Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Ecotoxicology ; 30(8): 1620-1631, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33280056

RESUMO

Antibiotics can disturb the gut microbial community and host metabolism. However, their recovery after antibiotics exposure needs to be characterized, and the correlation between gut microbiota and host metabolism remains unclear. In this study, mice were exposed to 0.5, 1.5 and 10 g/L tetracycline hydrochloride (TET) for 2 weeks, then recovered without TET for another 2 weeks. The results showed that 2-week TET exposure changed microbial community and functions in the mouse gut, and increased abundance of antibiotic resistance genes (ARGs), especially in the 10 g/L TET group. After a 2-week recovery, these changes could only be recovered to the control level in the 0.5 g/L TET exposure group, except for ARGs. Besides gut microbiota, TET exposure also changed metabolic profiles in mouse urine. The 2-week recovery significantly reduced changes in metabolic profiles. Some altered metabolites were found to have a very high correlation with gut microbial community and functions, indicating that TET exposure might induce certain changes in urinary metabolic profiles by altering the gut microbiota. The results from this study suggest that the influences of low-level TET exposure are reversible, except for ARGs, which should be paid more attention. During the application of TET, their dosage should be effectively considered and controlled.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Antibacterianos/toxicidade , Resistência Microbiana a Medicamentos , Genes Bacterianos , Camundongos , Tetraciclina/toxicidade
2.
Ecotoxicology ; 30(7): 1389-1398, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33420882

RESUMO

Carboxylated multi-walled carbon nanotubes (MWCNT-COOH) exerts strong adsorption capacity for pentachlorophenol (PCP) and they inevitably co-occur in the environment, but few studies have characterized the effects of MWCNT-COOH on the bioavailability of PCP and its oxidative and tissue damages to fish. In this work, we assessed the PCP accumulation in different organs and the induced oxidative and tissue damages of goldfish following 50-d in vivo exposure to PCP alone or co-exposure with MWCNT-COOH. Our results indicated that PCP bioaccumulation in goldfish liver, gill, muscle, intestine and gut contents was inhibited after co-exposure with MWCNT-COOH in uptake phase. PCP exposure alone and co-exposure with MWCNT-COOH evoked severe oxidative and tissue damages in goldfish bodies, as indicated by significant inhibition of activities of antioxidant enzymes, remarkable decrease in glutathione level, simultaneous elevation of malondialdehyde content, and obvious histological damages to liver and gill. The decreased accumulation of PCP in the presence of MWCNT-COOH led to the reduction of PCP-induced toxicity to liver tissues, as confirmed by the alleviation of hepatic oxidative damages. However, co-exposure groups had higher concentrations of PCP in the tissues than PCP treatment alone (p < 0.05 each) in the depuration phase, revealing that MWCNT-COOH-bound pollutants might pose higher risk once desorbed from the nanoparticles. These results provided substantial information regarding the combined effects of PCP and MWCNT-COOH on aquatic species, which helps to deeply understand the potential ecological risks of the emerging pollutants.


Assuntos
Nanotubos de Carbono , Pentaclorofenol , Animais , Bioacumulação , Carpa Dourada , Nanotubos de Carbono/toxicidade , Estresse Oxidativo , Pentaclorofenol/toxicidade
3.
Appl Microbiol Biotechnol ; 102(5): 2455-2464, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29396586

RESUMO

To comprehensively understand the profile of free-living bacteria and potential bacterial pathogens in sewage treatment plants (STPs), this study applied high-throughput sequencing-based metagenomics approaches to investigate the effects of activated sludge (AS) treatment process and ultraviolet (UV) disinfection on the community of bacterial pathogens in two full-scale STPs. A total of 23 bacterial genera were identified as free-living bacteria, and 243 species/OTU97% were identified as potential bacterial pathogens, 6 of which were confidently detected in the STPs (with the total abundances ranging from 0.02 to 14.19%). Both diversity and relative abundance of the detected bacterial pathogens decreased obviously after AS treatment process (p < 0.05), and increased slightly after sedimentation (p < 0.05). UV disinfection shows no obvious effects on the total relative abundance of the free-living pathogenic bacteria in sewage. Although large amounts of the particle-bound pathogens were eliminated through the sewage treatment process, the STPs could not effectively remove the free-living bacterial pathogens, and some pathogenic bacteria (e.g., Pseudomonas aeruginosa) present in the effluent had higher relative abundance after UV disinfection. Overall, the results extend our knowledge regarding the community of potential pathogens (especially free-living pathogens) in STPs.


Assuntos
Bactérias/isolamento & purificação , Esgotos/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/efeitos da radiação , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica , Raios Ultravioleta , Instalações de Eliminação de Resíduos
4.
J Proteome Res ; 14(4): 1752-61, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25609144

RESUMO

Disinfection byproducts (DBPs) in drinking water have been linked to various diseases, including colon, colorectal, rectal, and bladder cancer. Trichloroacetamide (TCAcAm) is an emerging nitrogenous DBP, and our previous study found that TCAcAm could induce some changes associated with host-gut microbiota co-metabolism. In this study, we used an integrated approach combining metagenomics, based on high-throughput sequencing, and metabolomics, based on nuclear magnetic resonance (NMR), to evaluate the toxic effects of TCAcAm exposure on the gut microbiome and urine metabolome. High-throughput sequencing revealed that the gut microbiome's composition and function were significantly altered after TCAcAm exposure for 90 days in Mus musculus mice. In addition, metabolomic analysis showed that a number of gut microbiota-related metabolites were dramatically perturbed in the urine of the mice. These results may provide novel insight into evaluating the health risk of environmental pollutants as well as revealing the potential mechanism of TCAcAm's toxic effects.


Assuntos
Acetamidas/toxicidade , Cloroacetatos/toxicidade , Desinfetantes/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Urina/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Sequência de Bases , Sequenciamento de Nucleotídeos em Larga Escala , Espectroscopia de Ressonância Magnética , Metaboloma/fisiologia , Metabolômica/métodos , Camundongos , Dados de Sequência Molecular , Medição de Risco/métodos
5.
Environ Sci Technol ; 49(19): 11894-902, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26378342

RESUMO

Goldfish (Carassius auratus) were exposed to 0-100 µg/L pentachlorophenol (PCP) for 28 days to investigate the correlations of fish gut microbial community shift with the induced toxicological effects. PCP exposure caused accumulation of PCP in the fish intestinal tract in a time- and dose-dependent manner, while hepatic PCP reached the maximal level after a 21 day exposure. Under the relatively higher PCP stress, the fish body weight and liver weight were reduced and hepatic CAT and SOD activities were inhibited, demonstrating negative correlations with the PCP levels in liver and gut content (R < -0.5 and P < 0.05 each). Pyrosequencing of the 16S rRNA gene indicated that PCP exposure increased the abundance of Bacteroidetes in the fish gut. Within the Bacteroidetes phylum, the Bacteroides genus had the highest abundance, which was significantly correlated with PCP exposure dosage and duration (R > 0.5 and P < 0.05 each). Bioinformatic analysis revealed that Bacteroides showed quantitatively negative correlations with Chryseobacterium, Microbacterium, Arthrobacter, and Legionella in the fish gut, and the Bacteroidetes abundance, Bacteroides abundance, and Firmicutes/Bacteroidetes ratio played crucial roles in the reduction of body weight and liver weight under PCP stress. The results may extend our knowledge regarding the roles of gut microbiota in ecotoxicology.


Assuntos
Exposição Ambiental/análise , Microbioma Gastrointestinal/efeitos dos fármacos , Carpa Dourada/crescimento & desenvolvimento , Carpa Dourada/microbiologia , Fígado/efeitos dos fármacos , Pentaclorofenol/toxicidade , Animais , Bacteroidetes/efeitos dos fármacos , Bacteroidetes/genética , Catalase/metabolismo , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Fígado/patologia , Estresse Oxidativo/efeitos dos fármacos , Análise de Componente Principal , RNA Ribossômico 16S/genética , Superóxido Dismutase/metabolismo
6.
Environ Int ; 187: 108659, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38678933

RESUMO

Quorum-sensing bacteria (QSB) are crucial factors for microbial communication, yet their ecological role in wastewater treatment plants (WWTPs) remains unclear. Here, we developed a method to identify QSB by comparing 16S rRNA gene sequences. QSB in 388 activated sludge samples collected from 130 WWTPs across China primarily were identified as rare taxa and conditionally rare taxa. A co-occurrence network shared by all sludge communities revealed that QSB exhibited higher average clustering coefficient (0.46) than non-QSB (0.15). Individual sludge networks demonstrated that quorum sensing microbiomes were positively correlated with network robustness and network complexity, including average clustering coefficient and link density. We confirmed that QSB keystones and QSB nodes have a positive impact on network complexity by influencing network modularity through a structural equation model. Meanwhile, QSB communities directly contributed to maintaining network robustness (r = 0.29, P < 0.05). Hence, QSB play an important role in promoting network complexity and stability. Furthermore, QSB communities were positively associated with the functional composition of activated sludge communities (r = 0.33, P < 0.01), especially the denitrification capacity (r = 0.45, P < 0.001). Overall, we elucidated the ecological significance of QSB and provided support for QS-based regulation of activated sludge microbial communities.


Assuntos
Bactérias , Microbiota , Percepção de Quorum , Esgotos , Águas Residuárias , Águas Residuárias/microbiologia , Bactérias/genética , Bactérias/classificação , Esgotos/microbiologia , China , RNA Ribossômico 16S/genética , Eliminação de Resíduos Líquidos/métodos
7.
J Environ Biol ; 34(2 Spec No): 391-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24620610

RESUMO

This study investigated the occurrence and abundance of class 1 integrons and related antibiotic resistance genes (ARGs) in a sewage treatment plant (STP) of China. Totally, 189 bacterial strains were isolated from influent, activated sludge and effluent, and 40 isolates contained the integons with a complete structure. The intl1-carrying isolates were found to harbor two types of gene cassettes: dfr17-aadA5 and aadA2, conferring resistances to trimethoprim and streptomycin, which were further confirmed by antimicrobial susceptibility analysis. Many other gene cassettes were carried on integron, including qnrVC1, catB-8-blaoxa-10-aadA1-aac(6'), aadB-aacA29b, aadA2, aac(6')-1b, aadA6 and aadA12, which were detected using DNA cloning. Quantitative real time PCR showed that over 99% of the integrons was eliminated in activated sludge process, but average copy number of integrons in given bacterial cells was increased by 56% in treated sewage. Besides integrons, other mobile gene elements (MGEs) were present in the STP with high abundance. MGEs and the associated ARGs may be wide-spread in STPs, which constitute a potential hot spot for selection of antibiotic resistant bacteria and horizontal transfer of ARGs.


Assuntos
Integrons/fisiologia , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Clonagem Molecular , DNA Bacteriano/genética , Microbiologia da Água , Poluentes da Água
8.
Artigo em Inglês | MEDLINE | ID: mdl-36834289

RESUMO

Municipal sewage treatment plants (MSTPs) are environmental pools for antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which is cause for growing environmental-health concerns. In this study, the effects of different wastewater treatment processes on microbial antibiotic resistance in four MSTPs were investigated. PCR, q-PCR, and molecular cloning integrally indicated that the tetracycline resistance (tet) genes significantly reduced after activated-sludge treatment. Illumina high-throughput sequencing revealed that the broad-spectrum profile of ARGs and mobile element genes (MGEs) were also greatly decreased by one order of magnitude via activated sludge treatment and were closely associated with each other. Correlations between ARGs and bacterial communities showed that potential ARB, such as Acinetobacter, Bacteroides, and Cloaibacterium, were removed by the activated-sludge process. Sedimentation processes cannot significantly affect the bacterial structure, resulting in the relative abundance of ARGs, MGEs, and ARB in second-clarifier effluent water being similar to activated sludge. A comprehensive study of ARGs associated with MGEs and bacterial structure might be technologically guided for activated sludge design and operation in the MSTPs, to purposefully control ARGs carried by pathogenic hosts and mobility.


Assuntos
Microbiota , Esgotos , Esgotos/microbiologia , Genes Bacterianos , Antagonistas de Receptores de Angiotensina , Antibacterianos/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Resistência Microbiana a Medicamentos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Sequências Repetitivas Dispersas
9.
Sci Total Environ ; 856(Pt 1): 158844, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36126716

RESUMO

Progesterone (P4) and norgestrel (NGT) are two steroid progestogens that can pose adverse effects on aquatic organisms at ng/L levels. Despite increasing concern on their occurrence and removal in wastewater, their fate in the wastewater treatment process has not been well documented. This study identified the transformation products (TPs) of P4 and NGT in anaerobic/anoxic/oxic (A/A/O) process. Potential functional genes involved in biotransformation of P4 and NGT were explored. The elimination or formation behavior of P4, NGT and convinced TPs along various units of A/A/O process was revealed through the mass flow. Results showed that 12 and 13 TPs were identified in the P4 and NGT groups respectively, wherein 10 identical TPs and C-19 structures transformation pathways were observed in both groups. Six genes were found that may be involved in dehydrogenation and isomerization reactions in the pathways. Mass flow indicated that P4 and NGT were mainly eliminated in anaerobic and anoxic units, while convinced TPs mainly formed in anaerobic and anoxic units and were then eliminated in aerobic unit. Further, the ecological risks of the effluent should not be ignored as residual compounds including P4 or NGT and their TPs in the effluent still posed adverse effects on zebrafish transcript levels.


Assuntos
Norgestrel , Poluentes Químicos da Água , Animais , Progesterona/metabolismo , Peixe-Zebra/metabolismo , Anaerobiose , Poluentes Químicos da Água/análise , Águas Residuárias/química , Biotransformação , Eliminação de Resíduos Líquidos/métodos
10.
Sci Total Environ ; 835: 155374, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35461936

RESUMO

In this study, the spatiotemporal variation in the occurrence of 19 endocrine-disrupting chemicals (EDCs) spanning four seasons in wastewater treatment plants (WWTPs) located in 17 Chinese cities was investigated. Removal efficiencies for selected EDCs in 17 WWTPs over four seasons were analyzed. Contributions of conventional and advanced process segments to the removal efficiency of EDCs were explored, which compared the removal efficacies of a variety of secondary and advanced processes for EDCs. Results showed that EDCs were extensively detected in WWTPs, with bisphenol A (BPA), dehydroepiandrosterone (DHRD), androstenedione (ADD), and pregnanediol (PD) being dominant in excess sludge and wastewater. Seasonally, the greatest seasonal differences were observed in the influent, with the concentrations of 12 EDCs varying significantly between seasons. Spatially, concentrations of BPA, DHRD, testosterone (TTR), and estriol (E3) in the influent significantly varied between the northern and southern WWTPs. Fourteen EDCs were removed steadily among the four seasons, while most EDCs had considerable removal differences between WWTPs. Contribution of the conventional process segment to the removal of individual EDCs was higher than that of the advanced process segment in WWTPs. Quantitative meta-analysis indicated that the anaerobic-anoxic-anaerobic (AAO) process in the various secondary processes had the highest removal of the target EDCs. Mass balance analysis further suggested that biodegradation in the aerobic tank of the AAO process was the major pathway for most EDCs removal. This study systematically depicts the spatiotemporal distribution of EDCs in WWTPs located across China and deepens the comprehension of EDCs removal in Chinese WWTPs from a treatment process perspective.


Assuntos
Disruptores Endócrinos , Poluentes Químicos da Água , Purificação da Água , China , Disruptores Endócrinos/análise , Monitoramento Ambiental/métodos , Esgotos/análise , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos
11.
Water Res ; 211: 118038, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35045367

RESUMO

This study investigated the overall occurrence and spatiotemporal variation of 19 progestogens in 608 samples collected from 17 wastewater treatment plants (WWTPs) distributed across China during four seasons. The aqueous removal efficiencies of progestogens were calculated and the efficacies of process segments, secondary and advanced processes, and process units in the removal of progestogens were explored. The results indicated that progestogens were widely detected in investigating WWTPs, with the progesterone, dydrogesterone, dienogest, ethisterone, and norethindrone were always dominant in the influent, secondary effluent, final effluent, and excess sludge. Seasonally, the influent exhibited more variability than the other matrices, that 10 progestogens concentrations varied significantly during the four seasons. Spatially, the influent concentrations of progestogens were generally higher in northern WWTPs than that in southern WWTPs during spring and summer. Eight progestogens were stably removed by the WWTPs across seasons, and most progestogens varied considerably in removal in different WWTPs. The conventional process segment was the dominant contributor to progestogen removal. The anaerobic-anoxic-oxic process and a combined process consisting of densadeg and cloth media filter and ultraviolet disinfection showed the highest removal of progestogens among various secondary and advanced treatment processes, respectively. Mass balance analysis showed that most progestogens were effectively eliminated in the aerobic unit, with biodegradation being the primary removal pathway. This study presents the first picture of the spatiotemporal dynamics of the distribution of progestogens in WWTPs of China and provides valuable information for better understanding of the occurrence and removal of progestogens in WWTPs.


Assuntos
Poluentes Químicos da Água , Purificação da Água , China , Monitoramento Ambiental , Progestinas/análise , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água/análise
12.
Water Res ; 216: 118255, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35325822

RESUMO

Dissolved organic matter (DOM) mediates the microbial transformation of micropollutants, including norgestrel (NGT) in natural waters. However, little is known of the effect of complex and variable wastewater-derived DOM composition on NGT degradation during wastewater treatment. In this study, the relationship between the compositions of initial DOM and NGT removal efficiencies of 17 wastewater treatment plants (WWTPs) in spring and summer were analyzed. The different molecular composition of DOM was selected in the lab to further explore its effect on NGT degradation by activated sludge. Results indicated that the DOM composition was a substantial driver of NGT removal in WWTPs. The discrepancies in the initial DOM composition contributed to the differences in the kinetics of NGT degradation by activated sludge. The larger rapid decay phase rates of NGT are usually accompanied by a large proportion of labile substances in DOM. High-throughput sequencing and ultrahigh-resolution mass spectrometry were used to further analyze the evolution of bacterial communities and DOM molecular composition were combined with network analysis to reveal the intrinsic relationship that how DOM composition affected NGT degradation by regulating core microbes. Eighty-nine core OTUs were significantly associated with NGT degradation, and 73 occurred in the rapid decay phase, implying that NGT degradation was mainly regulated by the initial composition of DOM. Nine major transformation products were identified in different groups with widely varying concentrations or relative abundances of these transformation products. This work provides valuable insights into the effects of wastewater-derived DOM composition on NGT degradation by activated sludge and innovatively explores the influence mechanisms from the bacterial community and molecular characterization perspectives.


Assuntos
Esgotos , Águas Residuárias , Bactérias , Matéria Orgânica Dissolvida , Norgestrel , Esgotos/microbiologia
13.
J Hazard Mater ; 379: 120841, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31279312

RESUMO

Chlorination can contribute to the enrichment of specific antibiotic resistance genes (ARGs) in drinking water, but the underlying molecular ecological mechanisms remain unknown, which may hinder the assessment and control of the resulting health risks. In this study, metagenomic assembly and Resfams annotation were used to profile the co-occurrence patterns of ARGs, mobile genetic elements (MGEs) and their bacterial hosts, as well as the correlations of potential pathogens with the antibiotic resistome, in a full-scale drinking water treatment and transportation system. Seven ARG types involved in different resistance mechanisms occurred in drinking water and chlorination enhanced the total abundance of the ARGs (p <  0.05). The ARGs encoding resistance-nodulation-cell division and ATP-binding cassette antibiotic efflux pumps predominated in all the samples and were primarily responsible for the ARG accumulation. After chlorination, the ARGs were primarily carried by predominant Sphingomonas, Polaromonas, Hyphomicrobium, Acidovorax, Pseudomonas and Fluviicola. Further, enrichment of the bacterial hosts and MGEs greatly contributed to alteration of the antibiotic resistome. Pseudomonas alcaligenes, carrying multiple ARGs, was identified as a potential pathogen in the chlorinated drinking water. These findings provide novel insights into the host-ARG relationship and the mechanism underlying the resistome alteration during drinking water chlorination.


Assuntos
Cloro/toxicidade , Desinfecção/métodos , Água Potável/microbiologia , Farmacorresistência Bacteriana/genética , Metagenoma , Poluentes Químicos da Água/toxicidade , Purificação da Água/métodos , Bactérias/efeitos dos fármacos , Bactérias/genética , DNA Bacteriano/genética , Água Potável/química , Halogenação , Metagenoma/efeitos dos fármacos , Metagenômica
14.
Sci Total Environ ; 685: 28-36, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31174122

RESUMO

Acylated homoserine lactone (AHL)-mediated quorum sensing (QS) is ecologically important in multi-species systems in laboratory-scale studies; however, little is known about QS in the biofilm formation process in full-scale wastewater treatment plants, which is driven by multiple environmental variables. Here, a model integrated fixed-film-activated sludge system was employed in full-scale municipal wastewater treatment plant to investigate the AHL distribution during the biofilm development process in response to variable environmental factors. The whole biofilm development process can be divided into three phases: initial biofilm attachment process (week 1 to 3), biofilm development and mature phase (week 4 to 6), and biofilm detachment and reformation process (week 7 to 17). N-decanoyl-DL-homoserine lactone (C10-HSL) and N-dodecanoyl-DL-homoserine lactone (C12-HSL) presented high concentrations during the biofilm formation process, which was closely related with the biofilm initial attachment process. The AHL concentration in biofilms was higher than in activated sludge. During the initial attachment process, tryptophan and protein-like substances related to biological substance were strongly positively correlated with all detected AHL concentrations (p < 0.05). Three environmental variables (total nitrogen, pH, and Na+) were closely related to AHL distribution in municipal wastewater biofilms. High wastewater pH was found to contribute to a low AHL concentration. AHLs in the biofilm were significantly (p < 0.01) influenced by the concentration of Na+, and higher concentrations of Na+ (10.84-18.58 mg/L) in wastewater treatment plants potentially contribute to the biofilm formation processes. In addition, bacteria with nitrogen removal ability showed QS functionality. The results of this study indicate that AHL-based regulation of tryptophan and protein-like substances related to biological substance production was significantly influenced by the surrounding chemical environment, which has been underestimated in previous studies. AHL-mediated QS potentially suggests a novel solution for the advanced AHL-based regulation of the biofilm development processes.


Assuntos
Biofilmes , Percepção de Quorum , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias
15.
Sci Total Environ ; 651(Pt 2): 2148-2157, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30326447

RESUMO

Due to complexity and variety of pharmaceutical wastewater composition, little is known as for functionally important microflora of pharmaceutical wastewater treatment plants (pWWTPs). We compared bacterial composition and diversity of pWWTPs (27 sludge samples collected from 12 full-scale pWWTPs) with those of other industrial (iWWTPs) (27 samples) and municipal wastewater treatment plants (mWWTPs) (27 samples) through meta-analysis based on 16S rRNA gene amplicon sequencing, and identified putatively important organisms and their ecological correlations. Non-metric multidimensional scaling indicated that the pWWTPs, iWWTPs and mWWTPs showed distinctive differences in bacterial community composition (P < 1e-04), and the pWWTPs had significantly lower bacterial diversity than the mWWTPs (P < 1e-06). Thermotogae and Synergistetes phyla only strictly dominated in the pWWTPs, and 26, 30 and 6 specific genera were identified in the pWWTPs, mWWTPs and iWWTPs, respectively. Totally, 15 and 1300 OTUs were identified as core and occasional groups, representing 23.2% and 66.2% of the total read abundance of the pWWTPs, respectively. Permutational multivariate analysis of variance revealed that the bacterial components were clearly clustered corresponding to the types of pharmaceutical wastewater, and a total of 129 local specific OTUs were identified in the pWWTPs, among which anticancer antibiotics pWWTPs had the highest number of specific OTUs (40 ones). Co-occurrence network revealed that the species dominating in the same type of pWWTPs tended to co-occur much more frequently than theoretical random expectation. The results may extend our knowledge regarding the ecological status and correlation of the key microflora in pWWTPs.


Assuntos
Bactérias/isolamento & purificação , Eliminação de Resíduos Líquidos , Águas Residuárias/microbiologia , Bactérias/classificação , Bactérias/genética , China , Indústria Farmacêutica , RNA Bacteriano/análise , RNA Ribossômico 16S/análise
16.
Sci Total Environ ; 668: 1191-1199, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31018459

RESUMO

Progestagens discharged from municipal wastewater treatment plants (WWTPs) have increasingly gained attention due to their potential risks to the aquatic organisms. However, limited information is available on the occurrence and removal of various progestagens in WWTPs in different cities of China. This work investigated the occurrence and removal of 11 progestagens in 21 WWTPs from 19 Chinese cities. Results showed that progestagens are widely distributed in the investigated WWTPs, with higher influent concentrations of total progestagens in northern WWTPs. The concentration of progestagens in WWTP influent were closely correlated with influent quality, service population and daily service volume of the WWTPs. Additionally, progesterone (PGT) and dydrogesterone (DDT) were two predominant progestagens in influent, effluent and excess sludge. Up to 5 of 11 progestagens showed high aqueous removal efficiencies (median removal efficiency >90%), whereas megestrol acetate (MTA), chlormadinone acetate (CMA), drospirenone (DSP) and levonorgestrel (LNG) had a removal efficiency of below 50%. Specially, the behaviors of progestagens along the anaerobic-anoxic-oxic of a WWTP were further explored and the aerobic tank is the main contributor to the removal of progestagens. Finally, in the effluent of these 21 WWTPs, daily mass loadings of the total progestagens ranged from 0.51 to 10.4 g d-1. Notably, LNG exhibited high potential risk to the fish base on risk quotient.


Assuntos
Progestinas/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água , China , Monitoramento Ambiental , Progestinas/química , Medição de Risco , Poluentes Químicos da Água/química
17.
Sci Total Environ ; 615: 1332-1340, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29751438

RESUMO

Information is currently limited regarding the distribution of antibiotic resistance genes (ARGs) in smog and their correlations with airborne bacteria. This study characterized the diversity and abundance of ARGs in the particulate matters (PMs) of severe smog based on publicly available metagenomic data, and revealed the occurrence of 205 airborne ARG subtypes, including 31 dominant ones encoding resistance to 11 antibiotic types. Among the detectable ARGs, tetracycline, ß-lactam and aminoglycoside resistance genes had the highest abundance, and smog and soil had similar composition characteristics of ARGs. During the smog event, the total abundance of airborne ARGs ranged from 4.90 to 38.07ppm in PM2.5 samples, and from 7.61 to 38.49ppm in PM10 samples, which were 1.6-7.7 times and 2.1-5.1 times of those in the non-smog day, respectively. The airborne ARGs showed complicated co-occurrence patterns, which were heavily influenced by the interaction of bacterial community, and physicochemical and meteorological factors. Lactobacillus and sulfonamide resistance gene sul1 were determined as keystones in the co-occurrence network of microbial taxa and airborne ARGs. The results may help to understand the distribution patterns of ARGs in smog for the potential health risk evaluation.


Assuntos
Microbiologia do Ar , Resistência Microbiana a Medicamentos/genética , Monitoramento Ambiental , Genes Bacterianos , Metagenoma , Material Particulado/análise , Metagenômica
18.
J Microbiol Biotechnol ; 27(1): 141-148, 2017 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-27713206

RESUMO

The oxidation ditch (OD) is one of the most widely used processes for treating municipal wastewater. However, the microbial communities in the OD systems have not been well characterized, and little information about the shift of bacterial community during the startup process of the OD systems is available. In this study, we investigated the bacterial community changes during the startup period (over 100 days) of a full-scale OD. The results showed that the bacterial community dramatically changed during the startup period. Similar to the activated sludge samples in other studies, Proteobacteria (accounting for 26.3%-48.4%) was the most dominant bacterial phylum in the OD system, but its relative abundance declined nearly 40% during the startup process. It was also found that Planctomycetes proliferated greatly (from 4.79% to 13.5%) and finally replaced Bacteroidetes as the second abundant phylum in the OD system. Specifically, some bacteria affiliated with genus Flavobacterium exhibited remarkable decreasing trends, whereas bacterial species belonging to the OD1 candidate division and Saprospiraceae family were found to increase during the startup process. Despite of the bacterial community shift, the organic matter, nitrogen, and phosphorus in the effluent were always in low concentrations, suggesting the functional redundancy of the bacterial community. Moreover, by comparing with the bacterial community in other municipal wastewater treatment bioreactors, some potentially novel bacterial species were found to be present in the OD system. Collectively, this study improved our understandings of the bacterial community structure and microbial ecology during the startup of a full-scale wastewater treatment bioreactor.

19.
PLoS One ; 11(6): e0156854, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27294780

RESUMO

To understand the diversity and abundance of antibiotic resistance genes (ARGs) in pharmaceutical wastewater treatment bioreactors, the ARGs in sludge from two full-scale pharmaceutical wastewater treatment plants (PWWTPs) were investigated and compared with sludge samples from three sewage treatment plants (STPs) using metagenomic approach. The results showed that the ARG abundances in PWWTP sludge ranged from 54.7 to 585.0 ppm, which were higher than those in STP sludge (27.2 to 86.4 ppm). Moreover, the diversity of ARGs in PWWTP aerobic sludge (153 subtypes) was higher than that in STP aerobic sludge (118 subtypes). In addition, it was found that the profiles of ARGs in PWWTP aerobic sludge were similar to those in STP aerobic sludge but different from those in PWWTP anaerobic sludge, suggesting that dissolve oxygen (DO) could be one of the important factors affecting the profiles of ARGs. In PWWTP aerobic sludge, aminoglycoside, sulfonamide and multidrug resistance genes were frequently detected. While, tetracycline, macrolide-lincosamide-streptogramin and polypeptide resistance genes were abundantly present in PWWTP anaerobic sludge. Furthermore, we investigated the microbial community and the correlation between microbial community and ARGs in PWWTP sludge. And, significant correlations between ARG types and seven bacterial genera were found. In addition, the mobile genetic elements (MGEs) were also examined and correlations between the ARGs and MGEs in PWWTP sludge were observed. Collectively, our results suggested that the microbial community and MGEs, which could be affected by DO, might be the main factors shaping the profiles of ARGs in PWWTP sludge.


Assuntos
Bactérias/genética , Reatores Biológicos/microbiologia , Biota/genética , Indústria Farmacêutica , Resistência Microbiana a Medicamentos/genética , Sequências Repetitivas Dispersas , Águas Residuárias/microbiologia , Purificação da Água/instrumentação , Antibacterianos/farmacologia , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Biodiversidade , Genes Bacterianos , Metagenômica , Testes de Sensibilidade Microbiana , Eliminação de Resíduos Líquidos/instrumentação , Eliminação de Resíduos Líquidos/métodos
20.
J Hazard Mater ; 271: 57-64, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-24598031

RESUMO

Cross-omics profiling and phenotypic analysis were conducted to comprehensively assess the toxicities of source of drinking water (SDW), effluent of conventional treatment (ECT) and effluent of advanced treatment (EAT) in a water treatment plant. SDW feeding increased body weight, and relative liver and kidney weights of mice. Hepatic histopathological damages and serum biochemical alterations were observed in the mice fed with SDW and ECT, but EAT feeding showed no obvious effects. Transcriptomic analysis demonstrated that exposure to water samples caused differential expression of hundreds of genes in livers. Cluster analysis of the differentially expressed genes which generated by both microarrays and digital gene expression showed similar grouping patterns. Proteomic and metabolomics analyses indicated that drinking SDW, ECT and EAT generated 59, 145 and 41 significantly altered proteins in livers and 8, 2 and 0 altered metabolites in serum, respectively. SDW was found to affect several metabolic pathways including metabolism of xenobiotics by cytochrome P450 and fatty acid metabolism. SDW and ECT might induce molecular toxicities to mice, but the advanced treatment process can reduce the potential health risk by effectively removing toxic chemicals in drinking water.


Assuntos
Água Potável , Fígado/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Purificação da Água/métodos , Animais , Rim/efeitos dos fármacos , Rim/patologia , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Tamanho do Órgão/efeitos dos fármacos , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA