Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell ; 182(5): 1093-1108.e18, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32810437

RESUMO

In plants, pathogen effector-triggered immunity (ETI) often leads to programmed cell death, which is restricted by NPR1, an activator of systemic acquired resistance. However, the biochemical activities of NPR1 enabling it to promote defense and restrict cell death remain unclear. Here we show that NPR1 promotes cell survival by targeting substrates for ubiquitination and degradation through formation of salicylic acid-induced NPR1 condensates (SINCs). SINCs are enriched with stress response proteins, including nucleotide-binding leucine-rich repeat immune receptors, oxidative and DNA damage response proteins, and protein quality control machineries. Transition of NPR1 into condensates is required for formation of the NPR1-Cullin 3 E3 ligase complex to ubiquitinate SINC-localized substrates, such as EDS1 and specific WRKY transcription factors, and promote cell survival during ETI. Our analysis of SINCs suggests that NPR1 is centrally integrated into the cell death or survival decisions in plant immunity by modulating multiple stress-responsive processes in this quasi-organelle.


Assuntos
Proteínas de Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Sobrevivência Celular/imunologia , Imunidade Vegetal/imunologia , Arabidopsis/imunologia , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/imunologia , Ácido Salicílico/imunologia , Ácido Salicílico/metabolismo , Ubiquitinação/imunologia
2.
Mol Cell ; 84(1): 131-141, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38103555

RESUMO

Nonexpressor of pathogenesis-related genes 1 (NPR1) was discovered in Arabidopsis as an activator of salicylic acid (SA)-mediated immune responses nearly 30 years ago. How NPR1 confers resistance against a variety of pathogens and stresses has been extensively studied; however, only in recent years have the underlying molecular mechanisms been uncovered, particularly NPR1's role in SA-mediated transcriptional reprogramming, stress protein homeostasis, and cell survival. Structural analyses ultimately defined NPR1 and its paralogs as SA receptors. The SA-bound NPR1 dimer induces transcription by bridging two TGA transcription factor dimers, forming an enhanceosome. Moreover, NPR1 orchestrates its multiple functions through the formation of distinct nuclear and cytoplasmic biomolecular condensates. Furthermore, NPR1 plays a central role in plant health by regulating the crosstalk between SA and other defense and growth hormones. In this review, we focus on these recent advances and discuss how NPR1 can be utilized to engineer resistance against biotic and abiotic stresses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácido Salicílico/química , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Fatores de Transcrição/metabolismo , Estresse Fisiológico , Regulação da Expressão Gênica de Plantas
3.
Nature ; 605(7910): 561-566, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35545668

RESUMO

NPR1 is a master regulator of the defence transcriptome induced by the plant immune signal salicylic acid1-4. Despite the important role of NPR1 in plant immunity5-7, understanding of its regulatory mechanisms has been hindered by a lack of structural information. Here we report cryo-electron microscopy and crystal structures of Arabidopsis NPR1 and its complex with the transcription factor TGA3. Cryo-electron microscopy analysis reveals that NPR1 is a bird-shaped homodimer comprising a central Broad-complex, Tramtrack and Bric-à-brac (BTB) domain, a BTB and carboxyterminal Kelch helix bundle, four ankyrin repeats and a disordered salicylic-acid-binding domain. Crystal structure analysis reveals a unique zinc-finger motif in BTB for interacting with ankyrin repeats and mediating NPR1 oligomerization. We found that, after stimulation, salicylic-acid-induced folding and docking of the salicylic-acid-binding domain onto ankyrin repeats is required for the transcriptional cofactor activity of NPR1, providing a structural explanation for a direct role of salicylic acid in regulating NPR1-dependent gene expression. Moreover, our structure of the TGA32-NPR12-TGA32 complex, DNA-binding assay and genetic data show that dimeric NPR1 activates transcription by bridging two fatty-acid-bound TGA3 dimers to form an enhanceosome. The stepwise assembly of the NPR1-TGA complex suggests possible hetero-oligomeric complex formation with other transcription factors, revealing how NPR1 reprograms the defence transcriptome.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Microscopia Crioeletrônica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Imunidade Vegetal , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Fatores de Transcrição/metabolismo
4.
Plant Physiol ; 172(2): 1061-1073, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27559035

RESUMO

Plasmodesmata (Pd) are membranous channels that serve as a major conduit for cell-to-cell communication in plants. The Pd-associated ß-1,3-glucanase (BG_pap) and CALLOSE BINDING PROTEIN1 (PDCB1) were identified as key regulators of Pd conductivity. Both are predicted glycosylphosphatidylinositol-anchored proteins (GPI-APs) carrying a conserved GPI modification signal. However, the subcellular targeting mechanism of these proteins is unknown, particularly in the context of other GPI-APs not associated with Pd Here, we conducted a comparative analysis of the subcellular targeting of the two Pd-resident and two unrelated non-Pd GPI-APs in Arabidopsis (Arabidopsis thaliana). We show that GPI modification is necessary and sufficient for delivering both BG_pap and PDCB1 to Pd Moreover, the GPI modification signal from both Pd- and non-Pd GPI-APs is able to target a reporter protein to Pd, likely to plasma membrane microdomains enriched at Pd As such, the GPI modification serves as a primary Pd sorting signal in plant cells. Interestingly, the ectodomain, a region that carries the functional domain in GPI-APs, in Pd-resident proteins further enhances Pd accumulation. However, in non-Pd GPI-APs, the ectodomain overrides the Pd targeting function of the GPI signal and determines a specific GPI-dependent non-Pd localization of these proteins at the plasma membrane and cell wall. Domain-swap analysis showed that the non-Pd localization is also dominant over the Pd-enhancing function mediated by a Pd ectodomain. In conclusion, our results indicate that segregation between Pd- and non-Pd GPI-APs occurs prior to Pd targeting, providing, to our knowledge, the first evidence of the mechanism of GPI-AP sorting in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glucana Endo-1,3-beta-D-Glucosidase/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Glicoproteínas de Membrana/metabolismo , Plasmodesmos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Parede Celular/metabolismo , Glucana Endo-1,3-beta-D-Glucosidase/genética , Immunoblotting , Proteínas Ligadas a Lipídeos/genética , Proteínas Ligadas a Lipídeos/metabolismo , Glicoproteínas de Membrana/genética , Microdomínios da Membrana/metabolismo , Microscopia Confocal , Modelos Biológicos , Plantas Geneticamente Modificadas , Plasmodesmos/genética , Transporte Proteico/genética
5.
bioRxiv ; 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38260692

RESUMO

For over 60 years, salicylic acid (SA) has been known as a plant immune signal required for both basal and systemic acquired resistance (SAR). SA activates these immune responses by reprogramming up to 20% of the transcriptome through the function of NPR1. However, components in the NPR1-signaling hub, which appears as nuclear condensates, and the NPR1- signaling cascade remained elusive due to difficulties in studying transcriptional cofactors whose chromatin associations are often indirect and transient. To overcome this challenge, we applied TurboID to divulge the NPR1-proxiome, which detected almost all known NPR1-interactors as well as new components of transcription-related complexes. Testing of new components showed that chromatin remodeling and histone demethylation contribute to SA-induced resistance. Globally, NPR1-proxiome shares a striking similarity to GBPL3-proxiome involved in SA synthesis, except associated transcription factors (TFs), suggesting that common regulatory modules are recruited to reprogram specific transcriptomes by transcriptional cofactors, like NPR1, through binding to unique TFs. Stepwise greenCUT&RUN analyses showed that, upon SA-induction, NPR1 initiates the transcriptional cascade primarily through association with TGA TFs to induce expression of secondary TFs, predominantly WRKYs. WRKY54 and WRKY70 then play a major role in inducing immune-output genes without interacting with NPR1 at the chromatin. Moreover, a loss of NPR1 condensate formation decreases its chromatin-association and transcriptional activity, indicating the importance of condensates in organizing the NPR1- signaling hub and initiating the transcriptional cascade. This study demonstrates how combinatorial applications of TurboID and stepwise greenCUT&RUN transcend traditional genetic methods to globally map signaling hubs and transcriptional cascades.

6.
Mol Plant Microbe Interact ; 26(9): 1016-30, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23656331

RESUMO

ß-1,3-Glucanases (BG) have been implicated in enhancing virus spread by degrading callose at plasmodesmata (Pd). Here, we investigate the role of Arabidopsis BG in tobamovirus spread. During Turnip vein clearing virus infection, the transcription of two pathogenesis-related (PR)-BG AtBG2 and AtBG3 increased but that of Pd-associated BG AtBG_pap did not change. In transgenic plants, AtBG2 was retained in the endoplasmic reticulum (ER) network and was not secreted. As a stress response mediated by salicylic acid, AtBG2 was secreted and appeared as a free extracellular protein localized in the entire apoplast but did not accumulate at Pd sites. At the leading edge of Tobacco mosaic virus spread, AtBG2 co-localized with the viral movement protein in the ER-derived bodies, similarly to other ER proteins, but was not secreted to the cell wall. In atbg2 mutants, callose levels at Pd and virus spread were unaffected. Likewise, AtBG2 overexpression had no effect on virus spread. However, in atbg_pap mutants, callose at Pd was increased and virus spread was reduced. Our results demonstrate that the constitutive Pd-associated BG but not the stress-regulated extracellular PR-BG are directly involved in regulation of callose at Pd and cell-to-cell transport in Arabidopsis, including the spread of viruses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Glucana 1,3-beta-Glucosidase/metabolismo , Doenças das Plantas/virologia , Plasmodesmos/enzimologia , Tobamovirus/fisiologia , Animais , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/virologia , Proteínas de Arabidopsis/genética , Transporte Biológico , Retículo Endoplasmático/enzimologia , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glucanos/metabolismo , Interações Hospedeiro-Patógeno , Mutação , Folhas de Planta/citologia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/virologia , Proteínas do Movimento Viral em Plantas/genética , Proteínas do Movimento Viral em Plantas/metabolismo , Plantas Geneticamente Modificadas , Plasmodesmos/virologia , RNA de Plantas/genética , Ácido Salicílico/farmacologia , Nicotiana/citologia , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/virologia , Vírus do Mosaico do Tabaco/fisiologia , Proteínas Virais/genética , Proteínas Virais/metabolismo
7.
Curr Opin Plant Biol ; 73: 102352, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36934653

RESUMO

In the past 30 years, our knowledge of how nonexpressor of pathogenesis-related genes 1 (NPR1) serves as a master regulator of salicylic acid (SA)-mediated immune responses in plants has been informed largely by molecular genetic studies. Despite extensive efforts, the biochemical functions of this protein in promoting plant survival against a wide range of pathogens and abiotic stresses are not completely understood. Recent breakthroughs in cellular and structural analyses of NPR1 and its paralogs have provided a molecular framework for reinterpreting decades of genetic observations and have revealed new functions of these proteins. Besides NPR1's well-known nuclear activity in inducing stress-responsive genes, it has also been shown to control stress protein homeostasis in the cytoplasm. Structurally, NPR4's direct binding to SA has been visualized at the molecular level. Analysis of the cryo-EM and crystal structures of NPR1 reveals a bird-shaped homodimer containing a unique zinc finger. Furthermore, the TGA32-NPR12-TGA32 complex has been imaged, uncovering a dimeric NPR1 bridging two TGA3 transcription factor dimers as part of an enhanceosome complex to induce defense gene expression. These new findings will shape future research directions for deciphering NPR functions in plant immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Transdução de Sinais , Imunidade Vegetal/genética , Núcleo Celular/metabolismo , Plantas/metabolismo , Fatores de Transcrição/metabolismo , Ácido Salicílico/metabolismo , Regulação da Expressão Gênica de Plantas
8.
J Exp Bot ; 61(1): 131-42, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19887501

RESUMO

Arabidopsis class 1 reversibly glycosylated polypeptides (C1RGPs) were shown to be plasmodesmal-associated proteins. Transgenic tobacco (Nicotiana tabacum) plants constitutively expressing GFP tagged AtRGP2 under the control of the CaMV 35S promoter are stunted, have a rosette-like growth pattern, and in source leaves exhibit strong chlorosis, increased photoassimilate retention and starch accumulation that results in elevated leaf specific fresh and dry weights. Basal callose levels around plasmodesmata (Pd) of leaf epidermal cells in transgenic plants are higher than in WT. Such a phenotype is characteristic of virus-infected plants and some transgenic plants expressing Pd-associated viral movement proteins (MP). The local spread of Tobacco mosaic virus (TMV) is inhibited in AtRGP2:GFP transgenics compared to WT. Taken together these observations suggest that overexpression of the AtRGP2:GFP leads to a reduction in Pd permeability to photoassimilate, thus lowering the normal rate of translocation from source leaves to sink organs. Such a reduction may also inhibit the local cell-to-cell spread of viruses in transgenic plants. The observed reduction in Pd permeability could be due to a partial Pd occlusion caused either by the accumulation of AtRGP2:GFP fusion in Pd, and/or by constriction of Pd by the excessive callose accumulation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glicoproteínas/metabolismo , Nicotiana/crescimento & desenvolvimento , Nicotiana/virologia , Plasmodesmos/metabolismo , Vírus do Mosaico do Tabaco/fisiologia , Radioisótopos de Carbono , Clorofila/metabolismo , Flores/fisiologia , Glucanos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Hidroponia , Doenças das Plantas/virologia , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Plantas Geneticamente Modificadas , Amido/metabolismo , Nicotiana/citologia , Nicotiana/genética
9.
Mol Plant ; 10(8): 1026-1034, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28698057

RESUMO

Plants employ sophisticated mechanisms to interact with pathogenic as well as beneficial microbes. Of those, membrane trafficking is key in establishing a rapid and precise response. Upon interaction with pathogenic microbes, surface-localized immune receptors undergo endocytosis for signal transduction and activity regulation while cell wall components, antimicrobial compounds, and defense proteins are delivered to pathogen invasion sites through polarized secretion. To sustain mutualistic associations, host cells also reprogram the membrane trafficking system to accommodate invasive structures of symbiotic microbes. Here, we provide an analysis of recent advances in understanding the roles of secretory and endocytic membrane trafficking pathways in plant immune activation. We also discuss strategies deployed by adapted microbes to manipulate these pathways to subvert or inhibit plant defense.


Assuntos
Membrana Celular/metabolismo , Imunidade Vegetal/fisiologia , Transporte Biológico/genética , Transporte Biológico/fisiologia , Endocitose/genética , Endocitose/fisiologia , Imunidade Vegetal/genética
10.
Methods Mol Biol ; 1217: 105-19, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25287199

RESUMO

Callose (ß-1,3-glucan) is both structural and functional component of plasmodesmata (Pd). The turnover of callose at Pd controls the cell-to-cell diffusion rate of molecules through Pd. An accurate assessment of changes in levels of Pd-associated callose has become a first-choice experimental approach in the research of intercellular communication in plants.Here we describe a detailed and easy-to-perform procedure for imaging and quantification of Pd-associated callose using fixed plant tissue stained with aniline blue. We also introduce an automated image analysis protocol for non-biased quantification of callose levels at Pd from fluorescence images using ImageJ. Two experimental examples of Pd-callose quantification using the automated method are provided as well.


Assuntos
Compostos de Anilina/química , Arabidopsis/ultraestrutura , Parede Celular/ultraestrutura , Glucanos/análise , Nicotiana/ultraestrutura , Folhas de Planta/ultraestrutura , Plasmodesmos/ultraestrutura , Arabidopsis/química , Transporte Biológico , Parede Celular/química , Celulases/química , Fixadores/química , Glucanos/biossíntese , Processamento de Imagem Assistida por Computador/métodos , Microscopia Confocal/métodos , Microtomia , Folhas de Planta/química , Plasmodesmos/química , Software , Fixação de Tecidos , Nicotiana/química
11.
Cell Host Microbe ; 18(2): 169-82, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26269953

RESUMO

NPR1, a master regulator of basal and systemic acquired resistance in plants, confers immunity through a transcriptional cascade, which includes transcription activators (e.g., TGA3) and repressors (e.g., WRKY70), leading to the massive induction of antimicrobial genes. How this single protein orchestrates genome-wide transcriptional reprogramming in response to immune stimulus remains a major question. Paradoxically, while NPR1 is essential for defense gene induction, its turnover appears to be required for this function, suggesting that NPR1 activity and degradation are dynamically regulated. Here we show that sumoylation of NPR1 by SUMO3 activates defense gene expression by switching NPR1's association with the WRKY transcription repressors to TGA transcription activators. Sumoylation also triggers NPR1 degradation, rendering the immune induction transient. SUMO modification of NPR1 is inhibited by phosphorylation at Ser55/Ser59, which keeps NPR1 stable and quiescent. Thus, posttranslational modifications enable dynamic but tight and precise control of plant immune responses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Imunidade Vegetal , Sumoilação , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ligação Proteica , Proteólise , Ubiquitinas/metabolismo
12.
Protoplasma ; 248(1): 117-30, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21116665

RESUMO

The turnover of callose (ß-1,3-glucan) within cell walls is an essential process affecting many developmental, physiological and stress related processes in plants. The deposition and degradation of callose at the neck region of plasmodesmata (Pd) is one of the cellular control mechanisms regulating Pd permeability during both abiotic and biotic stresses. Callose accumulation at Pd is controlled by callose synthases (CalS; EC 2.4.1.34), endogenous enzymes mediating callose synthesis, and by ß-1,3-glucanases (BG; EC 3.2.1.39), hydrolytic enzymes which specifically degrade callose. Transcriptional and posttranslational regulation of some CalSs and BGs are strongly controlled by stress signaling, such as that resulting from pathogen invasion. We review the role of Pd-associated callose in the regulation of intercellular communication during developmental, physiological, and stress response processes. Special emphasis is placed on the involvement of Pd-callose in viral pathogenicity. Callose accumulation at Pd restricts virus movement in both compatible and incompatible interactions, while its degradation promotes pathogen spread. Hence, studies on mechanisms of callose turnover at Pd during viral cell-to-cell spread are of importance for our understanding of host mechanisms exploited by viruses in order to successfully spread within the infected plant.


Assuntos
Glucanos/metabolismo , Plasmodesmos/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica , Glucana 1,3-beta-Glucosidase/fisiologia , Glucosiltransferases/fisiologia , Permeabilidade , Desenvolvimento Vegetal , Fenômenos Fisiológicos Vegetais , Vírus de Plantas/patogenicidade , Plantas/metabolismo , Plantas/virologia , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA