vegetation monitoring can be carried out by remote sensing data, the level of urban greening is objectively described, and the spatial characteristics of plant pollen are indirectly understood. Pollen is the main allergen in patients with seasonal allergic rhinitis. Meteorological factors affect the release and diffusion of pollen. Therefore, studying of the complex relationship between meteorological factors and allergic rhinitis is essential for effective prevention and treatment of the disease. In this study, we leverage remote sensing data for a comprehensive decade-long analysis of urban greening in Tianjin, which exhibits an annual increase in vegetative cover of 0.51 per annum, focusing on its impact on allergic rhinitis through changes in pollen distribution. Utilizing high-resolution imagery, we quantify changes in urban Fractional Vegetation Coverage (FVC) and its correlation with pollen types and allergic rhinitis cases. Our analysis reveals a significant correlation between FVC trends and pollen concentrations, with a surprising value of 0.71, highlighting the influence of urban greenery on allergenic pollen levels. We establish a robust connection between the seasonal patterns of pollen outbreaks and allergic rhinitis consultations, with a noticeable increase in consultations during high pollen seasons. our findings indicate a higher allergenic potential of herbaceous compared to woody vegetation. This nuanced understanding underscores the importance of pollen sensitivity, alongside concentration, in driving allergic rhinitis incidents. Utilizing a Generalized Linear Model, significant features influencing the number of visits for allergic rhinitis (P < 0.05) were identified. Both GLM and LSTM models were employed to forecast the visitation volumes for rhinitis during the spring and summer-autumn of 2022. Upon validation, it was found that the R² values between the simulated and actual values for both GLM and LSTM models surpassed the 95% confidence threshold. Moreover, the R² values for the summer-autumn seasons (GLM: 0.56, LSTM: 0.72) were higher than those for spring (GLM: 0.22, LSTM: 0.47). Comparing the errors between the simulated and actual values of GLM and LSTM models, LSTM exhibited higher simulation precision in both spring and summer-autumn seasons, demonstrating superior simulation performance. Overall, our study pioneers the integration of remote sensing with meteorological and health data for allergic rhinitis forecasting. This integrative approach provides valuable insights for public health planning, particularly in urban settings, and lays the groundwork for advanced, location-specific allergenic pollen forecasting and mitigation strategies.

14.
J Environ Sci (China) ; 138: 637-649, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135427

RESUMO

Tannery sludge with high chromium content has been identified as hazardous solid waste due to its potential toxic effects. The safety disposal and valorization of the tannery sludge remains a challenge. In this study, the chromium stabilization mechanism was systematically investigated during chromium-rich tannery sludge was converted to biochar and the removal performance of the sludge biochar (SBC) for Cr(VI) from tannery wastewater was also investigated. The results showed that increase in pyrolysis temperature was conductive to the stabilization of Cr and significant reduction of the proportion of Cr(VI) in SBC. It was confirmed that the stabilization of chromium mainly was attributed to the embedding of chromium in the C matrix and the transformation of the chromium-containing substances from the amorphous Cr(OH)3 to the crystalline state, such as (FeMg)Cr2O5. The biochar presented high adsorption capacity of Cr(VI) at low pH and the maximal theoretical adsorption capacity of SBC produced at 800°C can reach 352 mg Cr(VI)/g, the process of which can be well expressed by Langmuir adsorption isotherm and pseudo second order model. The electrostatic effect and reduction reaction were dominantly responsible for the Cr(VI) adsorption by SBC800. Overall, this study provided a novel strategy for the harmless disposal and resource utilization for the solid waste containing chromium in leather industry.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Esgotos , Resíduos Sólidos , Carvão Vegetal/química , Cromo/química , Adsorção , Poluentes Químicos da Água/análise
15.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(8): 835-839, 2024 Aug 15.
Artigo em Zh | MEDLINE | ID: mdl-39148388

RESUMO

OBJECTIVES: To study the correlation of anti-C1q antibodies with active systemic lupus erythematosus (SLE) and lupus nephritis (LN) in children, as well as their diagnostic value for active SLE and LN. METHODS: A retrospective selection of 90 hospitalized children with SLE at the Children's Medical Center of Second Xiangya Hospital, Central South University from January 2016 to March 2019 as the SLE group, all of whom were tested for anti-C1q antibodies. A control group was formed by collecting 70 hospitalized children with other autoimmune diseases (OAD) during the same period. The differences in anti-C1q antibody levels were compared between two groups.The correlation of anti-C1q antibodies with various indicators of SLE and LN was analyzed, and the diagnostic value of anti-C1q in SLE and LN was evaluated. RESULTS: The serum levels of anti-C1q antibodies in the SLE group were higher than those in the OAD group (P<0.05). The SLE disease activity index score was positively correlated with anti-C1q antibodies (rs=0.371, P<0.001) and positively correlated with anti-double-stranded DNA antibodies (rs=0.370, P<0.001). The sensitivity and specificity of anti-C1q antibodies for diagnosing active SLE were 89.90% and 53.90%, respectively, with an area under the curve of 0.720 (P<0.05) and a critical value of 5.45 U/mL. The sensitivity and specificity of anti-C1q antibody levels for diagnosing active LN were 58.50% and 85.00%, respectively, with an area under the curve of 0.675 (P<0.05) and a critical value of 22.05 U/mL. CONCLUSIONS: Anti-C1q antibodies can serve as non-invasive biomarkers for evaluating the activity of SLE or predicting the activity of LN in children.


Assuntos
Complemento C1q , Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Humanos , Complemento C1q/imunologia , Nefrite Lúpica/imunologia , Nefrite Lúpica/sangue , Feminino , Criança , Masculino , Lúpus Eritematoso Sistêmico/imunologia , Estudos Retrospectivos , Adolescente , Autoanticorpos/sangue , Pré-Escolar , Anticorpos Antinucleares/sangue , Anticorpos Antinucleares/imunologia
16.
Clin Immunol ; 250: 109295, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36933629

RESUMO

Previous studies found cDC1s to be protective in early stage anti-GBM disease through Tregs, but pathogenic in late stage Adriamycin nephropathy through CD8+ T cells. Flt3 ligand is a growth factor essential for cDC1 development and Flt3 inhibitors are currently used for cancer treatment. We conducted this study to clarify the role and mechanisms of effects of cDC1s at different time points in anti-GBM disease. In addition, we aimed to utilize drug repurposing of Flt3 inhibitors to target cDC1s as a treatment of anti-GBM disease. We found that in human anti-GBM disease, the number of cDC1s increased significantly, proportionally more than cDC2s. The number of CD8+ T cells also increased significantly and their number correlated with cDC1 number. In XCR1-DTR mice, late (day 12-21) but not early (day 3-12) depletion of cDC1s attenuated kidney injury in mice with anti-GBM disease. cDC1s separated from kidneys of anti-GBM disease mice were found to have a pro-inflammatory phenotype (i.e. express high level of IL-6, IL-12 and IL-23) in late but not early stage. In the late depletion model, the number of CD8+ T cells was also reduced, but not Tregs. CD8+ T cells separated from kidneys of anti-GBM disease mice expressed high levels of cytotoxic molecules (granzyme B and perforin) and inflammatory cytokines (TNF-α and IFN-γ), and their expression reduced significantly after cDC1 depletion with diphtheria toxin. These findings were reproduced using a Flt3 inhibitor in wild type mice. Therefore, cDC1s are pathogenic in anti-GBM disease through activation of CD8+ T cells. Flt3 inhibition successfully attenuated kidney injury through depletion of cDC1s. Repurposing Flt3 inhibitors has potential as a novel therapeutic strategy for anti-GBM disease.


Assuntos
Doença Antimembrana Basal Glomerular , Linfócitos T CD8-Positivos , Reposicionamento de Medicamentos , Tirosina Quinase 3 Semelhante a fms , Animais , Humanos , Camundongos , Doença Antimembrana Basal Glomerular/tratamento farmacológico , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/metabolismo , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Rim/metabolismo , Transdução de Sinais
17.
PLoS Pathog ; 17(10): e1009858, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34618873

RESUMO

Autoimmune diseases are often treated by glucocorticoids and immunosuppressive drugs that could increase the risk for infection, which in turn deteriorate disease and cause mortality. Low-dose IL-2 (Ld-IL2) therapy emerges as a new treatment for a wide range of autoimmune diseases. To examine its influence on infection, we retrospectively studied 665 patients with systemic lupus erythematosus (SLE) including about one third receiving Ld-IL2 therapy, where Ld-IL2 therapy was found beneficial in reducing the incidence of infections. In line with this clinical observation, IL-2 treatment accelerated viral clearance in mice infected with influenza A virus or lymphocytic choriomeningitis virus (LCMV). Noticeably, despite enhancing anti-viral immunity in LCMV infection, IL-2 treatment exacerbated CD8+ T cell-mediated immunopathology. In summary, Ld-IL2 therapy reduced the risk of infections in SLE patients and enhanced the control of viral infection, but caution should be taken to avoid potential CD8+ T cell-mediated immunopathology.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunossupressores/farmacologia , Interleucina-2/farmacologia , Lúpus Eritematoso Sistêmico/imunologia , Infecções Oportunistas/imunologia , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Estudos de Coortes , Feminino , Humanos , Hospedeiro Imunocomprometido/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estudos Retrospectivos
18.
Appl Environ Microbiol ; 89(9): e0097923, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37681950

RESUMO

Bifidobacterium is the dominant genus, particularly in the intestinal tract niche of healthy breast-fed infants, and many of these strains have been proven to elicit positive effects on infant development. In addition to its effective antimicrobial activity against detrimental microorganisms, it helps to improve the intestinal microbiota balance. The isolation and identification of bacteriocins from Bifidobacterium have been limited since the mid-1980s, leading to an underestimation of its ability for bacteriocin production. Here, we employed a silicon-based search strategy to mine 354 putative bacteriocin gene clusters (BGCs), most of which have never been reported, from the genomes of 759 Bifidobacterium strains distributed across 9 species. Consistent with previous reports, most Bifidobacterium strains did not carry or carry only a single BGC; however, Bifidobacterium longum subsp. infantis, in contrast to other Bifidobacterium species, carried numerous BGCs, including lanthipeptides, lasso peptides, thiopeptides, and class IId bacteriocins. The antimicrobial activity of the crude bacteriocins and transcription analysis confirmed its potential for bacteriocin biosynthesis. Additionally, we investigated the association of bacteriocins with the phylogenetic positions of their homologs from other genera and niches. In conclusion, this study re-examines a few Bifidobacterium species traditionally regarded as a poor source of bacteriocins. These bacteriocin genes impart a competitive advantage to Bifidobacterium in colonizing the infant intestinal tract. IMPORTANCE Development of the human gut microbiota commences from birth, with bifidobacteria being among the first colonizers of the newborn intestinal tract and dominating it for a considerable period. To date, the genetic basis for the successful adaptation of bifidobacteria to this particular niche remains unclear since studies have mainly focused on glycoside hydrolase and adhesion-related genes. Bacteriocins are competitive factors that help producers maintain colonization advantages without destroying the niche balance; however, they have rarely been reported in Bifidobacterium. The advancement in sequencing methods and bacteriocin databases enables the use of a silicon-based search strategy for the comprehensive and rapid re-evaluation of the bacteriocin distribution of Bifidobacterium. Our study revealed that B. infantis carries abundant bacteriocin biosynthetic gene clusters for the first time, presenting new evidence regarding the competitive interactions of Bifidobacterium in the infant intestinal tract.


Assuntos
Anti-Infecciosos , Bacteriocinas , Lactente , Recém-Nascido , Criança , Feminino , Humanos , Bifidobacterium/genética , Bacteriocinas/genética , Filogenia , Silício , Bifidobacterium longum subspecies infantis , Família Multigênica
19.
Cell Tissue Res ; 391(2): 323-337, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36447073

RESUMO

Systemic sclerosis associated with lung interstitial lung disease (SSc-ILD) is the most common cause of death among patients with SSc. Mesenchymal stem cell (MSCs) transplantations had been treated by SSc patients that showed in the previous case report. The therapeutic mechanisms and effects of MSCs on SSc-ILD are still obscure. In this study, we investigated the therapeutic effects and mechanisms of treatment of BM-MSC derived from C57BL/6 on the topoisomerase I (TOPO I) induced SSc-ILD-like mice model. The mice were immunized with a mixture of recombinant human TOPO I in PBS solution (500 U/mL) and completed Freund's adjuvant [CFA; 1:1 (volume/volume)] twice per week for 9 weeks. On week 10, the mice were sacrificed to analyze the related pathological parameters. Lung and skin pathologies were analyzed using histochemical staining. CD4 T-helper (TH) cell differentiation in lung and skin-draining lymph nodes was detected using flow cytometry. Our results revealed that allogeneic and syngeneic MSCs exhibited similar repressive effects on TOPO I-induced IgG1 and IgG2a in the SSc group. After intravascular (IV) treatment with syngeneic or allogeneic MSCs, the dermal thickness and fibrosis dramatically condensed and significantly reduced airway hyperresponsiveness. These findings showed that both allogeneic and syngeneic MSCs have therapeutic potential for SSc-ILD.


Assuntos
Doenças Pulmonares Intersticiais , Células-Tronco Mesenquimais , Pneumonia , Escleroderma Sistêmico , Humanos , Animais , Camundongos , DNA Topoisomerases Tipo I , Camundongos Endogâmicos C57BL , Fibrose , Escleroderma Sistêmico/complicações , Escleroderma Sistêmico/terapia , Doenças Pulmonares Intersticiais/etiologia , Doenças Pulmonares Intersticiais/patologia , Pulmão/patologia , Pneumonia/patologia
20.
Hum Genomics ; 16(1): 10, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361250

RESUMO

Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome, also known as Müllerian agenesis, is characterized by uterovaginal aplasia in an otherwise phenotypically normal female with a normal 46,XX karyotype. Previous studies have associated sequence variants of PAX8, TBX6, GEN1, WNT4, WNT9B, BMP4, BMP7, HOXA10, EMX2, LHX1, GREB1L, LAMC1, and other genes with MRKH syndrome. The purpose of this study was to identify the novel genetic causes of MRKH syndrome. Ten patients with MRKH syndrome were recruited at Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China. Whole-exome sequencing was performed for each patient. Sanger sequencing confirmed the potential causative genetic variants in each patient. In silico analysis and American College of Medical Genetics and Genomics (ACMG) guidelines helped to classify the pathogenicity of each variant. The Robetta online protein structure prediction tool determined whether the variants affected protein structures. Eleven variants were identified in 90% (9/10) of the patients and were considered a molecular genetic diagnosis of MRKH syndrome. These 11 variants were related to nine genes: TBC1D1, KMT2D, HOXD3, DLG5, GLI3, HIRA, GATA3, LIFR, and CLIP1. Sequence variants of TBC1D1 were found in two unrelated patients. All variants were heterozygous. These changes included one frameshift variant, one stop-codon variant, and nine missense variants. All identified variants were absent or rare in gnomAD East Asian populations. Two of the 11 variants (18.2%) were classified as pathogenic according to the ACMG guidelines, and the remaining nine (81.8%) were classified as variants of uncertain significance. Robetta online protein structure prediction analysis suggested that missense variants in TBC1D1 (p.E357Q), HOXD3 (p.P192R), and GLI3 (p.L299V) proteins caused significant structural changes compared to those in wild-type proteins, which in turn may lead to changes in protein function. This study identified many novel genes, especially TBC1D1, related to the pathogenesis of MRKH syndrome. The identification of these variants provides new insights into the etiology of MRKH syndrome and a new molecular genetic reference for the development of the reproductive tract.


Assuntos
Transtornos 46, XX do Desenvolvimento Sexual , Transtornos 46, XX do Desenvolvimento Sexual/diagnóstico , Transtornos 46, XX do Desenvolvimento Sexual/genética , Anormalidades Congênitas , Feminino , Genômica , Humanos , Ductos Paramesonéfricos/anormalidades , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA