Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Biochem ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502382

RESUMO

Thrombosis plays an important role in induction of Coronavirus disease 19 (COVID-19) complications including heart attack and stroke. Reliable biomarkers are needed to predict thrombosis risk for better management and improve patient outcomes. This study aimed to investigate the relationship between homocysteine, a thrombosis-related biomarker, and other thrombosis-related parameters, such as D-dimer and platelet count with disease outcome in COVID-19 patients. This case-control study including 50 intensive care unit hospitalized patients with Covid-19 with a positive RT-PCR test for SARS-CoV-2 infection and 50 healthy individuals as a control group was conducted. Both groups were matched for age and body mass index (BMI) and had no history of underlying diseases such as cardiovascular, liver, kidney or smoking. Blood samples were collected from both groups to measure serum homocysteine, platelet count and D-dimer levels. Data were analyzed using GraphPad Prism version 8.3 software. The study found no statistically significant difference in homocysteine levels between COVID-19 patients and the control group. However, D-dimer levels were significantly higher in the patient group. Platelet count analysis revealed a significant difference between patients who died and those who were discharged from the hospital (P < 0.05). Despite previous studies suggesting a link between homocysteine and thrombosis, this study found no significant difference in homocysteine levels between COVID-19 patients and the control group. The significantly elevated D-dimer levels in the death group patient suggest that D-dimer and thrombocytopenia may be more reliable predictors of thrombosis and worse outcome in COVID-19 patients without underlying diseases.

2.
J Biochem Mol Toxicol ; 38(7): e23755, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38923727

RESUMO

Inflammatory bowel disease (IBD) is a chronic gastrointestinal disorder. Oxidative stress and inflammatory responses have a vital role in the pathophysiology of IBD as well as seizure. IBD is associated with extraintestinal manifestations. This study aimed to explore the relationship between colitis and susceptibility to seizures, with a focus on the roles of neuroinflammation and oxidative stress in acetic acid-induced colitis in mice. Forty male Naval Medical Research Institute mice were divided into four groups: control, colitis, pentylenetetrazole (PTZ), and colitis + PTZ. Colitis was induced by intrarectal administration of acetic acid, and seizures were induced by intravenous injection of PTZ 7 days postcolitis induction. Following the measurement of latency to seizure, the mice were killed, and their colons and prefrontal cortex (PFC) were dissected. Gene expression of inflammatory markers including interleukin-1ß, tumor necrosis factor-alpha, NOD-like receptor protein 3, and toll-like receptor 4, as well as total antioxidant capacity (TAC), malondialdehyde (MDA), and nitrite levels were measured in the colon and PFC. Histopathological evaluations were performed on the colon samples. Data were analyzed by t-test or one-way variance analysis. Colitis decreased latency to seizure, increased gene expression of inflammatory markers, and altered levels of MDA, nitrite, and TAC in both the colon and PFC. Simultaneous induction of colitis and seizure exacerbated the neuroimmune response and oxidative stress in the PFC and colon. Results concluded that neuroinflammation and oxidative stress in the PFC at least partially mediate the comorbid decrease in seizure latency in mice with colitis.


Assuntos
Colite , Estresse Oxidativo , Córtex Pré-Frontal , Convulsões , Animais , Masculino , Camundongos , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Convulsões/metabolismo , Convulsões/induzido quimicamente , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Neuroimunomodulação , Modelos Animais de Doenças
3.
Environ Res ; 252(Pt 2): 118893, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604485

RESUMO

Pesticides can have harmful impacts on the environment and living organisms. Thus, removing them from polluted water is crucial. In this study, a bionanocomposite of carboxymethyl tragacanth-grafted-poly(3-aminophenol)/zinc oxide@iron oxide (CMT-g-P3AP/ZnO@Fe3O4) synthesized by in situ copolymerization as an efficient adsorbent to eliminate the acetamiprid pesticide from polluted water. The CMT-g-P3AP/ZnO@Fe3O4 magnetic nanocomposite was analyzed utilizing various techniques including FTIR, EDX, FESEM, XRD, BET, CHNSO, and TGA. The results displayed that the resulting nanocomposite with maximum adsorption capacity (Qmax) successfully removed the acetamiprid pesticide from polluted water under optimal conditions such as pH of 7.00, 5.00 mg of adsorbent, 20.0 min duration, and 400 mg/L acetamiprid concentration. According to the linear Langmuir isotherm, the Qmax of the biosorbent was 833 mg/g. The experimental adsorption data fitted well with Temkin's nonlinear isotherm model. The adsorption kinetic data were closely related to the Weber-Morris intraparticle diffusion nonlinear model. After three repetitive cycles, CMT-g-P3AP/ZnO@Fe3O4 can be outstandingly renewed and recycled without significant reduction in its adsorption efficacy, as evidenced by the adsorption-desorption experiments. In addition, the CMT-g-P3AP/ZnO@Fe3O4 displayed the good antibacterial activity against E. coli and S. aureus.


Assuntos
Antibacterianos , Neonicotinoides , Poluentes Químicos da Água , Óxido de Zinco , Poluentes Químicos da Água/química , Óxido de Zinco/química , Adsorção , Antibacterianos/química , Neonicotinoides/química , Tragacanto/química , Nanocompostos/química , Purificação da Água/métodos , Praguicidas/química
4.
Environ Res ; : 119469, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936496

RESUMO

In recent years, MXene has become one of the most intriguing two-dimensional layered (2Dl) materials extensively explored for various applications. In this study, a Ti3C2 MXene/rGo-Cu2O Nanocomposite (TGCNCs) was developed to eliminate Safranin-O effectively (SO) and Acid Fuchsin (AF) as cationic dyes from the aquatic environment. Multistep was involved in the preparation of the adsorbent system, including the Preparation of Ti3C2, after that, GO synthesis by the Humer method, followed by rGO production, then added CuSO4 to obtain a final Nanocomposite (NCs) called "TGCNCs". The structure of TGCNCs can be varied in several ways, including FTIR, SEM, TGA, Zeta, EDX, XRD, and BET, to affirm the efficacious preparation of TGCNCs. A novel adsorbent system was developed to remove SO and AF, both cationic dyes. Various adsorption conditions have been optimized through batch adsorption tests, including the pH of the solution (4-12), the effect of dosage (0.003-0.03 g), the impact of the contact time (5-30 min), and the effect of beginning dye concentration (25-250 mg/L). Accordingly, the TGCNCs exhibited excellent fitting for Freundlich isotherm mode, resulting in maximum AF and SO adsorption capacities of 909.09 and 769.23 mg.g-1. This research on adsorption kinetics suggests that a pseudo-second-order (PSO) model would fit well with the experimental data ( = 0.998 and = 0.990). It is evident from the thermodynamic parameters that adsorption is an endothermic process that is spontaneous and favourable. During the adsorption of SO and AF onto NCs, it is hypothesized that these molecules interact intramolecularly through stacking interactions, H-bond interactions, electrostatic interactions, and entrapment within the polymeric Poros structure nanocomposite. Regeneration studies lasting up to five cycles were the most effective for both organic dyes under study.

5.
Med Res Rev ; 43(6): 2115-2176, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37165896

RESUMO

Breast cancer is the most malignant tumor in women, and there is no absolute cure for it. Although treatment modalities including surgery, chemotherapy, and radiotherapy are utilized for breast cancer, it is still a life-threatening disease for humans. Nanomedicine has provided a new opportunity in breast cancer treatment, which is the focus of the current study. The nanocarriers deliver chemotherapeutic agents and natural products, both of which increase cytotoxicity against breast tumor cells and prevent the development of drug resistance. The efficacy of gene therapy is boosted by nanoparticles and the delivery of CRISPR/Cas9, Noncoding RNAs, and RNAi, promoting their potential for gene expression regulation. The drug and gene codelivery by nanoparticles can exert a synergistic impact on breast tumors and enhance cellular uptake via endocytosis. Nanostructures are able to induce photothermal and photodynamic therapy for breast tumor ablation via cell death induction. The nanoparticles can provide tumor microenvironment remodeling and repolarization of macrophages for antitumor immunity. The stimuli-responsive nanocarriers, including pH-, redox-, and light-sensitive, can mediate targeted suppression of breast tumors. Besides, nanoparticles can provide a diagnosis of breast cancer and detect biomarkers. Various kinds of nanoparticles have been employed for breast cancer therapy, including carbon-, lipid-, polymeric- and metal-based nanostructures, which are different in terms of biocompatibility and delivery efficiency.


Assuntos
Neoplasias da Mama , Nanopartículas , Neoplasias , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Imunoterapia , Terapia Genética , Nanopartículas/química , Microambiente Tumoral
6.
BMC Biotechnol ; 23(1): 39, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723466

RESUMO

Staphylococcus aureus is a unique challenge for the healthcare system because it can form biofilms, is resistant to the host's immune system, and is resistant to numerous antimicrobial therapies. The aim of this study was to investigate the effect of poly (lactic-co-glycolic acid) (PLGA) polymer nanoparticles loaded with vancomycin and conjugated with lysostaphin (PLGA-VAN-LYS) on inhibiting S. aureus biofilm formation. Nano drug carriers were produced using the double emulsion evaporation process. we examined the physicochemical characteristics of the nanoparticles, including particle size, polydispersity index (PDI), zeta potential, drug loading (DL), entrapment efficiency (EE), Lysostaphin conjugation efficiency (LCE), and shape. The effect of the nano drug carriers on S. aureus strains was evaluated by determining the minimum inhibitory concentration (MIC), conducting biofilm formation inhibition studies, and performing agar well diffusion tests. The average size, PDI, zeta potential, DL, EE, and LCE of PLGA-VAN-LYS were 320.5 ± 35 nm, 0.270 ± 0.012, -19.5 ± 1.3 mV, 16.75 ± 2.5%, 94.62 ± 2.6%, and 37% respectively. Both the agar well diffusion and MIC tests did not show a distinction between vancomycin and the nano drug carriers after 72 h. However, the results of the biofilm analysis demonstrated that the nano drug carrier had a stronger inhibitory effect on biofilm formation compared to the free drug. The use of this technology for treating hospital infections caused by the Staphylococcus bacteria may have favorable effects on staphylococcal infections, considering the efficacy of the nano medicine carrier developed in this study.


Assuntos
Infecções Estafilocócicas , Vancomicina , Humanos , Vancomicina/farmacologia , Glicóis , Staphylococcus aureus , Ágar , Lisostafina , Polímeros , Biofilmes
7.
Small ; 19(19): e2207057, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36775954

RESUMO

Oxidative damage and infection can prevent or delay tissue repair. Moreover, infection reinforces reactive oxygen species (ROS) formation, which makes the wound's condition even worse. Therefore, the need for antioxidant and antibacterial agents is felt for tissue regeneration. There are emerging up-and-coming biomaterials that recapitulate both properties into a package, offering an effective solution to turn the wound back into a healing state. In this article, the principles of antioxidant and antibacterial activity are summarized. The review starts with biological aspects, getting the readers to familiarize themselves with tissue barriers against infection. This is followed by the chemistry and mechanism of action of antioxidant and antibacterial materials (dual function). Eventually, the outlook and challenges are underlined to provide where the dual-function biomaterials are and where they are going in the future. It is expected that the present article inspires the designing of dual-function biomaterials to more advanced levels by providing the fundamentals and comparative points of view and paving the clinical way for these materials.


Assuntos
Antibacterianos , Antioxidantes , Antibacterianos/química , Antioxidantes/farmacologia , Antioxidantes/química , Cicatrização , Estresse Oxidativo , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química
8.
Environ Res ; 233: 116466, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37348634

RESUMO

In this research study, a novel method, an in-situ growth approach, to incorporate metal-organic framework (MOF) into carrageenan-grafted- polyacrylamide-Fe3O4 substrate was introduced. Carrageenan-grafted-polyacrylamide-Fe3O4/MOF nanocomposite (kC-g-PAAm@Fe3O4-MOF-199) was fabricated utilizing three stages. In this way, the polyacrylamide (PAAm) was grafted onto the carrageenan (kC) backbone via free radical polymerization in the presence of methylene bisacrylamide (MBA) as cross-linker and Fe3O4 magnetic nanoparticles. Next, the kC-g-PAAm@Fe3O4 was modified by MOF-199 via an in-situ solvothermal approach. Several analyses such as Fourier transform infrared spectroscopy (FT-IR), X-Ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-Dispersive X-ray Spectroscopy (EDX), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), Brunauer-Emmett-Teller (BET) demonstrated the successful synthesis of kC-g-PAAm@Fe3O4-MOF-199 magnetic hydrogel nanocomposite. The XRD pattern of magnetic hydrogel nanocomposite illustrated characteristic peaks of Fe3O4, neat kC, and MOF-199 with enhanced crystallinity in comparison with kC-g-PAAm@Fe3O4. TGA showed it has a char yield of 24 wt% at 800 °C. VSM confirmed its superparamagnetic behavior (with Ms of 8.04 emu g-1), and the BET surface area of kC-g-PAAm@Fe3O4-MOF-199 was measured at 64.864 m2 g-1, which was higher than that of kC-g-PAAm@Fe3O4 due to the highly porous MOF-199 incorporation with a BET surface area of 905.12 m2 g-1). The adsorption effectiveness of kC-g-PAAm@Fe3O4-MOF-199 for eliminating cephalosporin and quinolones antibiotics, i.e., Cefixime (CFX) and Levofloxacin (LEV) from the aquatic area was considered. Several experimental setups were used to evaluate the efficacy of adsorption, such as solution pH, amount of adsorbent, contact duration, and initial concentration. The maximum adsorption capacity (Qmax) of the prepared magnetic hydrogel nanocomposite was found to be 2000 and 1666.667 mg-1 for LEV and CFX using employing 0.0025 g of adsorbent. The Freundlich isotherm model well described the experimental adsorption data with R2CFX = 0.9986, and R2LEV = 0.9939. And the adsorption kinetic data were successfully represented by the pseudo-second-order model with R2LEV = 0.9949 and R2CFX = 0.9906. Hydrogen bonding, π-π interaction, diffusion, and entrapment in the hydrogel network all contributed to the successful adsorption of both antibiotics onto the kC-g-PAAm@Fe3O4-MOF-199 adsorbent. Other notable physicochemical properties include the three-dimensional structure and availability of the reactive adsorption sites. Moreover, the adsorption/desorption efficacy of magnetic hydrogel nanocomposites was not significantly diminished after four cycles of recovery.


Assuntos
Estruturas Metalorgânicas , Poluentes Químicos da Água , Antibacterianos , Cefixima , Levofloxacino , Adsorção , Carragenina , Espectroscopia de Infravermelho com Transformada de Fourier , Água , Hidrogéis , Poluentes Químicos da Água/química , Cinética
9.
Environ Res ; 239(Pt 2): 117448, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37858692

RESUMO

Wound healing is a complex process that often requires intervention to accelerate tissue regeneration and prevent complications. The goal of this research was to assess the potential of bioactive chitosan@poly (ethylene oxide)@CuFe2O4 (CS@PEO@CF) nanofibers for wound healing applications by evaluating their morphology, mechanical properties, and magnetic behavior. Additionally, in vitro and in vivo studies were conducted to investigate their effectiveness in promoting wound healing treatment. The nanoparticles exhibited remarkable antibacterial and antioxidant properties. In the nanofibrous mats, the optimal concentration of CuFe2O4 was determined to be 0.1% Wt/V. Importantly, this concentration did not adversely affect the viability of fibroblast cells, which also identified the ideal concentration. The scaffold's hemocompatibility revealed nonhemolytic properties. Additionally, a wound-healing experiment demonstrated significant migration and growth of fibroblast cells at the edge of the wound. These nanofibrous mats are applied to treat rats with full-thickness excisional wounds. Histopathological analysis of these wounds showed enhanced wound healing ability, as well as regeneration of sebaceous glands and hair follicles within the skin. Overall, the developed wound dressing comprises CuFe2O4 nanoparticles incorporated into CS/PEO nanofibrous mats demonstrating its potential for successful application in wound treatment.


Assuntos
Quitosana , Nanofibras , Ratos , Animais , Quitosana/farmacologia , Óxido de Etileno , Cicatrização , Antibacterianos/farmacologia
10.
Environ Res ; 231(Pt 2): 116177, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37201707

RESUMO

In this work, a new dendrimer modified magnetic graphene oxide (GO) was used as a substrate for electrodeposition of Au nanoparticles. The modified magnetic electrode was employed for sensitive measuring of As(III) ion as a well-established human carcinogen. The prepared electrochemical device exhibits excellent activity towards As(III) detection using the square wave anodic stripping voltammetry (SWASV) protocol. At optimum conditions (deposition potential at -0.5 V for 100 s in 0.1 M acetate buffer with pH 5.0), a linear range from 1.0 to 125.0 µgL-1 with a low detection limit (calculated by S/N = 3) of 0.47 µg L-1 was obtained. In addition to the simplicity and sensitivity of the proposed sensor, its high selectivity against some major interfering agents, such as Cu(II) and Hg(II) makes it an appreciable sensing tool for the screening of As(III). In addition, the sensor revealed satisfactory results for detection of As(III) in different water samples, and the accuracy of obtained data were confirmed by inductively coupled plasma atomic emission spectroscopy (ICP-AES) setup. Accounting for the high sensitivity, remarkable selectivity and good reproducibility, the established electrochemical strategy has great potential for analysis of As(III) in environmental matrices.


Assuntos
Ouro , Nanopartículas Metálicas , Humanos , Ouro/química , Reprodutibilidade dos Testes , Nanopartículas Metálicas/química , Fenômenos Magnéticos
11.
Environ Res ; 236(Pt 1): 116708, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37482130

RESUMO

Metal-organic frameworks (MOFs) offered excellent catalytic activity due to their superior porosity, and high densities of catalytic sites in remarkable specific surfaces. In this research, we prepared a magnetic nanocomposite based on MOF-5 which is one of the prominent and practical structures that have been reported in many applications, and investigated the advantages of it as a catalyst. The multi-functional catalyst was prepared in five steps including (1) preparation of cobalt ferrite nanoparticles (CoFe2O4), (2) surface modification of cobalt ferrite using tetraethyl orthosilicate, (3) surface functionalization using 3-aminopropyl triethoxysilane, (4) preparation of MOF-5, (5) preparation of CoFe2O4@SiO2-NH2@MOF-5 nanocomposite. The resulting catalyst was evaluated by FTIR, FESEM, EDX, XRD, and VSM analyses. The CoFe2O4@SiO2-NH2@MOF-5 nanocomposite was applied as a catalyst for the quinazoline derivatives' synthesis. Various products were prepared with significant yields (90-98%) in short reaction times (20-60 min) without difficult work-up. In addition, the magnetic behavior of the catalyst allows it to be collected and recycled by a magnet and applied for six consecutive cycles without significantly reducing its efficiency. Quinazoline derivatives showed significant biological activities so their antioxidant activity was between 23.7% and 88.9% and their antimicrobial activity was in contradiction of E. coli, S. enterica, L. monocytogenes, S. aureus, and E. faecalis.


Assuntos
Escherichia coli , Dióxido de Silício , Staphylococcus aureus , Fenômenos Magnéticos
12.
J Nanobiotechnology ; 21(1): 199, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344894

RESUMO

Viruses are a major cause of mortality and socio-economic downfall despite the plethora of biopharmaceuticals designed for their eradication. Conventional antiviral therapies are often ineffective. Live-attenuated vaccines can pose a safety risk due to the possibility of pathogen reversion, whereas inactivated viral vaccines and subunit vaccines do not generate robust and sustained immune responses. Recent studies have demonstrated the potential of strategies that combine nanotechnology concepts with the diagnosis, prevention, and treatment of viral infectious diseases. The present review provides a comprehensive introduction to the different strains of viruses involved in respiratory diseases and presents an overview of recent advances in the diagnosis and treatment of viral infections based on nanotechnology concepts and applications. Discussions in diagnostic/therapeutic nanotechnology-based approaches will be focused on H1N1 influenza, respiratory syncytial virus, human parainfluenza virus type 3 infections, as well as COVID-19 infections caused by the SARS-CoV-2 virus Delta variant and new emerging Omicron variant.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Nanoestruturas , Pneumonia , Viroses , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/prevenção & controle , Nanoestruturas/uso terapêutico , Teste para COVID-19
13.
Molecules ; 27(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35268849

RESUMO

Antibacterial materials have obtained much attention in recent years due to the presence of hazardous agents causing oxidative stress and observation of pathogens. However, materials with antioxidant and antibacterial activities can cause toxicity due to their low biocompatibility and safety profile, urging scientists to follow new ways in the synthesis of such materials. Ionic liquids have been employed as a green and environmentally solvent for the fabrication of electrically conductive polymers. In the present study, an antibacterial poly(p-phenylenediamine)@Fe3O4 (PpPDA@Fe3O4) nanocomposite was fabricated using [HPy][HSO4] ionic liquid. The chemical preparation of PpPDA@Fe3O4 nanocomposite was initiated through the oxidative polymerization of p-phenylenediamine by ammonium persulfate in the presence of [HPy][HSO4]. The PpPDA@Fe3O4 nanocomposite exhibited antibacterial properties against Gram-negative (Escherichia coli) and Gram-positive (Bacillus subtilis) bacteria. The PpPDA@Fe3O4 nanocomposite was employed as a heterogeneous nanocatalysis for one-pot synthesis of polyhydroquinoline derivatives using aromatic aldehyde, dimedone, benzyl acetoacetate, and ammonium acetate. Polyhydroquinoline derivatives were synthesized in significant yields (90-97%) without a difficult work-up procedure in short reaction times. Additionally, PpPDA@Fe3O4 nanocatalyst was recycled for at least five consecutive catalytic runs with a minor decrease in the catalytic activity. In this case, 11 derivatives of polyhydroquinoline showed in vitro antioxidant activity between 70-98%.


Assuntos
Líquidos Iônicos
14.
Environ Monit Assess ; 194(5): 387, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35445889

RESUMO

Understanding the spatial distribution of soil erodibility factor (K-factor) at the district scale is essential for managing water erosion risk. In this research, we performed to predict the low and high classes of K-factor in the northwest of Iran. Based on this, soil sampling was performed at 64 points using the grid sampling method with 1 km spacing. To calculate the K-factor, the distribution of particle size and organic carbon (OC) were determined. In addition, 21 terrain attributes were calculated by Digital Elevation Model (DEM) to add value to the soil data. Then, K-factor was modeled using Random Forest (RF) and Artificial Neural Network (ANN) models. In the next step, a non-linear Multiple Logistic Regression (NMLR) was used to obtain low and high classes of K-factor. The results showed that the performance of RF is superior to ANN with a high coefficient of determination [R2 = 0.85] and good accuracy [RMSE = 0.003 (Mg ha h/ha MJ mm)]. Therefore, the RF was employed for predicting the K-factor spatial distribution. Finally, using the NMLR model, the study area was divided into low and high classes of K-factor with good correlation [R2 Cox and Snell = 0.78, R2 Nagelkerke = 0.65]. The areas of these two classes were 60.4% for low class and 39.6% for the high class of K-factor. Based on these results, it was concluded that the resultant map of low and high classes of K-factor could be used by farmers and managers for managing soil water erosion risks in the study area.


Assuntos
Monitoramento Ambiental , Solo , Monitoramento Ambiental/métodos , Irã (Geográfico) , Aprendizado de Máquina , Água
15.
Environ Chem Lett ; 20(4): 2629-2664, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431714

RESUMO

The release of pharmaceuticals into the environment induces adverse effects on the metabolism of humans and other living species, calling for advanced remediation methods. Conventional removal methods are often non-selective and cause secondary contamination. These issues may be partly solved by the use of recently-developped adsorbents such as molecularly imprinted polymers. Here we review the synthesis and application of molecularly imprinted polymers for removing pharmaceuticals in water. Molecularly imprinted polymers are synthesized via several multiple-step polymerization methods. Molecularly imprinted polymers are potent adsorbents at the laboratory scale, yet their efficiency is limited by template leakage and polymer quality. Adsorption performance of multi-templated molecularly imprinted polymers depends on the design of wastewater treatment plants, pharmaceutical consumption patterns and the population serviced by these wastewater treatment plants.

16.
Small ; 17(17): e2007073, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33710754

RESUMO

Metal-based nanoentities, apart from being indispensable research tools, have found extensive use in the industrial and biomedical arena. Because their biological impacts are governed by factors such as size, shape, and composition, such issues must be taken into account when these materials are incorporated into multi-component ensembles for clinical applications. The size and shape (rods, wires, sheets, tubes, and cages) of metallic nanostructures influence cell viability by virtue of their varied geometry and physicochemical interactions with mammalian cell membranes. The anisotropic properties of nonspherical metal-based nanoarchitectures render them exciting candidates for biomedical applications. Here, the size-, shape-, and composition-dependent properties of nonspherical metal-based nanoarchitectures are reviewed in the context of their potential applications in cancer diagnostics and therapeutics, as well as, in regenerative medicine. Strategies for the synthesis of nonspherical metal-based nanoarchitectures and their cytotoxicity and immunological profiles are also comprehensively appraised.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Anisotropia , Sobrevivência Celular , Metais
17.
Small ; 17(34): e2007840, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33899324

RESUMO

A noticeable interest and steady rise in research studies reporting the design and assessment of smart adsorbents for sequestering aqueous metal ions and xenobiotics has occurred in the last decade. This motivates compiling and reviewing the characteristics, potentials, and performances of this new adsorbent generation's metal ion and xenobiotics sequestration. Herein, stimuli-responsive adsorbents that respond to its media (as internal triggers; e.g., pH and temperature) or external triggers (e.g., magnetic field and light) are highlighted. Readers are then introduced to selective adsorbents that selectively capture materials of interest. This is followed by a discussion of self-healing and self-cleaning adsorbents. Finally, the review ends with research gaps in material designs.


Assuntos
Recuperação e Remediação Ambiental , Poluentes Químicos da Água , Purificação da Água , Adsorção , Metais , Poluentes Químicos da Água/análise
18.
Mater Today (Kidlington) ; 47: 206-222, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36338772

RESUMO

Microneedle (MN) patches consisting of miniature needles have emerged as a promising tool to perforate the stratum corneum and translocate biomolecules into the dermis in a minimally invasive manner. Stimuli-responsive MN patches represent emerging drug delivery systems that release cargos on-demand as a response to internal or external triggers. In this review, a variety of stimuli-responsive MN patches for controlled drug release are introduced, covering the mechanisms of action toward different indications. Future opportunities and challenges with respect to clinical translation are also discussed.

19.
Int J Mol Sci ; 22(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802469

RESUMO

In this study, nanocomposite hydrogels composed of sodium carboxymethylated starch (CMS)-containing CuO nanoparticles (CMS@CuO) were synthesized and used as experimental wound healing materials. The hydrogels were fabricated by a solution-casting technique using citric acid as a crosslinking agent. They were characterized by Fourier-transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and thermogravimetric analysis (TGA) to evaluate their physicochemical properties. In addition, swelling, antibacterial activities, antioxidant activities, cytotoxicity, and in vivo wound healing were investigated to evaluate the wound healing potential of the CMS@CuO nanocomposite hydrogels. Growth inhibition of the Gram-positive and Gram-negative pathogens, antioxidant activity, and swelling were observed in the CMS@CuO nanocomposite hydrogels containing 2 wt.% and 4 wt.% CuO nanoparticles. The hydrogel containing 2 wt.% CuO nanoparticles displayed low toxicity to human fibroblasts and exhibited good biocompatibility. Wounds created in rats and treated with the CMS@2%CuO nanocomposite hydrogel healed within 13 days, whereas wounds were still present when treated for the same time-period with CMS only. The impact of antibacterial and antioxidant activities on accelerating wound healing could be ascribed to the antibacterial and antioxidant activities of the nanocomposite hydrogel. Incorporation of CuO nanoparticles in the hydrogel improved its antibacterial properties, antioxidant activity, and degree of swelling. The present nanocomposite hydrogel has the potential to be used clinically as a novel wound healing material.


Assuntos
Antibacterianos/química , Antioxidantes/química , Cobre/química , Hidrogéis/química , Nanopartículas/química , Amido/análogos & derivados , Cicatrização/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Células Cultivadas , Quitosana/química , Fibroblastos/efeitos dos fármacos , Humanos , Masculino , Testes de Sensibilidade Microbiana , Nanocompostos/química , Ratos , Ratos Wistar , Amido/química , Difração de Raios X
20.
Sensors (Basel) ; 19(18)2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31547310

RESUMO

Most cultivated upland areas of northeast Thailand are characterized by sandy and infertile soils, which are difficult to improve agriculturally. Information about the clay (%) and cation exchange capacity (CEC-cmol(+)/kg) are required. Because it is expensive to analyse these soil properties, electromagnetic (EM) induction instruments are increasingly being used. This is because the measured apparent soil electrical conductivity (ECa-mS/m), can often be correlated directly with measured topsoil (0-0.3 m), subsurface (0.3-0.6 m) and subsoil (0.6-0.9 m) clay and CEC. In this study, we explore the potential to use this approach and considering a linear regression (LR) between EM38 acquired ECa in horizontal (ECah) and vertical (ECav) modes of operation and the soil properties at each of these depths. We compare this approach with a universal LR relationship developed between calculated true electrical conductivity (σ-mS/m) and laboratory measured clay and CEC at various depths. We estimate σ by inverting ECah and ECav data, using a quasi-3D inversion algorithm (EM4Soil). The best LR between ECa and soil properties was between ECah and subsoil clay (R2 = 0.43) and subsoil CEC (R2 = 0.56). We concluded these LR were unsatisfactory to predict clay or CEC at any of the three depths, however. In comparison, we found that a universal LR could be established between σ with clay (R2 = 0.65) and CEC (R2 = 0.68). The LR model validation was tested using a leave-one-out-cross-validation. The results indicated that the universal LR between σ and clay at any depth was precise (RMSE = 2.17), unbiased (ME = 0.27) with good concordance (Lin's = 0.78). Similarly, satisfactory results were obtained by the LR between σ and CEC (Lin's = 0.80). We conclude that in a field where a direct LR relationship between clay or CEC and ECa cannot be established, can still potentially be mapped by developing a LR between estimates of σ with clay or CEC if they all vary with depth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA