Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 168(1-2): 59-72.e13, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28065413

RESUMO

Chromosomal translocations of the mixed-lineage leukemia (MLL) gene with various partner genes result in aggressive leukemia with dismal outcomes. Despite similar expression at the mRNA level from the wild-type and chimeric MLL alleles, the chimeric protein is more stable. We report that UBE2O functions in regulating the stability of wild-type MLL in response to interleukin-1 signaling. Targeting wild-type MLL degradation impedes MLL leukemia cell proliferation, and it downregulates a specific group of target genes of the MLL chimeras and their oncogenic cofactor, the super elongation complex. Pharmacologically inhibiting this pathway substantially delays progression, and it improves survival of murine leukemia through stabilizing wild-type MLL protein, which displaces the MLL chimera from some of its target genes and, therefore, relieves the cellular oncogenic addiction to MLL chimeras. Stabilization of MLL provides us with a paradigm in the development of therapies for aggressive MLL leukemia and perhaps for other cancers caused by translocations.


Assuntos
Leucemia Aguda Bifenotípica/tratamento farmacológico , Leucemia Aguda Bifenotípica/metabolismo , Proteólise/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Interleucina-1/metabolismo , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína de Leucina Linfoide-Mieloide/metabolismo , Enzimas de Conjugação de Ubiquitina
2.
Nature ; 555(7696): 363-366, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29513654

RESUMO

Sustainably feeding a growing population is a grand challenge, and one that is particularly difficult in regions that are dominated by smallholder farming. Despite local successes, mobilizing vast smallholder communities with science- and evidence-based management practices to simultaneously address production and pollution problems has been infeasible. Here we report the outcome of concerted efforts in engaging millions of Chinese smallholder farmers to adopt enhanced management practices for greater yield and environmental performance. First, we conducted field trials across China's major agroecological zones to develop locally applicable recommendations using a comprehensive decision-support program. Engaging farmers to adopt those recommendations involved the collaboration of a core network of 1,152 researchers with numerous extension agents and agribusiness personnel. From 2005 to 2015, about 20.9 million farmers in 452 counties adopted enhanced management practices in fields with a total of 37.7 million cumulative hectares over the years. Average yields (maize, rice and wheat) increased by 10.8-11.5%, generating a net grain output of 33 million tonnes (Mt). At the same time, application of nitrogen decreased by 14.7-18.1%, saving 1.2 Mt of nitrogen fertilizers. The increased grain output and decreased nitrogen fertilizer use were equivalent to US$12.2 billion. Estimated reactive nitrogen losses averaged 4.5-4.7 kg nitrogen per Megagram (Mg) with the intervention compared to 6.0-6.4 kg nitrogen per Mg without. Greenhouse gas emissions were 328 kg, 812 kg and 434 kg CO2 equivalent per Mg of maize, rice and wheat produced, respectively, compared to 422 kg, 941 kg and 549 kg CO2 equivalent per Mg without the intervention. On the basis of a large-scale survey (8.6 million farmer participants) and scenario analyses, we further demonstrate the potential impacts of implementing the enhanced management practices on China's food security and sustainability outlook.


Assuntos
Agricultura/métodos , Conservação dos Recursos Naturais , Produtos Agrícolas/crescimento & desenvolvimento , Eficiência Organizacional , Fazendeiros , China , Técnicas de Apoio para a Decisão , Grão Comestível/crescimento & desenvolvimento , Política Ambiental , Fertilizantes/estatística & dados numéricos , Abastecimento de Alimentos/métodos , Efeito Estufa , Nitrogênio/metabolismo , Oryza/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento
3.
Blood ; 137(5): 610-623, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33538795

RESUMO

This study was conducted to determine the dosage effect of c-Myc on hematopoiesis and its distinct role in mediating the Wnt/ß-catenin pathway in hematopoietic stem cell (HSC) and bone marrow niche cells. c-Myc haploinsufficiency led to ineffective hematopoiesis by inhibiting HSC self-renewal and quiescence and by promoting apoptosis. We have identified Nr4a1, Nr4a2, and Jmjd3, which are critical for the maintenance of HSC functions, as previously unrecognized downstream targets of c-Myc in HSCs. c-Myc directly binds to the promoter regions of Nr4a1, Nr4a2, and Jmjd3 and regulates their expression. Our results revealed that Nr4a1 and Nr4a2 mediates the function of c-Myc in regulating HSC quiescence, whereas all 3 genes contribute to the function of c-Myc in the maintenance of HSC survival. Adenomatous polyposis coli (Apc) is a negative regulator of the Wnt/ß-catenin pathway. We have provided the first evidence that Apc haploinsufficiency induces a blockage of erythroid lineage differentiation through promoting secretion of IL6 in bone marrow endothelial cells. We found that c-Myc haploinsufficiency failed to rescue defective function of Apc-deficient HSCs in vivo but it was sufficient to prevent the development of severe anemia in Apc-heterozygous mice and to significantly prolong the survival of those mice. Furthermore, we showed that c-Myc-mediated Apc loss induced IL6 secretion in endothelial cells, and c-Myc haploinsufficiency reversed the negative effect of Apc-deficient endothelial cells on erythroid cell differentiation. Our studies indicate that c-Myc has a context-dependent role in mediating the function of Apc in hematopoiesis.


Assuntos
Genes myc , Hematopoese/fisiologia , Proteínas Proto-Oncogênicas c-myb/fisiologia , Proteína da Polipose Adenomatosa do Colo/fisiologia , Anemia/genética , Anemia/prevenção & controle , Animais , Apoptose/fisiologia , Transplante de Medula Óssea , Autorrenovação Celular/fisiologia , Ensaio de Unidades Formadoras de Colônias , Células Endoteliais/patologia , Células Eritroides/patologia , Deleção de Genes , Genes APC , Haploinsuficiência , Hematopoese/genética , Células-Tronco Hematopoéticas , Interleucina-6/fisiologia , Histona Desmetilases com o Domínio Jumonji/fisiologia , Camundongos Mutantes , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/fisiologia , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/fisiologia , Poli I-C/farmacologia , Quimera por Radiação , Via de Sinalização Wnt/fisiologia
4.
Cell Mol Life Sci ; 79(7): 363, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705880

RESUMO

The ten-eleven translocation (TET) family of dioxygenases consists of three members, TET1, TET2, and TET3. All three TET enzymes have Fe+2 and α-ketoglutarate (α-KG)-dependent dioxygenase activities, catalyzing the 1st step of DNA demethylation by converting 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), and further oxidize 5hmC to 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Gene knockout studies demonstrated that all three TET proteins are involved in the regulation of fetal organ generation during embryonic development and normal tissue generation postnatally. TET proteins play such roles by regulating the expression of key differentiation and fate-determining genes via (1) enzymatic activity-dependent DNA methylation of the promoters and enhancers of target genes; and (2) enzymatic activity-independent regulation of histone modification. Interacting partner proteins and post-translational regulatory mechanisms regulate the activities of TET proteins. Mutations and dysregulation of TET proteins are involved in the pathogenesis of human diseases, specifically cancers. Here, we summarize the research on the interaction partners and post-translational modifications of TET proteins. We also discuss the molecular mechanisms by which these partner proteins and modifications regulate TET functioning and target gene expression. Such information will help in the design of medications useful for targeted therapy of TET-mutant-related diseases.


Assuntos
Dioxigenases , Proteínas Proto-Oncogênicas , 5-Metilcitosina/metabolismo , Citosina/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Humanos , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
5.
Nucleic Acids Res ; 49(17): 9783-9798, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34450641

RESUMO

The activity of hematopoietic factor GATA-1 is modulated through p300/CBP-mediated acetylation and FOG-1 mediated indirect interaction with HDAC1/2 containing NuRD complex. Although GATA-1 acetylation is implicated in GATA-1 activation, the role of deacetylation is not studied. Here, we found that the FOG-1/NuRD does not deacetylate GATA-1. However, HDAC1/2 can directly bind and deacetylate GATA-1. Two arginine residues within the GATA-1 linker region mediates direct interaction with HDAC1. The arginine to alanine mutation (2RA) blocks GATA-1 deacetylation and fails to induce erythroid differentiation. Gene expression profiling and ChIP-seq analysis further demonstrate the importance of GATA-1 deacetylation for gene activation and chromatin recruitment. GATA-12RA knock-in (KI) mice suffer mild anemia and thrombocytopenia with accumulation of immature erythrocytes and megakaryocytes in bone marrow and spleen. Single cell RNA-seq analysis of Lin- cKit+ (LK) cells further reveal a profound change in cell subpopulations and signature gene expression patterns in HSC, myeloid progenitors, and erythroid/megakaryocyte clusters in KI mice. Thus, GATA-1 deacetylation and its interaction with HDAC1 modulates GATA-1 chromatin binding and transcriptional activity that control erythroid/megakaryocyte commitment and differentiation.


Assuntos
Cromatina/metabolismo , Fator de Transcrição GATA1/metabolismo , Hematopoese/genética , Histona Desacetilase 1/metabolismo , Transcrição Gênica , Anemia/genética , Animais , Sítios de Ligação , Células Eritroides/citologia , Células Eritroides/metabolismo , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/fisiologia , Regulação da Expressão Gênica , Técnicas de Introdução de Genes , Histona Desacetilase 1/fisiologia , Megacariócitos/citologia , Megacariócitos/metabolismo , Camundongos , Trombocitopenia/genética
6.
Br J Cancer ; 127(2): 223-236, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35422078

RESUMO

INTRODUCTION: Splice modulators have been assessed clinically in treating haematologic malignancies exhibiting splice factor mutations and acute myeloid leukaemia. However, the mechanisms by which such modulators repress leukaemia remain to be elucidated. OBJECTIVES: The primary goal of this assessment was to assess the molecular mechanism by which the natural splice modulator GEX1A kills leukaemic cells in vitro and within in vivo mouse models. METHODS: Using human leukaemic cell lines, we assessed the overall sensitivity these cells have to GEX1A via EC50 analysis. We subsequently analysed its effects using in vivo xenograft mouse models and examined whether cell sensitivities were correlated to genetic characteristics or protein expression levels. We also utilised RT-PCR and RNAseq analyses to determine splice change and RNA expression level differences between sensitive and resistant leukaemic cell lines. RESULTS: We found that, in vitro, GEX1A induced an MCL-1 isoform shift to pro-apoptotic MCL-1S in all leukaemic cell types, though sensitivity to GEX1A-induced apoptosis was negatively associated with BCL-xL expression. In BCL-2-expressing leukaemic cells, GEX1A induced BCL-2-dependent apoptosis by converting pro-survival BCL-2 into a cell killer. Thus, GEX1A + selective BCL-xL inhibition induced synergism in killing leukaemic cells, while GEX1A + BCL-2 inhibition showed antagonism in BCL-2-expressing leukaemic cells. In addition, GEX1A sensitised FLT3-ITD+ leukaemic cells to apoptosis by inducing aberrant splicing and repressing the expression of FLT3-ITD. Consistently, in in vivo xenografts, GEX1A killed the bulk of leukaemic cells via apoptosis when combined with BCL-xL inhibition. Furthermore, GEX1A repressed leukaemia development by targeting leukaemia stem cells through inhibiting FASTK mitochondrial isoform expression across sensitive and non-sensitive leukaemia types. CONCLUSION: Our study suggests that GEX1A is a potent anti-leukaemic agent in combination with BCL-xL inhibitors, which targets leukaemic blasts and leukaemia stem cells through distinct mechanisms.


Assuntos
Álcoois Graxos/farmacologia , Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas c-bcl-2 , Piranos/farmacologia , Animais , Apoptose , Linhagem Celular Tumoral , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Mutação , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína bcl-X/genética
7.
Biochem Biophys Res Commun ; 596: 36-42, 2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-35108652

RESUMO

Both MLL-AF9 and MLL-ENL leukemia fusion proteins drive oncogenic transformation of hematopoietic cells through their N-terminal DNA/histone binding mixed-lineage leukemia 1 domain and C-terminal fragment of AF9 or ENL containing an unstructured linker region and the ANC1 homology domain, which recruits transcription factors. Despite of their structural similarity, acute myeloid leukemia (AML) patients bearing MLL-ENL show more adverse outcomes compared to those with MLL-AF9. We recapitulated the clinical patterns of these two MLL-fusions driven AMLs using murine models and found that MLL-ENL AML cells showed slower cell cycle progression and more resistance to standard chemotherapy than MLL-AF9 cells. These phenotypes were primarily controlled by the linker regions of ENL and a highly conserved lysine residue K469 within. Substitution of K469 with an acetylated mimic glutamine abolished the ability of MLL-ENL to suppress proliferation and promote chemo-resistance. We showed that deacetylase Sirt2 might act as an upstream regulator of MLL-ENL. Deletion of Sirt2 promoted proliferation of AML cells with either MLL fusions. Importantly, loss of Sirt2 greatly enhanced the sensitivity of the MLL-ENL AML cells to chemo-treatment. Taken together, our study uncovered a unique regulatory role of Sirt2 in leukemogenesis and suggested targeting SIRT2 as a new way to sensitize MLL-ENL AML patience for chemotherapy.


Assuntos
Proliferação de Células/genética , Regulação Leucêmica da Expressão Gênica/genética , Leucemia Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Fusão Oncogênica/genética , Sirtuína 2/genética , Doença Aguda , Sequência de Aminoácidos , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Citarabina/administração & dosagem , Doxorrubicina/administração & dosagem , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Estimativa de Kaplan-Meier , Leucemia Mieloide/tratamento farmacológico , Leucemia Mieloide/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Homologia de Sequência de Aminoácidos , Sirtuína 2/metabolismo , Células Tumorais Cultivadas
8.
BMC Plant Biol ; 22(1): 602, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539687

RESUMO

BACKGROUND: Soil salt stress is a problem in the world, which turns into one of the main limiting factors hindering maize production. Salinity significantly affects root physiological processes in maize plants. There are few studies, however, that analyses the response of maize to salt stress in terms of the development of root anatomy and respiration. RESULTS: We found that the leaf relative water content, photosynthetic characteristics, and catalase activity exhibited a significantly decrease of salt stress treatments. However, salt stress treatments caused the superoxide dismutase activity, peroxidase activity, malondialdehyde content, Na+ uptake and translocation rate to be higher than that of control treatments. The detrimental effect of salt stress on YY7 variety was more pronounced than that of JNY658. Under salt stress, the number of root cortical aerenchyma in salt-tolerant JNY658 plants was significantly higher than that of control, as well as a larger cortical cell size and a lower root cortical cell file number, all of which help to maintain higher biomass. The total respiration rate of two varieties exposed to salt stress was lower than that of control treatment, while the alternate oxidative respiration rate was higher, and the root response of JNY658 plants was significant. Under salt stress, the roots net Na+ and K+ efflux rates of two varieties were higher than those of the control treatment, where the strength of net Na+ efflux rate from the roots of JNY658 plants and the net K+ efflux rate from roots of YY7 plants was remarkable. The increase in efflux rates reduced the Na+ toxicity of the root and helped to maintain its ion balance. CONCLUSION: These results demonstrated that salt-tolerant maize varieties incur a relatively low metabolic cost required to establish a higher root cortical aerenchyma, larger cortical cell size and lower root cortical cell file number, significantly reduced the total respiration rate, and that it also increased the alternate oxidative respiration rate, thereby counteracting the detrimental effect of oxidative damage on root respiration of root growth. In addition, Na+ uptake on the root surface decreased, the translocation of Na+ to the rest of the plant was constrained and the level of Na+ accumulation in leaves significantly reduced under salt stress, thus preempting salt-stress induced impediments to the formation of shoot biomass.


Assuntos
Antioxidantes , Zea mays , Antioxidantes/metabolismo , Zea mays/metabolismo , Estresse Oxidativo , Plantas Tolerantes a Sal/metabolismo , Estresse Salino , Respiração , Raízes de Plantas/metabolismo
9.
Blood ; 135(14): 1133-1145, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32040550

RESUMO

c-Myc (Myc hereafter) is found to be deregulated and/or amplified in most acute myeloid leukemias (AMLs). Almost all AML cells are dependent upon Myc for their proliferation and survival. Thus, Myc has been proposed as a critical anti-AML target. Myc has Max-mediated transactivational and Myc-interacting zinc finger protein 1 (Miz1)-mediated transrepressional activities. The role of Myc-Max-mediated transactivation in the pathogenesis of AML has been well studied; however, the role of Myc-Miz1-mediated transrepression in AML is still somewhat obscure. Myc protein harboring a V394D mutation (MycV394D) is a mutant form of Myc that lacks transrepressional activity due to a defect in its ability to interact with Miz1. We found that, compared with Myc, the oncogenic function of MycV394D is significantly impaired. The AML/myeloproliferative disorder that develops in mice receiving MycV394D-transduced hematopoietic stem/progenitor cells (HSPCs) is significantly delayed compared with mice receiving Myc-transduced HSPCs. Using a murine MLL-AF9 AML model, we found that AML cells expressing MycV394D (intrinsic Myc deleted) are partially differentiated and show reductions in both colony-forming ability in vitro and leukemogenic capacity in vivo. The reduced frequency of leukemia stem cells (LSCs) among MycV394D-AML cells and their reduced leukemogenic capacity during serial transplantation suggest that Myc-Miz1 interaction is required for the self-renewal of LSCs. In addition, we found that MycV394D-AML cells are more sensitive to chemotherapy than are Myc-AML cells. Mechanistically, we found that Myc represses Miz1-mediated expression of CCAAT/enhancer-binding protein α (Cebpα) and Cebpδ, thus playing an important role in the pathogenesis of AML by maintaining the undifferentiated state and self-renewal capacity of LSCs.


Assuntos
Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Autorrenovação Celular , Feminino , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos Endogâmicos C57BL , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/patologia , Mutação Puntual , Proteínas Proto-Oncogênicas c-myc/genética , Transdução de Sinais
10.
Ann Hematol ; 101(7): 1407-1420, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35585246

RESUMO

Our understanding of MM genomics has expanded rapidly in the past 5-10 years as a consequence of cytogenetic analyses obtained in routine clinical practice as well as the ability to perform whole-exome/genome sequencing and gene expression profiling on large patient data sets. This knowledge has offered new insights into disease biology and is increasingly defining high-risk genomic patterns. In this manuscript, we present a thorough review of our current knowledge of MM genomics. The epidemiology and biology of chromosomal abnormalities including both copy number abnormalities and chromosomal translocation are described in full with a focus on those most clinically impactful such as 1q amplification and del(17p) as well as certain chromosome 14 translocations. A review of our ever-expanding knowledge of genetic mutations derived from recent whole-genome/exome data sets is then reviewed including those that drive disease pathogenesis from precursor states as well as those that may impact clinical outcomes. We then transition and attempt to elucidate how both chromosomal abnormalities and gene mutations are evolving our understanding of disease risk. We conclude by offering our perspectives moving forward as to how we might apply whole-genome/exome-level data in addition to routine cytogenetic analyses to improve patient outcomes as well as further knowledge gaps that must be addressed.


Assuntos
Mieloma Múltiplo , Aberrações Cromossômicas , Análise Citogenética , Genômica , Humanos , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Translocação Genética
11.
Cell Mol Life Sci ; 78(23): 7199-7217, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34654937

RESUMO

RIPK3 (receptor-interacting protein kinase 3) is a serine/threonine-protein kinase. As a key component of necrosomes, RIPK3 is an essential mediator of inflammatory factors (such as TNFα-tumor necrosis factor α) and infection-induced necroptosis, a programmed necrosis. In addition, RIPK3 signaling is also involved in the regulation of apoptosis, cytokine/chemokine production, mitochondrial metabolism, autophagy, and cell proliferation by interacting with and/or phosphorylating the critical regulators of the corresponding signaling pathways. Similar to apoptosis, RIPK3-signaling-mediated necroptosis is inactivated in most types of cancers, suggesting RIPK3 might play a critical suppressive role in the pathogenesis of cancers. However, in some inflammatory types of cancers, such as pancreatic cancers and colorectal cancers, RIPK3 signaling might promote cancer development by stimulating proliferation signaling in tumor cells and inducing an immunosuppressive response in the tumor environment. In this review, we summarize recent research progress in the regulators of RIPK3 signaling, and discuss the function of this pathway in the regulation of mixed lineage kinase domain-like (MLKL)-mediated necroptosis and MLKL-independent cellular behaviors. In addition, we deliberate the potential roles of RIPK3 signaling in the pathogenesis of different types of cancers and discuss the potential strategies for targeting this pathway in cancer therapy.


Assuntos
Proliferação de Células/fisiologia , Necroptose/fisiologia , Neoplasias/patologia , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Apoptose/fisiologia , Autofagia/fisiologia , Quimiocinas/biossíntese , Humanos , Mitocôndrias/metabolismo , Neoplasias/terapia , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais/fisiologia
12.
BMC Plant Biol ; 20(1): 44, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31996151

RESUMO

BACKGROUND: Exogenous 6-benzyladenine (6-BA) could improve leaf defense system activity. In order to better understand the regulation mechanism of exogenous 6-benzyladenine (6-BA) on waterlogged summer maize, three treatments including control (CK), waterlogging at the third leaf stage for 6 days (V3-6), and application of 100 mg dm- 3 6-BA after waterlogging for 6 days (V3-6-B), were employed using summer maize hybrid DengHai 605 (DH605) as the experimental material. We used a labeling liquid chromatography-based quantitative proteomics approach with tandem mass tags to determine the changes in leaf protein abundance level at the tasseling stage. RESULTS: Waterlogging significantly hindered plant growth and decreased the activities of SOD, POD and CAT. In addition, the activity of LOX was significantly increased after waterlogging. As a result, the content of MDA and H2O2 was significantly increased which incurred serious damages on cell membrane and cellular metabolism of summer maize. And, the leaf emergence rate, plant height and grain yield were significantly decreased by waterlogging. However, application of 6-BA effectively mitigated these adverse effects induced by waterlogging. Compared with V3-6, SOD, POD and CAT activity of V3-6-B were increased by 6.9, 12.4, and 18.5%, LOX were decreased by 13.6%. As a consequence, the contents of MDA and H2O2 in V3-6-B were decreased by 22.1 and 17.2%, respectively, compared to that of V3-6. In addition, the leaf emergence rate, plant height and grain yield were significantly increased by application of 6-BA. Based on proteomics profiling, the proteins involved in protein metabolism, ROS scavenging and fatty acid metabolism were significantly regulated by 6-BA, which suggested that application of 6-BA exaggerated the defensive response of summer maize at proteomic level. CONCLUSIONS: These results demonstrated that 6-BA had contrastive effects on waterlogged summer maize. By regulating key proteins related to ROS scavenging and fatty acid metabolism, 6-BA effectively increased the defense system activity of waterlogged summer maize, then balanced the protein metabolism and improved the plant physiological traits and grain yield.


Assuntos
Antioxidantes/metabolismo , Compostos de Benzil/farmacologia , Imunidade Vegetal/efeitos dos fármacos , Purinas/farmacologia , Zea mays/metabolismo , Catalase/efeitos dos fármacos , Catalase/genética , Catalase/metabolismo , Ontologia Genética , Peróxido de Hidrogênio/metabolismo , Lipoxigenase/efeitos dos fármacos , Lipoxigenase/genética , Lipoxigenase/metabolismo , Peroxidase/efeitos dos fármacos , Peroxidase/genética , Peroxidase/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/efeitos dos fármacos , Proteômica , Superóxido Dismutase/efeitos dos fármacos , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Água
13.
BMC Plant Biol ; 20(1): 60, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024458

RESUMO

BACKGROUND: Shade stress, a universal abiotic stress, suppresses plant growth and production seriously. However, little is known regarding the protein regulatory networks under shade stress. To better characterize the proteomic changes of maize leaves under shade stress, 60% shade (S) and supplementary lighting (L) on cloudy daylight from tasseling stage to physiological maturity stage were designed, the ambient sunlight treatment was used as control (CK). Isobaric tag for relative and absolute quantification (iTRAQ) technology was used to determine the proteome profiles in leaves. RESULTS: Shading significantly decreased the SPAD value, net photosynthetic rate, and grain yield. During two experimental years, grain yields of S were reduced by 48 and 47%, and L increased by 6 and 11%, compared to CK. In total, 3958 proteins were identified by iTRAQ, and 2745 proteins were quantified including 349 proteins showed at least 1.2-fold changes in expression levels between treatments and CK. The differentially expressed proteins were classified into photosynthesis, stress defense, energy production, signal transduction, and protein and amino acid metabolism using the Web Gene Ontology Annotation Plot online tool. In addition, these proteins showed significant enrichment of the chloroplasts (58%) and cytosol (21%) for subcellular localization. CONCLUSIONS: 60% shade induced the expression of proteins involved in photosynthetic electron transport chain (especially light-harvesting complex) and stress/defense/detoxification. However, the proteins related to calvin cycle, starch and sucrose metabolisms, glycolysis, TCA cycle, and ribosome and protein synthesis were dramatically depressed. Together, our results might help to provide a valuable resource for protein function analysis and also clarify the proteomic and physiological mechanism of maize underlying shade stress.


Assuntos
Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Zea mays/fisiologia , Iluminação , Folhas de Planta/metabolismo , Estresse Fisiológico
14.
Nature ; 514(7523): 486-9, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25186728

RESUMO

Agriculture faces great challenges to ensure global food security by increasing yields while reducing environmental costs. Here we address this challenge by conducting a total of 153 site-year field experiments covering the main agro-ecological areas for rice, wheat and maize production in China. A set of integrated soil-crop system management practices based on a modern understanding of crop ecophysiology and soil biogeochemistry increases average yields for rice, wheat and maize from 7.2 million grams per hectare (Mg ha(-1)), 7.2 Mg ha(-1) and 10.5 Mg ha(-1) to 8.5 Mg ha(-1), 8.9 Mg ha(-1) and 14.2 Mg ha(-1), respectively, without any increase in nitrogen fertilizer. Model simulation and life-cycle assessment show that reactive nitrogen losses and greenhouse gas emissions are reduced substantially by integrated soil-crop system management. If farmers in China could achieve average grain yields equivalent to 80% of this treatment by 2030, over the same planting area as in 2012, total production of rice, wheat and maize in China would be more than enough to meet the demand for direct human consumption and a substantially increased demand for animal feed, while decreasing the environmental costs of intensive agriculture.


Assuntos
Agricultura/métodos , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/provisão & distribuição , Meio Ambiente , Ração Animal , China , Fertilizantes/estatística & dados numéricos , Efeito Estufa/estatística & dados numéricos , Nitrogênio/metabolismo
15.
Ecotoxicol Environ Saf ; 187: 109849, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31677571

RESUMO

Harmonia axyridis is an important predator of several pest species and is part of many Integrated Pest Management (IPM) programs. To assess the risks of pesticide application to H. axyridis, we studied the effects of sulfoxaflor on H. axyridis larvae. At 72 h after treatment, the acute toxicity LR50 was 311.9476 g a. i. ha-1 by the residual contact method. This result indicated low-contact toxicity against second-instar H. axyridis larvae. The LR50 of the F1 generation decreased from 69.96 to 36.41 g a. i. ha-1 in a long-term toxicity test. The daily hazard quotient (HQ) for H. axyridis larvae lowered the safety threshold value in the first 5 d. However, the HQ values were greater than 2 during days 6-18 after sulfoxaflor treatments. We determined the No Observed Effect Application Rates of sulfoxaflor on the survival (<11.25 g a. i. ha-1), duration of larval and pupal stages (45 g a. i. ha-1), adult stage (90 g a. i. ha-1), total pre-oviposition period, adult pre-oviposition period (45 g a. i. ha-1), and reproduction (11.25 g a. i. ha-1). Pupation, adult emergence, and eggs counts of H. axyridis were reduced after sulfoxaflor treatments. The predation ability and population demography parameters were significantly impaired by higher application rates. At 90 g a. i. ha-1 or less, sulfoxaflor was slightly harmful to H. axyridis but a rate of 180 g a. i. ha-1 was moderately harmful. These results demonstrated that sulfoxaflor is harmful to H. axyridis when applied at high application rates.


Assuntos
Besouros/efeitos dos fármacos , Larva/efeitos dos fármacos , Resíduos de Praguicidas/toxicidade , Pupa/efeitos dos fármacos , Piridinas/toxicidade , Compostos de Enxofre/toxicidade , Animais , Besouros/fisiologia , Relação Dose-Resposta a Droga , Feminino , Larva/fisiologia , Dose Letal Mediana , Controle de Pragas , Comportamento Predatório/efeitos dos fármacos , Pupa/fisiologia , Reprodução/efeitos dos fármacos , Testes de Toxicidade
16.
Ecotoxicol Environ Saf ; 188: 109880, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31711777

RESUMO

An increase in the area treated with the fungicide thifluzamide has triggered concerns for soil ecosystem service providers such as earthworms. Here, we assessed effects of thifluzamide on earthworm (Eisenia fetida) biomarker indicators of stress responses and reproduction following exposure to 0, 0.1, 1.0, and 10.0 mg of thifluzamide kg-1 soil for 7, 14, 21, and 28 d (biomarker indicators) and 30 d (reproduction). Growth and reproduction were inhibited by exposure to thifluzamide at 10.0 mg/kg, and the activities of succinate dehydrogenase (SDH) and respiratory chain complex II were inhibited by exposure to 1.0 and 10.0 mg/kg thifluzamide for the majority of the 28-d experiment. Reactive oxygen species (ROS) increased across all thifluzamide treatments, and the activities of superoxide dismutase (SOD) and glutathione-S-transferase (GST) tended to be inhibited by thifluzamide. Upon exposure to thifluzamide, the activities of catalase (CAT) and guaiacol peroxidase (POD) initially increased and then decreased. Increased levels of malondialdehyde (MDA) were detected only at seven days after exposure, and genotoxicity increased as the thifluzamide concentration increased. The results suggest that thifluzamide presents a potential risk to earthworms at the concentration of 10.0 mg/kg, and its use should be moderated to reduce damage to soil ecosystem function.


Assuntos
Anilidas/toxicidade , Oligoquetos/efeitos dos fármacos , Praguicidas/toxicidade , Poluentes do Solo/toxicidade , Tiazóis/toxicidade , Anilidas/análise , Animais , Antioxidantes/metabolismo , Dano ao DNA , Biomarcadores Ambientais/efeitos dos fármacos , Oligoquetos/crescimento & desenvolvimento , Oligoquetos/metabolismo , Oligoquetos/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Praguicidas/análise , Reprodução/efeitos dos fármacos , Poluentes do Solo/análise , Tiazóis/análise
17.
Adv Exp Med Biol ; 1143: 95-128, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31338817

RESUMO

Despite the significant progress that has been made in understanding the biology of leukemia stem cells (LSCs), some key questions regarding the concept of LSCs have not as yet been satisfactorily addressed experimentally. As a result, the clinical relevance of LSCs remains less than clear due to controversies caused largely by technical limitations in efficiently identifying LSCs. This has impeded our ability to fully address the features of genetic heterogeneity and metabolic/epigenetic plasticity of pre-LSCs and LSCs. With the development and use of humanized immunocompromised mice, we are able to more precisely analyze LSCs for their functions and interaction with the bone marrow niche. In addition, some promising targets in LSCs have recently been identified, including Sonic Hedgehog (SHH) and BCL-2, which are highly expressed in AML cells. It is hopeful that new anti-LSC compounds will be tested fully in clinical trials for their efficacy in treating human leukemias.


Assuntos
Leucemia Mieloide Aguda , Células-Tronco Neoplásicas , Animais , Medula Óssea/fisiopatologia , Progressão da Doença , Proteínas Hedgehog/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/fisiopatologia , Camundongos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
18.
Ecotoxicol Environ Saf ; 164: 665-674, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30170315

RESUMO

Harmonia axyridis is an important biological control predator in greenhouses and agricultural fields, and it plays a significant role in the integrated pest management (IPM) of several arthropod pests. We studied the effects of eight insect growth-regulator insecticides (IGRs) on immature stages of H. axyridis by residual toxicity (eggs and pupae) and contact toxicity (larvae) to evaluate the risk of using these IGRs in IPM systems. Diflubenzuron, hexaflumuron and lufenuron caused more than 80% mortality to H. axyridis eggs, larvae and pupae, respectively. Pyriproxyfen was also highly harmful to larvae and pupae of H. axyridis. In contrast, methoxyfenozide and buprofezin caused little mortality and were classified as slightly harmful to immature stages based on a reduction coefficient. In addition to mortality and developmental time, the fecundity, fertility and deformed eggs of offspring were affected, when the predators were exposed to IGRs. Benzoylphenylurea insecticides significantly reduced H. axyridis female fecundity and fertility and increased the number of deformed eggs. The adverse effects are closely connected with the developmental stages of the predators and types and methods of insecticides exposed. All IGRs affected, to some extent, the life-table parameters of H. axyridis when the insecticides applied on immature stages at the highest field rates. Tebufenozide, diflubenzuron, hexaflumuron and lufenuron significantly reduced the Ro, T, r and λ of beetles exposed to the insecticides. The results indicate that IGRs could disturb the population growth and biocontrol activities of H. axyridis when applied at the highest field label rates. Additional studies should be conducted to assess the effects of IGRs on H. axyridis under field conditions before incorporating them in IPM strategies.


Assuntos
Agentes de Controle Biológico , Besouros/efeitos dos fármacos , Inseticidas/toxicidade , Hormônios Juvenis/toxicidade , Animais , Diflubenzuron/toxicidade , Feminino , Hidrazinas/toxicidade , Larva/efeitos dos fármacos , Masculino , Controle de Pragas , Pupa/efeitos dos fármacos , Tiadiazinas/toxicidade , Testes de Toxicidade Aguda , Testes de Toxicidade Crônica
19.
Int J Biometeorol ; 62(12): 2131-2138, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30244320

RESUMO

Low light is a type of abiotic stress that seriously affects plant growth and production efficiency. We investigated the response mechanisms of summer maize to low light by measuring the changes in endogenous hormones in the grains and during grain filling in summer maize at different light intensities to provide a theoretical basis for the production and management of summer maize under light stress. We applied different light treatments in a field experiment as follows: S, shading from tassel stage (VT) to maturity stage (R6); CK, natural lighting in the field; and L, increasing light from VT to R6. The shading level was 60%, and the maximum illumination intensity of the increasing light treatment on cloudy days was 1600-1800 µmol m-2 s-1. Compared with the control, shading significantly increased the grain abscisic acid (ABA) content at 5-20 days after pollination and decreased the indole acetic acid (IAA), zeatin riboside (ZR), and gibberellin (GA) contents (P < 0.05). The grain-filling rate decreased under shading conditions. Meanwhile, the grain volume, grain weight, and yield all decreased; the yields in 2013 and 2014 decreased by 61 and 60%, respectively. The grain IAA, ZR, and GA contents were increased by increasing light. The grain ABA content at 5-20 days after pollination did not significantly differ from that of CK (P < 0.05). After 20 days after pollination, the ABA content decreased, the grain-filling rate and the filling duration increased, and the yield increased. However, shading after anthesis increased the grain ABA content and reduced the IAA, ZR, and GA contents. Grain growth and development were inhibited, and the yield decreased. The grain ABA content decreased; the IAA, ZR, and GA contents increased; and the yield increased after increasing light. The results indicate that different light intensities regulated the levels of grains endogenous hormones, which influenced the grain-filling rate and duration, and consequently, regulated grain weight and yield.


Assuntos
Grão Comestível/efeitos da radiação , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Isopenteniladenosina/análogos & derivados , Luz , Reguladores de Crescimento de Plantas/metabolismo , Zea mays/efeitos da radiação , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Isopenteniladenosina/metabolismo , Estações do Ano , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
20.
Sensors (Basel) ; 18(7)2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29976897

RESUMO

Blade tip timing (BTT) technology is considered the most promising method for blade vibration measurements due to the advantages of its simplicity and non-contact measurement capacity. Nevertheless, BTT technology still suffers from two problems, which are (1) the requirements of domain expertise and prior knowledge of BTT signals analysis due to severe under-sampling; and (2) that the traditional BTT method can only judge whether there is a defect in the blade but it cannot judge the severity and the location of the defect. Thus, how to overcome the above drawbacks has become a big challenge. Aiming at under-sampled BTT signals, a feature learning method using a convolutional neural network (CNN) is introduced. In this way, some new fault-sensitive features can be adaptively learned from raw under-sampled data and it is therefore no longer necessary to rely on prior knowledge. At the same time, research has found that tip clearance (TC) is also very sensitive to the blade state, especially regarding defect severity and location. A novel analysis method fusing TC and BTT signals is proposed in this paper. The goal of this approach is to integrate tip clearance information with tip timing information for blade fault detection. The method consists of four key steps: First, we extract the TC and BTT signals from raw pulse data; second, TC statistical features and BTT deep learning features will be extracted and fused using the kernel principal component analysis (KPCA) method; then, model training and selection are carried out; and finally, 16 sets of experiments are carried out to validate the feasibility of the proposed method and the classification accuracy achieves 95%, which is far higher than the traditional diagnostic method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA