Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Pathog ; 11(8): e1005108, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26285214

RESUMO

Enterohemorrhagic Escherichia coli and related food and waterborne pathogens pose significant threats to human health. These attaching/effacing microbes infect the apical surface of intestinal epithelial cells (IEC), causing severe diarrheal disease. Colonizing the intestinal luminal surface helps segregate these microbes from most host inflammatory responses. Based on studies using Citrobacter rodentium, a related mouse pathogen, we speculate that hosts rely on immune-mediated changes in IEC, including goblet cells to defend against these pathogens. These changes include a CD4+ T cell-dependent increase in IEC proliferation to replace infected IEC, as well as altered production of the goblet cell-derived mucin Muc2. Another goblet cell mediator, REsistin-Like Molecule (RELM)-ß is strongly induced within goblet cells during C. rodentium infection, and was detected in the stool as well as serum. Despite its dramatic induction, RELM-ß's role in host defense is unclear. Thus, wildtype and RELM-ß gene deficient mice (Retnlb-/-) were orally infected with C. rodentium. While their C. rodentium burdens were only modestly elevated, infected Retnlb-/- mice suffered increased mortality and mucosal ulceration due to deep pathogen penetration of colonic crypts. Immunostaining for Ki67 and BrDU revealed Retnlb-/- mice were significantly impaired in infection-induced IEC hyper-proliferation. Interestingly, exposure to RELM-ß did not directly increase IEC proliferation, rather RELM-ß acted as a CD4+ T cell chemoattractant. Correspondingly, Retnlb-/- mice showed impaired CD4+ T cell recruitment to their infected colons, along with reduced production of interleukin (IL)-22, a multifunctional cytokine that directly increased IEC proliferation. Enema delivery of RELM-ß to Retnlb-/- mice restored CD4+ T cell recruitment, concurrently increasing IL-22 levels and IEC proliferation, while reducing mucosal pathology. These findings demonstrate that RELM-ß and goblet cells play an unexpected, yet critical role in recruiting CD4+ T cells to the colon to protect against an enteric pathogen, in part via the induction of increased IEC proliferation.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Proliferação de Células , Colite/imunologia , Células Caliciformes/imunologia , Hormônios Ectópicos/imunologia , Mucosa Intestinal/imunologia , Animais , Separação Celular , Citrobacter rodentium , Colite/metabolismo , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Imunofluorescência , Células Caliciformes/metabolismo , Hormônios Ectópicos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase
2.
Infect Immun ; 83(7): 2636-50, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25895966

RESUMO

Bacterial pathogens produce a number of autotransporters that possess diverse functions. These include the family of serine protease autotransporters of Enterobacteriaceae (SPATEs) produced by enteric pathogens such as Shigella flexneri and enteroaggregative Escherichia coli. Of these SPATEs, one termed "protein involved in colonization," or Pic, has been shown to possess mucinase activity in vitro, but to date, its role in in vivo enteric pathogenesis is unknown. Testing a pic null (ΔpicC) mutant in Citrobacter rodentium, a natural mouse pathogen, found that the C. rodentium ΔpicC strain was impaired in its ability to degrade mucin in vitro compared to the wild type. Upon infection of mice, the ΔpicC mutant exhibited a hypervirulent phenotype with dramatically heavier pathogen burdens found in intestinal crypts. ΔpicC mutant-infected mice suffered greater barrier disruption and more severe colitis and weight loss, necessitating their euthanization between 10 and 14 days postinfection. Notably, the virulence of the ΔpicC mutant was normalized when the picC gene was restored; however, a PicC point mutant causing loss of mucinase activity did not replicate the ΔpicC phenotype. Exploring other aspects of PicC function, the ΔpicC mutant was found to aggregate to higher levels in vivo than wild-type C. rodentium. Moreover, unlike the wild type, the C. rodentium ΔpicC mutant had a red, dry, and rough (RDAR) morphology in vitro and showed increased activation of the innate receptor Toll-like receptor 2 (TLR2). Interestingly, the C. rodentium ΔpicC mutant caused a degree of pathology similar to that of wild-type C. rodentium when infecting TLR2-deficient mice, showing that despite its mucinase activity, PicC's major role in vivo may be to limit C. rodentium's stimulation of the host's innate immune system.


Assuntos
Citrobacter rodentium/enzimologia , Citrobacter rodentium/imunologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/patologia , Serina Proteases/metabolismo , Fatores de Virulência/metabolismo , Animais , Citrobacter rodentium/genética , Citrobacter rodentium/patogenicidade , Infecções por Enterobacteriaceae/microbiologia , Deleção de Genes , Teste de Complementação Genética , Hidrólise , Camundongos Endogâmicos C57BL , Mucinas/metabolismo , Mutação Puntual , Proteólise , Serina Proteases/genética , Fatores de Virulência/genética
3.
Infect Immun ; 81(10): 3672-83, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23876803

RESUMO

Salmonella enterica serovar Typhimurium is a model organism used to explore the virulence strategies underlying Salmonella pathogenesis. Although intestinal mucus is the first line of defense in the intestine, its role in protection against Salmonella is still unclear. The intestinal mucus layer is composed primarily of the Muc2 mucin, a heavily O-glycosylated glycoprotein. The core 3-derived O-glycans of Muc2 are synthesized by core 3 ß1,3-N-acetylglucosaminyltransferase (C3GnT). Mice lacking these glycans still produce Muc2 but display a thinner intestinal mucus barrier. We began our investigations by comparing Salmonella-induced colitis and mucus dynamics in Muc2-deficient (Muc2(-/-)) mice, C3GnT(-/-) mice, and wild-type C57BL/6 (WT) mice. Salmonella infection led to increases in luminal Muc2 secretion in WT and C3GnT(-/-) mice. When Muc2(-/-) mice were infected with Salmonella, they showed dramatic susceptibility to infection, carrying significantly higher cecal and liver pathogen burdens, and developing significantly higher barrier disruption and higher mortality rates, than WT mice. We found that the exaggerated barrier disruption in infected Muc2(-/-) mice was invA dependent. We also tested the susceptibility of C3GnT(-/-) mice and found that they carried pathogen burdens similar to those of WT mice but developed exaggerated barrier disruption. Moreover, we found that Muc2(-/-) mice were impaired in intestinal alkaline phosphatase (IAP) expression and lipopolysaccharide (LPS) detoxification activity in their ceca, potentially explaining their high mortality rates during infection. Our data suggest that the intestinal mucus layer (Muc2) and core 3 O-glycosylation play critical roles in controlling Salmonella intestinal burdens and intestinal epithelial barrier function, respectively.


Assuntos
Colite/microbiologia , Regulação da Expressão Gênica/fisiologia , Mucosa Intestinal/patologia , Mucina-2/metabolismo , Salmonelose Animal/microbiologia , Salmonella typhimurium/fisiologia , Animais , Colite/patologia , Mucosa Intestinal/microbiologia , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucina-2/genética , Polissacarídeos , Salmonelose Animal/patologia
4.
Cell Microbiol ; 14(4): 475-84, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22233392

RESUMO

Infection by enteric bacterial pathogens activates pathogen recognition receptors, leading to innate responses that promote host defence. While responses that promote host 'resistance' to infection, through the release of antimicrobial mediators, or the recruitment of inflammatory cells aimed at clearing the infection are best known, recent studies have begun to identify additional innate driven responses that instead promote intestinal tissue repair and host survival. Described as infection 'tolerance' responses, we and others have primarily studied these responses in the Citrobacter rodentium infection model. In this review we discuss the impact of innate resistance mechanisms on host defence, and describe how 'tolerance' responses act primarily on the intestinal epithelium, triggering epithelial cell proliferation, repair or promoting barrier function. Resistance and tolerance responses appear to work together, with tolerance repairing the tissue injury caused by resistance driven inflammation. Tolerance responses fit a pattern where innate immunity and inflammation are tightly regulated in the gastrointestinal tract. Moreover, tolerance may have developed due to the successful subversion and avoidance of host resistance by enteric bacterial pathogens. Further studies are needed to clarify the contribution of different pathogen recognition receptors to tolerance and resistance responses against bacterial pathogens, in the gut or in other host tissues.


Assuntos
Resistência à Doença , Enterobacteriaceae/imunologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Animais , Proliferação de Células , Enterobacteriaceae/patogenicidade , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mamíferos , Transdução de Sinais , Simbiose , Receptores Toll-Like/imunologia
5.
Plant Mol Biol ; 80(6): 659-71, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23065119

RESUMO

Plant aldehyde oxidases (AOs) have gained great attention during the last years as they catalyze the last step in the biosynthesis of the phytohormone abscisic acid by oxidation of abscisic aldehyde. Furthermore, oxidation of indole-3-acetaldehyde by AOs is likely to represent one route to produce another phytohormone, indole-3-acetic acid, and thus, AOs play important roles in many aspects of plant growth and development. In the present work we demonstrate that heterologously expressed AAO1 and AAO3, two prominent members of the AO family from Arabidopsis thaliana, do not only generate hydrogen peroxide but also superoxide anions by transferring aldehyde-derived electrons to molecular oxygen. In support of this, superoxide production has also been found for native AO proteins in Arabidopsis leaf extracts. In addition to their aldehyde oxidation activity, AAO1 and AAO3 were found to exhibit NADH oxidase activity, which likewise is associated with the production of superoxide anions. According to these results and due to the fact that molecular oxygen is the only known physiological electron acceptor of AOs, the production of hydrogen peroxide and/or superoxide has to be considered in any physiological condition in which aldehydes or NADH serve as substrate for AOs. In this respect, conditions such as natural senescence and stress-induced stomatal movement, which both require simultaneously elevated levels of abscisic acid and hydrogen peroxide/superoxide, are likely to benefit from AOs in two ways, namely by formation of abscisic acid and by concomitant formation of reactive oxygen species.


Assuntos
Aldeído Oxidase/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Superóxidos/metabolismo , Aldeído Oxidase/antagonistas & inibidores , Aldeído Oxidase/genética , Aldeídos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/genética , Peróxido de Hidrogênio/metabolismo , NAD/metabolismo , Oxirredução , Pichia/enzimologia , Pichia/genética , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrofotometria
6.
Am J Physiol Gastrointest Liver Physiol ; 303(3): G311-23, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22679002

RESUMO

Salmonella enterica serovar Typhimurium is a clinically important gram-negative, enteric bacterial pathogen that activates several Toll-like receptors (TLRs). While TLR signaling through the adaptor protein MyD88 has been shown to promote inflammation and host defense against the systemic spread of S. Typhimurium, curiously, its role in the host response against S. Typhimurium within the mammalian gastrointestinal (GI) tract is less clear. We therefore used the recently described Salmonella-induced enterocolitis and fibrosis model: wild-type (WT) and MyD88-deficient (MyD88(-/-)) mice pretreated with streptomycin and then orally infected with the ΔaroA vaccine strain of S. Typhimurium. Tissues were analyzed for bacterial colonization, inflammation, and epithelial damage, while fibrosis was assessed by collagen quantification and Masson's trichrome staining. WT and MyD88(-/-) mice carried similar intestinal pathogen burdens to postinfection day 21. Infection of WT mice led to acute mucosal and submucosal inflammation and edema, as well as significant intestinal epithelial damage and proliferation, leading to widespread goblet cell depletion. Impressive collagen deposition in the WT intestine was also evident in the submucosa at postinfection days 7 and 21, with fibrotic regions rich in fibroblasts and collagen. While infected MyD88(-/-) mice showed levels of submucosal inflammation and edema similar to WT mice, they were impaired in the development of mucosal inflammation, along with infection-induced epithelial damage, proliferation, and goblet cell depletion. MyD88(-/-) mouse tissues also had fewer submucosal fibroblasts and 60% less collagen. We noted that cyclooxygenase (Cox)-2 expression was MyD88-dependent, with numerous Cox-2-positive cells identified in fibrotic regions of WT mice at postinfection day 7, but not in MyD88(-/-) mice. Treatment of WT mice with the Cox-2 inhibitor rofecoxib (20 mg/kg) significantly reduced fibroblast numbers and collagen levels without altering colitis severity. In conclusion, MyD88 and Cox-2 signaling play roles in intestinal fibrosis during Salmonella-induced enterocolitis.


Assuntos
Ciclo-Oxigenase 2/fisiologia , Enterocolite/fisiopatologia , Fator 88 de Diferenciação Mieloide/fisiologia , Salmonelose Animal/microbiologia , Animais , Inibidores de Ciclo-Oxigenase 2 , Enterocolite/microbiologia , Enterocolite/patologia , Fibrose/patologia , Mucosa Intestinal/patologia , Lactonas/farmacologia , Camundongos , Salmonella typhimurium , Transdução de Sinais , Sulfonas/farmacologia
7.
Plant J ; 59(1): 39-51, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19309463

RESUMO

During leaf senescence, resources are recycled by redistribution to younger leaves and reproductive organs. Candidate pathways for the regulation of onset and progression of leaf senescence include ubiquitin-dependent turnover of key proteins. Here, we identified a novel plant U-box E3 ubiquitin ligase that prevents premature senescence in Arabidopsis plants, and named it SENESCENCE-ASSOCIATED E3 UBIQUITIN LIGASE 1 (SAUL1). Using in vitro ubiquitination assays, we show that SAUL1 has E3 ubiquitin ligase activity. We isolated two alleles of saul1 mutants that show premature senescence under low light conditions. The visible yellowing of leaves is accompanied by reduced chlorophyll content, decreased photochemical efficiency of photosystem II and increased expression of senescence genes. In addition, saul1 mutants exhibit enhanced abscisic acid (ABA) biosynthesis. We show that application of ABA to Arabidopsis is sufficient to trigger leaf senescence, and that this response is abolished in the ABA-insensitive mutants abi1-1 and abi2-1, but enhanced in the ABA-hypersensitive mutant era1-3. We found that increased ABA levels coincide with enhanced activity of Arabidopsis aldehyde oxidase 3 (AAO3) and accumulation of AAO3 protein in saul1 mutants. Using label transfer experiments, we showed that interactions between SAUL1 and AAO3 occur. This suggests that SAUL1 participates in targeting AAO3 for ubiquitin-dependent degradation via the 26S proteasome to prevent premature senescence.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Ubiquitina-Proteína Ligases/metabolismo , Ácido Abscísico/metabolismo , Aldeído Oxidase/metabolismo , Alelos , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , DNA Bacteriano , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Luz , Mutagênese Insercional , Mutação , Folhas de Planta/fisiologia , RNA de Plantas/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
8.
Plant Mol Biol ; 72(3): 301-10, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19915948

RESUMO

Xanthine dehydrogenase AtXDH1 from Arabidopsis thaliana is a key enzyme in purine degradation where it oxidizes hypoxanthine to xanthine and xanthine to uric acid. Electrons released from these substrates are either transferred to NAD(+) or to molecular oxygen, thereby yielding NADH or superoxide, respectively. By an alternative activity, AtXDH1 is capable of oxidizing NADH with concomitant formation of NAD(+) and superoxide. Here we demonstrate that in comparison to the specific activity with xanthine as substrate, the specific activity of recombinant AtXDH1 with NADH as substrate is about 15-times higher accompanied by a doubling in superoxide production. The observation that NAD(+) inhibits NADH oxidase activity of AtXDH1 while NADH suppresses NAD(+)-dependent xanthine oxidation indicates that both NAD(+) and NADH compete for the same binding-site and that both sub-activities are not expressed at the same time. Rather, each sub-activity is determined by specific conditions such as the availability of substrates and co-substrates, which allows regulation of superoxide production by AtXDH1. Since AtXDH1 exhibits the most pronounced NADH oxidase activity among all xanthine dehydrogenase proteins studied thus far, our results imply that in particular by its NADH oxidase activity AtXDH1 is an efficient producer of superoxide also in vivo.


Assuntos
Arabidopsis/enzimologia , NAD/metabolismo , Superóxidos/metabolismo , Xantina Desidrogenase/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Oxirredução , Pichia/genética , Proteínas Recombinantes/metabolismo , Xantina/metabolismo , Xantina Desidrogenase/genética , Xantina Desidrogenase/metabolismo
9.
J Biol Chem ; 283(15): 9642-50, 2008 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-18258600

RESUMO

The molybdenum cofactor sulfurase ABA3 from Arabidopsis thaliana is needed for post-translational activation of aldehyde oxidase and xanthine dehydrogenase by transferring a sulfur atom to the desulfo-molybdenum cofactor of these enzymes. ABA3 is a two-domain protein consisting of an NH(2)-terminal NifS-like cysteine desulfurase domain and a C-terminal domain of yet undescribed function. The NH(2)-terminal domain of ABA3 decomposes l-cysteine to yield elemental sulfur, which subsequently is bound as persulfide to a conserved protein cysteinyl residue within this domain. In vivo, activation of aldehyde oxidase and xanthine dehydrogenase also depends on the function of the C-terminal domain, as can be concluded from the A. thaliana aba3/sir3-3 mutant. sir3-3 plants are strongly reduced in aldehyde oxidase and xanthine dehydrogenase activities due to a substitution of arginine 723 by a lysine within the C-terminal domain of the ABA3 protein. Here we present first evidence for the function of the C-terminal domain and show that molybdenum cofactor is bound to this domain with high affinity. Furthermore, cyanide-treated ABA3 C terminus was shown to release thiocyanate, indicating that the molybdenum cofactor bound to the C-terminal domain is present in the sulfurated form. Co-incubation of partially active aldehyde oxidase and xanthine dehydrogenase with ABA3 C terminus carrying sulfurated molybdenum cofactor resulted in stimulation of aldehyde oxidase and xanthine dehydrogenase activity. The data of this work suggest that the C-terminal domain of ABA3 might act as a scaffold protein where prebound desulfo-molybdenum cofactor is converted into sulfurated cofactor prior to activation of aldehyde oxidase and xanthine dehydrogenase.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Coenzimas/metabolismo , Molibdênio/metabolismo , Enxofre/metabolismo , Sulfurtransferases/metabolismo , Aldeído Oxidase/genética , Aldeído Oxidase/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cisteína/metabolismo , Ativação Enzimática/fisiologia , Mutação , Estrutura Terciária de Proteína/fisiologia , Sulfetos/metabolismo , Sulfurtransferases/genética , Xantina Desidrogenase/genética , Xantina Desidrogenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA