Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Compr Rev Food Sci Food Saf ; 23(3): e13339, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578165

RESUMO

The importance of food quality and safety lies in ensuring the best product quality to meet consumer demands and public health. Advanced technologies play a crucial role in minimizing the risk of foodborne illnesses, contamination, drug residue, and other potential hazards in food. Significant materials and technological advancements have been made throughout the food supply chain. Among them, quantum dots (QDs), as a class of advanced nanomaterials with unique physicochemical properties, are progressively demonstrating their value in the field of food quality and safety. This review aims to explore cutting-edge research on the different applications of QDs in food quality and safety, including encapsulation of bioactive compounds, detection of food analytes, food preservation and packaging, and intelligent food freshness indicators. Moreover, the modification strategies and potential toxicities of diverse QDs are outlined, which can affect performance and hinder applications in the food industry. The findings suggested that QDs are mainly used in analyte detection and active/intelligent food packaging. Various food analytes can be detected using QD-based sensors, including heavy metal ions, pesticides, antibiotics, microorganisms, additives, and functional components. Moreover, QD incorporation aided in improving the antibacterial and antioxidant activities of film/coatings, resulting in extended shelf life for packaged food. Finally, the perspectives and critical challenges for the productivity, toxicity, and practical application of QDs are also summarized. By consolidating these essential aspects into this review, the way for developing high-performance QD-based nanomaterials is presented for researchers and food technologists to better capitalize upon this technology in food applications.


Assuntos
Pontos Quânticos , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Embalagem de Alimentos/métodos , Qualidade dos Alimentos , Pontos Quânticos/toxicidade
2.
Analyst ; 148(4): 912-918, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36692060

RESUMO

The development of effective methods for tracking cancer cells is of significant importance in the early diagnosis and treatment of tumor diseases. Compared with the developed techniques, the electrochemical assay has shown considerable potential for monitoring glycan expression on the cell surface using nondestructive means. However, the application expansion of the electrochemical strategy is strongly impeded owing to its dependence on electroactive species. In this study, a competitive electrochemical strategy was reported for monitoring cancer cells based on mannose (a typical glycan) as a clinical biomarker. Herein, functionalized carbon nanotubes were used to load the thiomannosyl dimer, and thionine-interlinking signal probes were designed for competitive recognition. After effective competition between cancer cells and the anchored mannose, a decreased current was obtained as the cell concentration increased. Under optimal conditions, the proposed biosensor exhibited attractive performance for cancer cell analysis with a detection limit as low as 20 cells per mL for QGY-7701 and 35 cells per mL for QGY-7703, facilitating great promise for the sensitive detection of cancer cells and thus showing potential applications in cancer diagnosis.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono , Neoplasias , Técnicas Eletroquímicas/métodos , Manose , Polissacarídeos , Técnicas Biossensoriais/métodos , Limite de Detecção , Ouro , Neoplasias/diagnóstico , Neoplasias/patologia
3.
J Sci Food Agric ; 103(9): 4545-4552, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36840508

RESUMO

BACKGROUND: The presence of foreign materials (FM) not only reduces the commercial value of tobacco and the quality of cigarette products, but also affects the aroma and flavor of cigarettes. Existing tobacco deblending equipment has received little study with respect to homochromatic FM. In the present study, visible-near infrared (VIS-NIR) hyperspectral imaging technique combined with chemometrics were used to identify and visualize the homochromatic FM on the surface of thining tobacco. A comparison with conventional vision method was made to analyze the feasibility of the method. The importance of detecting FM in cut tobacco was further demonstrated by first studying the volatile organic compounds produced in cigarette mixed FM smoke and their effects on human health before conducting hyperspectral experiments. RESULTS: The results indicated that solid-phase microextraction and gas chromatography mass spectrometry could detect volatile organic compounds in mainstream cigarette smoke that were not cigarette components and affected consumer health. Then, spectral features of the samples were extracted from hyperspectral images for building identification models to distinguish FM from cut tobacco. The visual RGB values of cut tobacco and FM were also used for the analysis of the recognition models. The results showed that the accuracy, precision and recall reached 100.00% using the back propagation artificial neural network classification model based on the principal component analysis raw wavelengths. The visualization results based on the optimal model produced clearer localization than conventional computer vision method. CONCLUSION: The present study revealed that the VIS-NIR hyperspectral imaging technology had advantage in the detection and localization of FM on the surface of thinning tobacco, which provided a foundation for improving the quality and safety of cut tobacco production. © 2023 Society of Chemical Industry.


Assuntos
Nicotiana , Compostos Orgânicos Voláteis , Humanos , Nicotiana/química , Compostos Orgânicos Voláteis/análise , Imageamento Hiperespectral , Espectroscopia de Luz Próxima ao Infravermelho , Redes Neurais de Computação
4.
Anal Biochem ; 611: 113982, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33035460

RESUMO

An electrochemical immunosensor based on self-assembled gold nanorods on glassy carbon electrode was developed for label-free and sensitive detection of Staphylococcus aureus (S. aureus). The gold nanorods were firstly assembled on the electrode surface by using poly-(diallyldimethylammonium chloride) (PDDA) and poly-(styrenesulfonate) (PSS) as the linkers, followed by the functionlization of anti-S. aureus antibodies. The immobilized antibodies on self-assembled gold nanorods could efficiently capture S. aureus to the modified electrode by the specific immune reaction, which clearly blocked the electron transfer of electrochemical probes on the electrode surface due to the resistance of S. aureus. Atomic force microscopy and electrochemical impedance spectroscopy were used to verify the stepwise assembly of the immunosensor fabrication. The immunosensor could detect S. aureus in a linear range from 1.8 × 103 to 1.8 × 107 CFU mL-1 with a low detection limit of 2.4 × 102 CFU mL-1. Furthermore, the designed electrochemical immunosensor was successfully used to determine S. aureus in milk samples with acceptable results. The proposed immunosensor could be further expanded to sensitive detect other pathogens with the addition of specific antibodies.


Assuntos
Anticorpos Antibacterianos/química , Anticorpos Imobilizados/química , Técnicas Biossensoriais , Técnicas Eletroquímicas , Ouro/química , Nanopartículas Metálicas/química , Nanotubos/química , Staphylococcus aureus , Imunoensaio
5.
Anal Biochem ; 486: 102-6, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26159737

RESUMO

A sensitive and simple amperometric biosensor for phenols was developed based on the immobilization of tyrosinase into CdS quantum dots/chitosan nanocomposite matrix. The nanocomposite film with porous nanostructure, excellent hydrophilicity and biocompatibility resulted in high enzyme loading, and the tyrosinase (Tyr) immobilized in this novel matrix retained its activity to a large extent. The CdS quantum dots/chitosan nanocomposite film was characterized by scanning electron microscopy and electrochemical impedance spectroscopy, and the parameters of the various experimental variables for the biosensor were optimized. Under the optimal conditions, the designed biosensor displayed a wide linear response to catechol over a concentration range of 1.0×10(-9) to 2.0×10(-5)M with a high sensitivity of 561±9.7mAM(-1) and a low detection limit down to 0.3 nM at a signal-to-noise ratio of 3. The CdS quantum dots/chitosan nanocomposites could provide a novel matrix for enzyme immobilization to promote the development of biosensing and biocatalysis.


Assuntos
Técnicas Biossensoriais/métodos , Quitosana/química , Monofenol Mono-Oxigenase/metabolismo , Nanocompostos/química , Pontos Quânticos/química , Compostos de Cádmio/química , Eletroquímica , Eletrodos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Limite de Detecção , Monofenol Mono-Oxigenase/química , Fenóis/análise , Sulfetos/química , Água/química
6.
Int J Biol Macromol ; 279(Pt 2): 135218, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39216562

RESUMO

Industrial gelatin is a good candidate for fabricating biodegradable packaging film, but the strong hydrophilicity of gelatin-based film lowers its moisture service reliability. Herein, we demonstrated a low surface energy water repellency surface design combined with covalent cross-linking for decreasing the water absorption and improving the moisture service reliability. Biodegradable octadecylamine (ODA) was chosen as the low surface energy providing material to fabricate the water repellency surface through a dehydration condensation reaction between the amine groups of ODA and gelatin chains via tetra-hydroxymethyl phosphonium chloride (THPC) in an aqueous phase. THPC also was employed as the cross-linking agent to form covalent bonding between the gelatin chains. The results determined that ODA modification and covalent cross-linking endowed the gelatin-based film with good water repellency and improved moisture service reliability. But high dose of ODA would result in phase separation and mechanical strength loss of the fabricated film. Additionally, ODA modification did not change the biodegradability of gelatin-based film, all the modified films were completely biodegradable in natural soil. Considering the sustainable modification process and abundant raw materials, the proposed strategy facilitates the effective utilization of low value industrial gelatin and provides a facile way for gelatin-based film as biodegradable packaging film.


Assuntos
Aminas , Gelatina , Água , Gelatina/química , Água/química , Aminas/química , Interações Hidrofóbicas e Hidrofílicas , Embalagem de Alimentos/métodos , Biodegradação Ambiental
7.
Life (Basel) ; 14(9)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39337968

RESUMO

BACKGROUND: In elite curling, precise time perception, speed control, and accuracy are critical components of performance. Stroboscopic training enhances visual processing speed, reaction time, motor skill control, and cognitive abilities by challenging the brain to make quick decisions with limited visual information. PURPOSE: This study aimed to investigate the impact of stroboscopic visual conditions on the key performance aspects of elite athletes in curling to determine whether these effects can be leveraged in long-term training to enhance elite curling performance. METHODS: This study involved the participation of 32 national-level male curling athletes (n = 32, age: 19.9 ± 2.2 years, height: 178.0 ± 6.2 cm, body mass: 71.9 ± 10.6 kg, and training age: 2.7 ± 0.9 years). A cross-over controlled experiment was conducted, with participants randomly assigned to either a stroboscopic-first group (n = 16) or a control-first group (n = 16). Each participant completed tests under both stroboscopic and normal visual conditions, including assessments of time perception error, speed control error, and curling accuracy. Paired sample t-tests were employed to analyse performance differences across conditions, and two-factor ANOVA was used to analyse sequence effects. Bonferroni post-hoc tests were used to compare differences if the main effect was significant. Cohen's d was used for two-group comparisons, whereas ηp2 and Cohen's f were used for comparisons involving three or more groups. RESULTS: under stroboscopic conditions, participants experienced increased errors in time perception (p < 0.001, Cohen's d = 1.143), delivery speed control (p = 0.016, Cohen's d = 0.448), and reduced accuracy (p = 0.029, Cohen's d = 0.404). The sequence main effect on speed control error was significant (p = 0.025, ηp2 = 0.081, Cohen's f = 0.297). CONCLUSIONS: Stroboscopic visual conditions negatively impacted cognition (especially time perception) and delivery performance focused on speed control and accuracy in elite curling, highlighting the potential and feasibility of using stroboscopic training to enhance elite curling performance.

8.
J Agric Food Chem ; 72(20): 11706-11715, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38728528

RESUMO

In this study, we devised a photothermally stable phytochemical dye by leveraging alizarin in conjunction with the metal-organic framework ZIF-8 (AL@ZIF-8). The approach involved grafting alizarin into the microporous structure of ZIF-8 through physical adsorption and hydrogen-bonding interactions. AL@ZIF-8 significantly enhanced the photostability and thermostability of alizarin. The nanoparticles demonstrate substantial color changes in various pH environments, showcasing their potential for meat freshness monitoring. Furthermore, we introduced an intelligent film utilizing poly(vinyl alcohol)-sodium alginate-AL@ZIF-8 (PA-SA-ZA) for detecting beef freshness. The sensor exhibited a superior water contact angle (52.34°) compared to the alizarin indicator. The color stability of the film was significantly enhanced under visible and UV light (ΔE < 5). During beef storage, the film displayed significant color fluctuations correlating with TVB-N (R2=0.9067), providing precise early warning signals for assessing beef freshness.


Assuntos
Alginatos , Colorimetria , Álcool de Polivinil , Alginatos/química , Animais , Álcool de Polivinil/química , Bovinos , Colorimetria/métodos , Antraquinonas/química , Embalagem de Alimentos/instrumentação , Compostos Fitoquímicos/química , Carne Vermelha/análise , Estruturas Metalorgânicas/química
9.
Food Chem ; 453: 139626, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38759440

RESUMO

Ethyl carbamate (EC) is a carcinogen widely found in the fermentation process of Baijiu. Herein, we construct a molecularly imprinted polymers/MXene/cobalt (II) based zeolitic imidazolate frameworks (MIP/MXene/ZIF-67) nano-enzyme sensor for the detection of EC during Baijiu production. The ZIF-67 is synthesized in situ on the MXene nanosheets to provide a superior catalytic activity to H2O2 and amplify the electrochemical signal. The MIP is prepared by the polymerization reaction to recognize EC. Owing to the interaction between EC and EC-MIP, the interferences are effectively eliminated, greatly improving the accuracy of the expected outcome. This approach attains an ultrasensitive assay of EC ranging from 8.9 µg/L to 44.5 mg/L with detection limit of 0.405 µg/L. The accuracy of this method is confirmed by the recovery experiment with good recoveries from 95.07% to 107.41%. This method is applied in natural EC analyses, and the results are consistent with certified gas chromatograph- mass spectrometer.


Assuntos
Técnicas Eletroquímicas , Contaminação de Alimentos , Impressão Molecular , Uretana , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Uretana/análise , Uretana/química , Contaminação de Alimentos/análise , Catálise , Polímeros Molecularmente Impressos/química , Limite de Detecção
10.
J Agric Food Chem ; 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39356521

RESUMO

Staphylococcus aureus (S. aureus) is a prevalent foodborne pathogen that poses significant challenges to food safety. Herein, a sensitive and specific electrochemical biosensor based on RPA-CRISPR/Cas12a is developed for evaluating S. aureus. In the presence of S. aureus, the extracted target DNA fragments are efficiently amplified by recombinase polymerase amplification (RPA). The designed crRNA, binding to Cas12a, effectively recognizes the target fragment cleaving hpDNA. The signal molecule of hpDNA is cleaved from the sensing interface, resulting in a reduction of current response. Under optimal experimental conditions, the developed electrochemical biosensor exhibits remarkable sensitivity in detecting S. aureus. The linear range for quantifying S. aureus in pure culture is 1.04 × 101-1.04 × 108 CFU/mL, with a detection limit as low as 3 CFU/mL. In addition, the biosensor enables the accurate and sensitive detection of S. aureus in milk within a linear range of 1.07 × 101-1.07 × 107 CFU/mL. The electrochemical biosensor enhances anti-interference capability owing to the specific amplification of RPA primers and the single-base recognition ability of crRNA. The RPA-CRISPR/Cas12a biosensor exhibits exceptional anti-interference capability, precision, and sensitivity, thereby establishing a robust foundation for real-time monitoring of microbial contamination.

11.
Food Chem ; 444: 138467, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38309078

RESUMO

Packaging plays an important role in protecting food from environmental impacts. However, traditional petroleum-based packaging has difficulty in meeting the antimicrobial and antioxidant requirements of prepared foods. This study introduced carbon dots (CDs), prepared by using carrot as a precursor, into corn starch (CS) to construct a bio-friendly composite film with high freshness retention properties. The scavenging of DPPH radicals reached 92.77 % at a CDs concentration of 512 µg/mL, and the antimicrobial activity of CS/5% CDs against Escherichia coli and Staphylococcus aureus was increased to 99.9 %. Notably, the homogeneous doping of CDs creates a dense surface and high carbon content inside the film, which promotes the elasticity and thermal stability of the composite film. Finally, we encapsulated deep-fried meatballs in CS-CDs films. The results showed that the CS-CDs films effectively protected the quality of deep-fried meatballs, and have excellent potential for application in food preservation.


Assuntos
Anti-Infecciosos , Quitosana , Embalagem de Alimentos/métodos , Zea mays , Amido/química , Quitosana/química , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/química
12.
Foods ; 13(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38254550

RESUMO

As a traditional Chinese dish cutting technology process, Gaidao artificially create cuts embedded in the food surface by cutting through it with knife, a process that currently plays an important role in the beef marinating process. And different Gaidao processes directly affect the beef marination flavour and marination efficiency. This study is the first to propose the use of Hyperspectral imaging technology (HSI) combined with finite element analysis to investigate the effect of Gaidao process on the quality of marinated beef. The study was carried out by collecting spectral information of beef marinated with different sucrose concentrations and combining various pre-processing methods and algorithms such as PLS, BiPLS, iPLS, and SiPLS to establish a quantitative model of sucrose concentration in beef, and finally optimizing parameters such as the length, position and number of Gaidao by Finite Element Analysis (FEA), which showed that when marinated with 1.0 mol/m³ sucrose solution, the concentration of sucrose in all tissues in the Gaidao steak reached 0.8 mol/m³ and above, which greatly improved the diffusion effect of the marinade. This work provides new ideas and methods to optimize the beef marinade Gaidao process, which has important practical value and research significance.

13.
Exp Gerontol ; 190: 112422, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38599502

RESUMO

The onset of Alzheimer's disease is related to neuron damage caused by massive deposition of Aß in the brain. Recent studies suggest that excessive Aß in the brain mainly comes from peripheral blood, and BBB is the key to regulate Aß in and out of the brain. In this study, we explored the pathogenesis of AD from the perspective of Aß transport through the BBB and the effect of QKL injection in AD mice. The results showed that QKL could improve the cognitive dysfunction of AD mice, decrease the level of Aß and Aß transporter-RAGE, which was supported by the results of network pharmacology, molecular docking and molecular dynamics simulation. In conclusion, RAGE is a potential target for QKL's therapeutic effect on AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Modelos Animais de Doenças , Receptor para Produtos Finais de Glicação Avançada , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Camundongos , Peptídeos beta-Amiloides/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Masculino , Simulação de Acoplamento Molecular , Camundongos Transgênicos , Simulação de Dinâmica Molecular , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo
14.
Food Chem ; 456: 140040, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38878539

RESUMO

The development of new sensors for on-site food toxin monitoring that combine extraction, analytes distinction and detection is important in resource-limited environments. Surface-enhanced Raman scattering (SERS)-based signal readout features fast response and high sensitivity, making it a powerful method for detecting mycotoxins. In this work, a SERS-based assay for the detection of multiple mycotoxins is presented that combines extraction and subsequent detection, achieving an analytically relevant detection limit (∼ 1 ng/mL), which is also tested in corn samples. This sensor consists of a magnetic-core and mycotoxin-absorbing polydopamine-shell, with SERS-active Au nanoparticles on the outer surface. The assay can concentrate multiple mycotoxins, which are identified through multiclass partite least squares analysis based on their SERS spectra. We developed a strategy for the analysis of multiple mycotoxins with minimal sample pretreatment, enabling in situ analytical extraction and subsequent detection, displaying the potential to rapidly identify lethal mycotoxin contamination on site.


Assuntos
Contaminação de Alimentos , Ouro , Nanopartículas Metálicas , Micotoxinas , Análise Espectral Raman , Zea mays , Micotoxinas/análise , Micotoxinas/química , Análise Espectral Raman/métodos , Análise Espectral Raman/instrumentação , Contaminação de Alimentos/análise , Ouro/química , Nanopartículas Metálicas/química , Zea mays/química , Zea mays/microbiologia , Limite de Detecção
15.
Food Chem ; 447: 138663, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38489878

RESUMO

The combination of carbon dots (CDs) with covalent organic frameworks (COFs) was used to design an innovative sensor based on fluorescence resonance energy transfer (FRET) for the detection of Escherichia coli O157:H7 (E. coli O157:H7) in food samples. Carbon dots were used as fluorescence donors, covalent organic frameworks as fluorescence acceptors. The antibody (Ab) specific to E. coli O157:H7 was used to form a CD-Ab-COF immunosensor by linking CDs and COFs. The antibody was specifically bound with E. coli O157:H7, which caused the connection between CDs and COFs to be interrupted, and the carbon dots exhibited fluorescence restoration. The sensor exhibited a linear detection range spanning from 0 to 106 CFU/mL, with the limit of detection (LOD) of 7 CFU/mL. The analytical performance of the developed immunosensor was evaluated using spiked food samples with different concentrations of E. coli O157:H7, validating the capability of assessing risks in food testing.


Assuntos
Técnicas Biossensoriais , Escherichia coli O157 , Estruturas Metalorgânicas , Transferência Ressonante de Energia de Fluorescência , Carbono , Imunoensaio , Anticorpos
16.
J Agric Food Chem ; 72(40): 22349-22359, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39327911

RESUMO

It is a big challenge to monitor pathogens in food with high selectivity. In this study, we reported an ultrasensitive method for Escherichia coli O157:H7 detection based on immunomagnetic separation and labeled surface-enhanced Raman scattering (SERS). The bacterium was identified by heterogeneous recognition elements, monoclonal antibody (mAb), and aptamer. E. coli O157:H7 was separated and enriched by magnetic nanoparticles modified by mAb, and then a plasmonic nanostructure functionalized by aptamers with embedded Raman tags and interior gaps was utilized for further discrimination and detection. The selectivity was enhanced by two binding sites. The higher Raman enhancement was obtained by strong local electromagnetic field oscillation in the gap and the firm embedment of 4-mercaptopyridine (4-Mpy). Optimum experiments created that SERS signals of 4-Mpy at 1010 cm-1 had a good linearity with E. coli O157:H7 at a large range of 10 to 107 CFU/mL with a limit of detection of 2 CFU/mL. This method has great potential for on-site food pathogenic bacterial detection.


Assuntos
Escherichia coli O157 , Contaminação de Alimentos , Separação Imunomagnética , Análise Espectral Raman , Escherichia coli O157/isolamento & purificação , Análise Espectral Raman/métodos , Separação Imunomagnética/métodos , Contaminação de Alimentos/análise , Limite de Detecção , Anticorpos Monoclonais/química , Microbiologia de Alimentos/métodos
17.
Food Chem ; 460(Pt 2): 140570, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39089022

RESUMO

Residue of sulfamethazine (SMZ), a typical short-acting drug to prevent bacterial infections, in food is a threat to human health. A ternary heterogeneous metal-organic framework hybrid (Zn/Fe-MOF@PDANSs) of Zn-TCPP-MOF, MIL-101 (Fe) and polydopamine nanoparticles (PDANSs) was proposed to establish an aptasensor for the sensitive and selective detection of SMZ. In this sensor, Zn-TCPP-MOF and FAM emitted fluorescence at 609 nm and 523 nm, respectively, and the fluorescence of FAM-ssDNA could be quenched when it was adsorbed on the surface of MOF hybrid. In the presence of SMZ, the fluorescence of FAM-ssDNA recovered due to the dropping from MOF hybrid, while the fluorescence of MOF hybrid remained. With this strategy, a wide concentration range and high sensitivity of SMZ were detection. And the ternary Zn/Fe-MOF@PDANSs sensor exhibited more excellent performance than binary Zn/Fe-MOF aptasensor. In addition, the sensor showed pleasurable selectivity, and was utilized for SMZ determination in authentic chicken and pork samples, implying the fascinating potential in practical application.


Assuntos
Aptâmeros de Nucleotídeos , Galinhas , Contaminação de Alimentos , Indóis , Estruturas Metalorgânicas , Nanopartículas , Polímeros , Sulfametazina , Estruturas Metalorgânicas/química , Indóis/química , Sulfametazina/análise , Sulfametazina/química , Polímeros/química , Animais , Nanopartículas/química , Contaminação de Alimentos/análise , Aptâmeros de Nucleotídeos/química , Suínos , Técnicas Biossensoriais/instrumentação , Fluorescência , Espectrometria de Fluorescência
18.
Food Chem ; 463(Pt 1): 141054, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39260177

RESUMO

This study presented a dual-layer freshness indicator film produced through electrospinning, combining cellulose acetate and polyvinylidene fluoride with zeolitic imidazolate framework-8 (ZIF-8) loaded with curcumin as the indicator. Our findings demonstrated that ZIF-8 effectively preserved its metal-organic framework structure during curcumin loading, ensuring the inherent color-changing ability of curcumin. The resulting colorimetric film exhibited altered tensile properties and increased water vapor permeability. Improved light stability and storage performance were observed. Compared to single-layer films, the dual-layer structure improved the hydrophilicity and stability of the indicator film. Importantly, the introduced indicator label efficiently captured the dynamic changes of TVB-N during freshness monitoring, providing comprehensive visual information for assessing fish freshness. The synergistic properties of ZIF-8, curcumin, and the dual-layer film structure contributed to an advanced freshness indicator system, providing a multifunctional and effective approach for real-time freshness assessment of fish freshness.

19.
Anal Chim Acta ; 1304: 342515, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38637032

RESUMO

Aiming for sustainable crop productivity under changing climate conditions, it is essential to develop handy models for in-situ monitoring of reactive oxygen species (ROS). Herein, this work reports a simple electrochemical sensing toward hydrogen peroxide (H2O2) for tracking crop growth status sensitized with electron-migration nanostructure. To be specific, Cu-based metal-organic frameworks (MOFs) with high HOMO energy level are designed for H2O2 reduction on account of Cu(I)/Cu(II) redox switchability. Importantly, the sensing performance is improved by electrochemically reduced graphene oxide (GO) with ready to use feature. To overcome the shortcomings of traditional liquid electrolytes, conductive hydrogel as semi-solid electrolyte exhibits the adhesive property to the cut plant petiole surface. Benefitting from the preferred composite models and conductive hydrogel, the electrochemical sensing toward H2O2 with high sensitivity and good anti-interference against the coexistent molecules, well qualified for acquiring plant growth status.

20.
Food Chem ; 442: 138312, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38219562

RESUMO

Herein, a bifunctional electrochemical biosensor based on the DNA tetrahedral scaffolds (TDNs) was proposed, OTA@TDNs and AFB1@TDNs were adopted for electrochemical signal output in response to OTA and AFB1 concentration, simultaneously. In order to increase the conductivity of the biosensor, highly porous gold (HPG) was loaded on electrode surface by pulse electrodeposition. Under optimal conditions, the PFc displayed a linear range with AFB1 concentration between 0.05 âˆ¼ 360 ng·mL-1 with the LOD of 3.5 pg·mL-1. And the PMB selective and sensitive responses to OTA are achieved with a linear range of 0.05 âˆ¼ 420 ng·mL-1 and a LOD of 2.4 pg·mL-1. This biosensor has high sensitivity, selectivity and stability for OTA and AFB1 detection in peanut samples. The approach streamlines the experimental procedure, leading to significantly improve the detection efficiency of mycotoxins. Collectively, this method suggest a novel approach for the detection and monitoring of OTA and AFB1 in food sample.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Ocratoxinas , Ocratoxinas/análise , Aflatoxina B1/análise , Contaminação de Alimentos/análise , DNA , Limite de Detecção , Técnicas Eletroquímicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA