Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 97(3): e0181922, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36815785

RESUMO

Human papillomaviruses (HPV) are small DNA viruses associated with cervical cancer, warts, and other epithelial tumors. Structural studies have shown that the HPV capsid consists of 360 copies of the major capsid protein, L1, arranged as 72 pentamers in a T=7 icosahedral lattice, coassembling with substoichiometric amounts of the minor capsid protein, L2. However, the residues involved in the coassembly of L1 and L2 remain undefined due to the lack of structure information. Here, we investigated the solvent accessibility surfaces (SASs) of the central cavity residues of the HPV16 L1 pentamer in the crystal structure because those internal exposed residues might mediate the association with L2. Twenty residues in L1 protein were selected to be analyzed, with four residues in the lumen of the L1 pentamer identified as important: F256, R315, Q317, and T340. Mutations to these four residues reduced the PsV (pseudovirus) infection capacity in 293FT cells, and mutations to R315, Q317, and T340 substantially perturb L2 from coassembling into L1 capsid. Compared with wild-type (WT) PsVs, these mutant PsVs also have a reduced ability to become internalized into host cells. Finally, we identified a stretch of negatively charged residues on L2 (amino acids [aa] 337 to 340 [EEIE]), mutations to which completely abrogate L2 assembly into L1 capsid and subsequently impair the endocytosis and infectivity of HPV16 PsVs. These findings shed light on the elusive coassembly between HPV L1 and L2. IMPORTANCE Over 200 types of HPV have been isolated, with several high-risk types correlated with the occurrence of cervical cancer. The HPV major capsid protein, L1, assembles into a T=7 icosahedral viral shell, and associates with the minor capsid protein, L2, which plays a critical role in the HPV life cycle. Despite the important role of the L2 protein, its structure and coassembly with L1 remain elusive. In this study, we analyzed the amino acid residues at the proposed interface between L1 and L2. Certain mutations at these sites decreased the amount of L2 protein assembled into the capsid, which, in turn, led to a decrease in viral infectivity. Knowledge about these residues and the coassembly of L1 and L2 could help to expand our understanding of HPV biology and aid in the development of countermeasures against a wide range of HPV types by targeting the L2 protein.


Assuntos
Proteínas do Capsídeo , Papillomavirus Humano 16 , Feminino , Humanos , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/patogenicidade , Infecções por Papillomavirus/virologia , Sequência de Aminoácidos/genética , Mutação , Linhagem Celular , Estrutura Terciária de Proteína/genética , Modelos Moleculares
2.
Appl Microbiol Biotechnol ; 107(2-3): 853-865, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36539564

RESUMO

The goal of bacterial engineering is to rewire metabolic pathways to generate high-value molecules for various applications. However, the production of recombinant proteins is constrained by the complexity of the connections between cellular physiology and recombinant protein synthesis. Here, we used a rational and highly efficient approach to improve bacterial engineering. Based on the complete genome and annotation information of the Escherichia coli ER2566 strain, we compared the transcriptomic profiles of the strain under leaky expression and low temperature-induced stress. Combining the gene ontology (GO) enrichment terms and differentially expressed genes (DEGs) with higher expression, we selected and knocked out 36 genes to determine the potential impact of these genes on protein production. Deletion of bluF, cydA, mngR, and udp led to a significant decrease in soluble recombinant protein production. Moreover, at low-temperature induction, 4 DEGs (gntK, flgH, flgK, flgL) were associated with enhanced expression of the recombinant protein. Knocking out several motility-related DEGs (ER2666-ΔflgH-ΔflgL-ΔflgK) simultaneously improved the protein yield by 1.5-fold at 24 °C induction, and the recombinant strain had the potential to be applied in the expression studies of different exogenous proteins, aiming to improve the yields of soluble form to varying degrees in comparison to the ER2566 strain. Totally, this study focused on the anabolic and stress-responsive hub genes of the adaptation of E. coli to recombinant protein overexpression on the transcriptome level and constructs a series of engineering strains increasing the soluble protein yield of recombinant proteins which lays a solid foundation for the engineering of bacterial strains for recombinant technological advances. KEY POINTS: • Comparative transcriptome analysis shows host responses with altered induction stress. • Deletion of bluF, cydA, mngR, and udp genes was identified to significantly decrease the soluble recombinant protein productions. • Synchronal knockout of flagellar genes in E. coli can enhance recombinant protein yield up to ~ 1.5-fold at 24 °C induction. • Non-model bacterial strains can be re-engineered for recombinant protein expression.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Transcriptoma , Difosfato de Uridina/metabolismo , Engenharia Metabólica
3.
J Virol ; 95(7)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33472937

RESUMO

Human papillomavirus type 58 (HPV58) is associated with cervical cancer and poses a significant health burden worldwide. Although the commercial 9-valent HPV vaccine covers HPV58, the structural and molecular-level neutralization sites of the HPV58 complete virion are not fully understood. Here, we report the high-resolution (∼3.5 Å) structure of the complete HPV58 pseudovirus (PsV58) using cryo-electron microscopy (cryo-EM). Three representative neutralizing monoclonal antibodies (nAbs 5G9, 2H3 and A4B4) were selected through clustering from a nAb panel against HPV58. Bypassing the steric hindrance and symmetry-mismatch in the HPV Fab-capsid immune-complex, we present three different neutralizing epitopes in the PsV58, and show that, despite differences in binding, these nAbs share a common neutralization mechanism. These results offer insight into HPV58 genotype specificity and broaden our understanding of HPV58 neutralization sites for antiviral research.IMPORTANCE Cervical cancer primarily results from persistent infection with high-risk types of human papillomavirus (HPV). HPV type 58 (HPV58) is an important causative agent, especially within Asia. Despite this, we still have limited data pertaining to the structural and neutralizing epitopes of HPV58, and this encumbers our in-depth understanding of the virus mode of infection. Here, we show that representative nAbs (5G9, 10B11, 2H3, 5H2 and A4B4) from three different groups share a common neutralization mechanism that appears to prohibit the virus from associating with the extracellular matrix and cell surface. Furthermore, we identify that the nAbs engage via three different binding patterns: top-center binding (5G9 and 10B11), top-fringe binding (2H3 and 5H2), and fringe binding (A4B4). Our work shows that, despite differences in the pattern in binding, nAbs against HPV58 share a common neutralization mechanism. These results provide new insight into the understanding of HPV58 infection.

4.
Virol J ; 19(1): 196, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36424667

RESUMO

BACKGROUND: Epstein-Barr virus (EBV) is a wide-spread human herpesvirus that is highly associated with infectious mononucleosis and several malignancies. Evaluation of EBV neutralizing antibody titers is important for serological studies, vaccine development and monoclonal antibody screening. The traditional method based on antibody inhibition of EBV transformation of B cells is very time-consuming. A more practical flow cytometry-based (FCM) approach to evaluate neutralizing titers is not amenable to achieving high-throughput evaluation of large-scale samples. A high-throughput approach is urgently needed. RESULTS: Here, we present a rapid and high-throughput method based on high content imaging system (HCIS) analysis. EBV titers determined by the HCIS-based assay were similar to those obtained by the FCM-based assay. Neutralizing titers of sera and monoclonal antibodies measured by the HCIS-based assay strongly correlated with titers measured by the FCM-based assay. HCIS assays showed a strong correlation between B cell infection neutralizing titers and the anti-gp350 IgG titers in healthy EBV carriers and monkey sera. Finally, anti-gHgL IgG titers from sera of healthy EBV carriers significantly correlated with epithelial cell infection neutralizing titers. CONCLUSIONS: This HCIS-based assay is a high-throughput assay to determine viral titers and evaluate neutralizing potentials of sera and monoclonal antibodies. This HCIS-based assay will aid the development of vaccines and therapeutic monoclonal antibody against EBV.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Humanos , Anticorpos Antivirais , Imunoglobulina G , Anticorpos Monoclonais
5.
Proc Natl Acad Sci U S A ; 116(52): 26933-26940, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31818956

RESUMO

In adaptive immunity, organisms produce neutralizing antibodies (nAbs) to eliminate invading pathogens. Here, we explored whether viral neutralization could be attained through the physical disruption of a virus upon nAb binding. We report the neutralization mechanism of a potent nAb 8C11 against the hepatitis E virus (HEV), a nonenveloped positive-sense single-stranded RNA virus associated with abundant acute hepatitis. The 8C11 binding flanks the protrusion spike of the HEV viruslike particles (VLPs) and leads to tremendous physical collision between the antibody and the capsid, dissociating the VLPs into homodimer species within 2 h. Cryo-electron microscopy reconstruction of the dissociation intermediates at an earlier (15-min) stage revealed smeared protrusion spikes and a loss of icosahedral symmetry with the capsid core remaining unchanged. This structural disruption leads to the presence of only a few native HEV virions in the ultracentrifugation pellet and exposes the viral genome. Conceptually, we propose a strategy to raise collision-inducing nAbs against single spike moieties that feature in the context of the entire pathogen at positions where the neighboring space cannot afford to accommodate an antibody. This rationale may facilitate unique vaccine development and antimicrobial antibody design.

6.
J Virol ; 94(24)2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32967963

RESUMO

Human papillomavirus (HPV) is the causative agent of cervical and other epithelial cancers. Naturally occurring variants of HPV have been classified into lineages and sublineages based on their whole-genome sequences, but little is known about the impact of this diversity on the structure and function of viral gene products. The HPV capsid is an icosahedral lattice comprising 72 pentamers of the major capsid protein (L1) and the associated minor capsid protein (L2). We investigated the potential impact of this genome variation on the capsid antigenicity of lineage and sublineage variants of seven vaccine-relevant, oncogenic HPV genotypes by using a large panel of monoclonal antibodies (MAbs) raised against the L1 proteins of lineage A antigens. Each genotype had at least one variant that displayed a ≥4-fold reduced neutralizing antibody sensitivity against at least one MAb, demonstrating that naturally occurring variation can affect one or more functional antigenic determinants on the HPV capsid. For HPV16, HPV18, HPV31, and HPV45, the overall impact was of a low magnitude. For HPV33 (sublineages A2 and A3 and lineages B and C), HPV52 (lineage D), and HPV58 (lineage C), however, variant residues in the indicated lineages and sublineages reduced their sensitivity to neutralization by all MAbs by up to 1,000-fold, suggesting the presence of key antigenic determinants on the surface of these capsids. These determinants were resolved further by site-directed mutagenesis. These data improve our understanding of the impact of naturally occurring variation on the antigenicity of the HPV capsid of vaccine-relevant oncogenic HPV genotypes.IMPORTANCE Human papillomavirus (HPV) is the causative agent of cervical and some other epithelial cancers. HPV vaccines generate functional (neutralizing) antibodies that target the virus particles (or capsids) of the most common HPV cancer-causing genotypes. Each genotype comprises variant forms that have arisen over millennia and which include changes within the capsid proteins. In this study, we explored the potential for these naturally occurring variant capsids to impact recognition by neutralizing monoclonal antibodies. All genotypes included at least one variant form that exhibited reduced recognition by at least one antibody, with some genotypes affected more than others. These data highlight the impact of naturally occurring variation on the structure of the HPV capsid proteins of vaccine-relevant oncogenic HPV genotypes.


Assuntos
Alphapapillomavirus/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Proteínas do Capsídeo/imunologia , Genótipo , Vacinas contra Papillomavirus/imunologia , Alphapapillomavirus/genética , Anticorpos Monoclonais/genética , Antígenos Virais/genética , Proteínas do Capsídeo/genética , Epitopos , Genes Virais/genética , Variação Genética , Papillomavirus Humano 16/genética , Papillomavirus Humano 31/genética , Humanos , Testes de Neutralização , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/imunologia , Oncogenes , Papillomaviridae , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/genética
7.
Gut ; 69(2): 343-354, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30926653

RESUMO

OBJECTIVE: This study aimed to develop a novel therapeutic vaccine based on a unique B cell epitope and investigate its therapeutic potential against chronic hepatitis B (CHB) in animal models. METHODS: A series of peptides and carrier proteins were evaluated in HBV-tolerant mice to obtain an optimised therapeutic molecule. The immunogenicity, therapeutic efficacy and mechanism of the candidate were investigated systematically. RESULTS: Among the HBsAg-aa119-125-containing peptides evaluated in this study, HBsAg-aa113-135 (SEQ13) exhibited the most striking therapeutic effects. A novel immunoenhanced virus-like particle carrier (CR-T3) derived from the roundleaf bat HBV core antigen (RBHBcAg) was created and used to display SEQ13, forming candidate molecule CR-T3-SEQ13. Multiple copies of SEQ13 displayed on the surface of this particulate antigen promote the induction of a potent anti-HBs antibody response in mice, rabbits and cynomolgus monkeys. Sera and purified polyclonal IgG from the immunised animals neutralised HBV infection in vitro and mediated efficient HBV/hepatitis B virus surface antigen (HBsAg) clearance in the mice. CR-T3-SEQ13-based vaccination induced long-term suppression of HBsAg and HBV DNA in HBV transgenic mice and eradicated the virus completely in hydrodynamic-based HBV carrier mice. The suppressive effects on HBsAg were strongly correlated with the anti-HBs level after vaccination, suggesting that the main mechanism of CR-T3-SEQ13 vaccination therapy was the induction of a SEQ13-specific antibody response that mediated HBV/HBsAg clearance. CONCLUSIONS: The novel particulate protein CR-T3-SEQ13 suppressed HBsAg effectively through induction of a humoural immune response in HBV-tolerant mice. This B cell epitope-based therapeutic vaccine may provide a novel immunotherapeutic agent against chronic HBV infection in humans.


Assuntos
Epitopos de Linfócito B/imunologia , Antígenos de Superfície da Hepatite B/sangue , Vacinas contra Hepatite B/imunologia , Hepatite B Crônica/imunologia , Adjuvantes Imunológicos , Animais , Antivirais/uso terapêutico , Terapia Combinada , DNA Viral/sangue , Relação Dose-Resposta Imunológica , Feminino , Anticorpos Anti-Hepatite B/biossíntese , Vacinas contra Hepatite B/uso terapêutico , Vírus da Hepatite B/genética , Hepatite B Crônica/terapia , Hepatite B Crônica/virologia , Imunidade Humoral/imunologia , Imunoterapia/métodos , Macaca fascicularis , Masculino , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Coelhos
8.
J Gen Virol ; 100(2): 237-245, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30657447

RESUMO

We investigated the impact of naturally occurring variation within the major (L1) and minor (L2) capsid proteins on the antigenicity of human papillomavirus (HPV) type 52 (HPV52). L1L2 pseudoviruses (PsVs) representing HPV52 lineage and sublineage variants A1, A2, B1, B2, C and D were created and tested against serum from naturally infected individuals, preclinical antisera raised against HPV52 A1 and D virus-like particles (VLPs) and neutralising monoclonal antibodies (MAbs) raised against HPV52 A1 VLP. HPV52 lineage D PsV displayed a median 3.1 (inter-quartile range 2.0-5.6) fold lower sensitivity to antibodies elicited following natural infection with, where data were available, HPV52 lineage A. HPV52 lineage variation had a greater impact on neutralisation sensitivity to pre-clinical antisera and MAbs. Chimeric HPV52 A1 and D PsV were created which identified variant residues in the FG (Q281K) and HI (K354T, S357D) loops as being primarily responsible for the reported differential sensitivities. Homology models of the HPV52 L1 pentamer were generated which permitted mapping these residues to a small cluster on the outer rim of the surface exposed pentameric L1 protein. These data contribute to our understanding of HPV L1 variant antigenicity and may have implications for seroprevalence or vaccine immunity studies based upon HPV52 antigens.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Variação Genética , Papillomaviridae/genética , Papillomaviridae/imunologia , Humanos , Infecções por Papillomavirus/virologia , Sensibilidade e Especificidade , Testes Sorológicos
9.
J Infect Dis ; 218(10): 1611-1621, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-29905865

RESUMO

Background: Naturally occurring variants of human papillomavirus (HPV) 58 have been defined as lineages and sublineages but little is known about the impact of this diversity on protein function. We investigated the impact of variation within the major (L1) and minor (L2) capsid proteins of HPV58 on susceptibility to neutralizing antibodies. Methods: Pseudovirus (PsV) representing A1, A2, A3, B1, B2, C, D1, and D2 variants were evaluated for their susceptibility to antibodies elicited during natural infection, preclinical antisera generated against virus-like particles, and monoclonal antibodies (MAbs). Results: Lineage C PsV demonstrated a decreased sensitivity to antibodies raised against lineage A antigens. Exchange of the DE, FG, and/or HI loops between sublineage A1 and lineage C demonstrated that residues within all 3 loops were essential for the differential sensitivity to natural infection antibodies, with slightly different requirements for the animal antisera and MAbs. Comparison between the HPV58 A1 L1 pentamer crystal structure and an HPV58 C homology model indicated that these differences in neutralization sensitivity were likely due to subtle epitope sequence changes rather that major structural alterations. Conclusions: These data improve our understanding of the impact of natural variation on HPV58 capsid antigenicity and raise the possibility of lineage-specific serotypes.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo , Papillomaviridae , Infecções por Papillomavirus , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Camundongos , Testes de Neutralização , Papillomaviridae/genética , Papillomaviridae/imunologia , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/virologia , Coelhos
10.
Appl Microbiol Biotechnol ; 102(14): 5953-5964, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29740673

RESUMO

Antibody drugs have been used to treat a number of diseases successfully. Producing antibodies with high yield and quality is necessary for clinical applications of antibodies. For a candidate molecule, optimization of a vector to produce sufficient yield and an accurate primary structure is indispensable in the early stage of the production process development. It is especially important to maintain the fidelity of N-terminal sequence. In order to produce antibodies with a high yield and accurate N-terminal, the expression vector was systematically optimized in this study. First, the heavy chain and light chain were co-expressed in Chinese hamster ovary (CHO) cells with different signal peptides. Mass spectrometry (MS) revealed that signal peptides Esp-K, Bsp-H, and 8Hsp-H were accurately deleted from mature antibodies. Further, the yield was doubled by codon optimization and increased by 50% with the presence of untranslated regions (UTR). The combination of UTR with optimal codon and signal peptide to form an expression vector resulted in yield improvement of 150% and correct N-terminal sequences. Moreover, the main product peak was above 98% as assessed by size-exclusion chromatography (SEC). Additionally, the bioactivity of products made from optimized transient gene expression (TGE) was almost identical to the standard sample. The production efficiency and product quality from the identified TGE optimization strategy was further demonstrated through application to two other antibodies. The expression level of SGE (stable gene expression) can also be improved effectively with this optimization strategy. In conclusion, vector optimization via combination of optimized signal peptide, codon, and UTR is an alternative approach for efficient antibody production with high fidelity N-terminal sequence in CHO cells.


Assuntos
Anticorpos Monoclonais/biossíntese , Códon , Sinais Direcionadores de Proteínas , Regiões não Traduzidas , Animais , Anticorpos Monoclonais/genética , Células CHO , Cricetinae , Cricetulus , Vetores Genéticos , Imunoglobulina G/genética , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Leves de Imunoglobulina/genética , Espectrometria de Massas , Transfecção
11.
Rev Med Virol ; 26(2): 115-28, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26676802

RESUMO

Persistent high-risk human papillomavirus (HPV) infection is linked to cervical cancer. Two prophylactic virus-like particle (VLP)-based vaccines have been marketed globally for nearly a decade. Here, we review the HPV pseudovirion (PsV)-based assays for the functional assessment of the HPV neutralizing antibodies and the structural basis for these clinically relevant epitopes. The PsV-based neutralization assay was developed to evaluate the efficacy of neutralization antibodies in sera elicited by vaccination or natural infection or to assess the functional characteristics of monoclonal antibodies. Different antibody binding modes were observed when an antibody was complexed with virions, PsVs or VLPs. The neutralizing epitopes are localized on surface loops of the L1 capsid protein, at various locations on the capsomere. Different neutralization antibodies exert their neutralizing function via different mechanisms. Some antibodies neutralize the virions by inducing conformational changes in the viral capsid, which can result in concealing the binding site for a cellular receptor like 1A1D-2 against dengue virus, or inducing premature genome release like E18 against enterovirus 71. Higher-resolution details on the epitope composition of HPV neutralizing antibodies would shed light on the structural basis of the highly efficacious vaccines and aid the design of next generation vaccines. In-depth understanding of epitope composition would ensure the development of function-indicating assays for the comparability exercise to support process improvement or process scale up. Elucidation of the structural elements of the type-specific epitopes would enable rational design of cross-type neutralization via epitope re-engineering or epitope grafting in hybrid VLPs.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Sítios de Ligação de Anticorpos/imunologia , Proteínas do Capsídeo/imunologia , Papillomaviridae/imunologia , Epitopos/imunologia , Feminino , Humanos , Ligação Proteica/imunologia , Neoplasias do Colo do Útero/virologia
12.
Gut ; 65(4): 658-71, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26423112

RESUMO

OBJECTIVE: This study aimed to investigate the therapeutic potential of monoclonal antibody (mAb) against HBV as a novel treatment approach to chronic hepatitis B (CHB) in mouse models. METHODS: Therapeutic effects of mAbs against various epitopes on viral surface protein were evaluated in mice mimicking persistent HBV infection. The immunological mechanisms of mAb-mediated viral clearance were systematically investigated. RESULTS: Among 11 tested mAbs, a novel mAb E6F6 exhibited the most striking therapeutic effects in several HBV-persistent mice. Single-dose administration of E6F6 could profoundly suppress the levels of hepatitis B surface antigen (HBsAg) and HBV DNA for several weeks in HBV-transgenic mice. E6F6 regimen efficiently prevented initial HBV infection, and reduced viral dissemination from infected hepatocytes in human-liver-chimeric mice. E6F6-based immunotherapy facilitated the restoration of anti-HBV T-cell response in hydrodynamic injection (HDI)-based HBV carrier mice. Immunological analyses suggested that the Fcγ receptor-dependent phagocytosis plays a predominant role in E6F6-mediated viral suppression. Molecular analyses suggested that E6F6 recognises an evolutionarily conserved epitope (GPCK(R)TCT) and only forms a smaller antibody-viral particle immune complex with limited interparticle crosslinking when it binds to viral particles. This unique binding characteristic of E6F6 to HBV was possibly associated with its effective in vivo opsonophagocytosis for viral clearance. CONCLUSIONS: These results provided new insight into understanding the therapeutic role and mechanism of antibody against persistent viral infection. The E6F6-like mAbs may provide a novel immunotherapeutic agent against human chronic HBV infection.


Assuntos
Anticorpos Monoclonais/farmacologia , Antígenos de Superfície da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/efeitos dos fármacos , Hepatite B Crônica/tratamento farmacológico , Imunoterapia/métodos , Animais , DNA Viral/efeitos dos fármacos , Modelos Animais de Doenças , Epitopos , Antígenos de Superfície da Hepatite B/imunologia , Vírus da Hepatite B/imunologia , Hepatite B Crônica/imunologia , Hepatócitos/virologia , Camundongos , Camundongos Transgênicos , Fagocitose , Replicação Viral/efeitos dos fármacos
13.
Appl Microbiol Biotechnol ; 100(21): 9321-9329, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27629124

RESUMO

Varicella is a highly contagious disease caused by primary infection of Varicella zoster virus (VZV). Varicella can be severe or even lethal in susceptible adults, immunocompromised patients and neonates. Determination of the status of immunity to VZV is recommended for these high-risk populations. Furthermore, measurement of population immunity to VZV can help in developing proper varicella vaccination programmes. VZV glycoprotein E (gE) is an antigen that has been demonstrated to be a highly accurate indicator of VZV-specific immunity. In this study, recombinant gE (rgE) was used to establish a double antigen sandwich enzyme-linked immunosorbent assay (ELISA). The established sandwich ELISA showed high specificity and sensitivity in the detection of human sera, and it could detect VZV-specific antibodies at a concentration of 11.25 m IU/mL with a detection linearity interval of 11.25 to 360 m IU/mL (R 2 = 0.9985). The double gE antigen sandwich ELISA showed a sensitivity of 95.08 % and specificity of 100 % compared to the fluorescent-antibody-to-membrane-antigen (FAMA) test, and it showed a sensitivity of 100 % and a specificity of 94.74 % compared to a commercial neutralizing antibody detection kit. Thus, the established double antigen sandwich ELISA can be used as a sensitive and specific quantitative method to evaluate immunity to VZV.


Assuntos
Anticorpos Antivirais/sangue , Ensaio de Imunoadsorção Enzimática/métodos , Herpesvirus Humano 3/imunologia , Proteínas do Envelope Viral/imunologia , Humanos , Proteínas Recombinantes/imunologia , Sensibilidade e Especificidade
14.
Adv Exp Med Biol ; 948: 223-246, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27738988

RESUMO

Hepatitis E has been increasingly recognized as an underestimated global disease burden in recent years. Subpopulations with more serious infection-associated damage or death include pregnant women, patients with basic liver diseases, and elderly persons. Vaccine would be the most effective means for prevention of HEV infection. The lack of an efficient cell culture system for HEV makes the development of classic inactive or attenuated vaccine infeasible. Hence, the recombinant vaccine approaches are explored deeply. The neutralizing sites are located almost exclusively in the capsid protein, pORF2, of the virion. Based on pORF2, many vaccine candidates showed potential of protecting primate animals; two of them were tested in human and evidenced to be well tolerated in adults and highly efficacious in preventing hepatitis E. The world's first hepatitis E vaccine, Hecolin® (HEV 239 vaccine), was licensed in China and launched in 2012.


Assuntos
Vírus da Hepatite E/imunologia , Hepatite E/prevenção & controle , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Hepatite E/imunologia , Hepatite E/virologia , Vírus da Hepatite E/genética , Vírus da Hepatite E/isolamento & purificação , Humanos , Proteínas Virais/administração & dosagem , Proteínas Virais/genética , Proteínas Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
15.
Zhonghua Yu Fang Yi Xue Za Zhi ; 50(1): 85-90, 2016 Jan.
Artigo em Zh | MEDLINE | ID: mdl-26792509

RESUMO

Cervical carcinoma has brought huge burden on patients, especially in developing countries. Preventive vaccines could effectively reduce the incidence of cervical carcinoma. The high prices were one of the most difficult problem in introducing the vaccine in developing countries, so the cost-effectiveness and health financing of the vaccines should be carefully studied before incorporated into the national immunization program. Thus, researchers used mathematical models to predict the effects of HPV vaccines and to study the cost- effectiveness. In order to understand the current situation on the cost-effectiveness of HPV vaccines in the developing countries, a systematic searching of literature from PubMed, Elsevier Science Direct, Medline, ProQuest, CNKI and Wangfang Data was performed, this study aims to conduct a systematic review from aspects of project source, first author, research areas, research perspectives, prevention strategies, vaccine characteristics, cost-effectiveness.


Assuntos
Países em Desenvolvimento , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/economia , Neoplasias do Colo do Útero/prevenção & controle , Análise Custo-Benefício , Feminino , Humanos , Programas de Imunização , Incidência , Modelos Teóricos , Infecções por Papillomavirus/economia , Neoplasias do Colo do Útero/economia
16.
Appl Microbiol Biotechnol ; 99(11): 4845-53, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25935343

RESUMO

Varicella-zoster virus (VZV) is a highly infectious agent that causes varicella and herpes zoster (HZ), which may be associated with severe neuralgia. Vaccination is the most effective way to reduce the burden of the diseases. VZV glycoprotein E (gE) is the major and most immunogenic membrane protein that plays important roles in vaccine efficacy. A quantitative assay for gE content is desirable for the VZV vaccine process monitoring and product analysis. In this study, 70 monoclonal antibodies (mAbs) were obtained after immunizing mice with purified recombinant gE (rgE). The collection of mAbs was well-characterized, and a pair of high-affinity neutralization antibodies (capture mAb 4A2 and detection mAb 4H10) was selected to establish a specific and sensitive sandwich enzyme-linked immunosorbent assay (ELISA) to quantify the native and recombinant gE. The detection limit of this assay was found to be 1.95 ng/mL. Furthermore, a reasonably good correlation between the gE content (as measured by the mAb-based quantitative ELISA) and the virus titer (as measured by the "gold standard" plaque assay) was observed when both assays were performed for tracking the kinetics of virus growth during cell culture. A total of 16 batches of lyophilized VZV vaccine were tested using the newly developed quantitative ELISA and classical plaque assay, demonstrating reasonably good correlation between gE content and virus titer. Therefore, this mAb-based gE quantitative assay serves as a rapid, stable, and sensitive method for monitoring viral antigen content, one additional quantitative method for VZV vaccine process and product characterization. This quantitative ELISA may also serve as a complementary method for virus titering.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais/análise , Técnicas de Química Analítica/métodos , Vacina contra Herpes Zoster/química , Tecnologia Farmacêutica/métodos , Proteínas do Envelope Viral/análise , Animais , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Antivirais/isolamento & purificação , Ensaio de Imunoadsorção Enzimática/métodos , Vacina contra Herpes Zoster/imunologia , Camundongos , Carga Viral , Ensaio de Placa Viral
17.
J Med Virol ; 86(6): 995-1002, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24136709

RESUMO

Influenza virus still poses a major threat to human health worldwide. The nucleoprotein (NP) of influenza A virus plays an essential role in the viral replication and transcription and hence becomes a promising therapeutic target. NP forms a complicated conformation under native conditions and might denature when performing immunoassays such as western blot in the study of NP function. Therefore, it is useful to make an NP specific monoclonal antibody (mAb) that recognizes linear epitope instead of conformational epitope. In this study, a recombinant NP (rNP) of influenza A virus was over-expressed and used to generate a panel of anti-NP mAbs. These anti-NP mAbs were grouped into three classes based on their reactivity in Western blots. Only Class I mAb can react with linear rNP fragments. One of Class I mAb, 4D2, was characterized further by epitope mapping with a series of overlapping synthetic peptides, indicating that the 4D2 epitope is a surface exposed, linear epitope between amino acid residues 243 and 251. This epitope is highly conserved among different influenza A viruses with an identity of 98.4% (17,922/18,210). Western blot, co-immunoprecipitation, immunofluorescence, and immunohistochemistry experiments all indicated 4D2 is highly specific to NP of influenza A virus. The results demonstrated that 4D2 can be used as a research tool for functional study of NP in the replication cycle of influenza A virus. Further work is needed to understand the function and importance of this epitope.


Assuntos
Mapeamento de Epitopos , Epitopos de Linfócito B/imunologia , Proteínas de Ligação a RNA/imunologia , Proteínas do Core Viral/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/isolamento & purificação , Western Blotting , Sequência Conservada , Proteínas do Nucleocapsídeo
18.
J Control Release ; 367: 13-26, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244843

RESUMO

The cGAS-STING pathway and the Mevalonate Pathway are druggable targets for vaccine adjuvant discovery. Manganese (Mn) and bisphosphonates are known to exert adjuvant effects by targeting these two pathways, respectively. This study found the synergistic potential of the two pathways in enhancing immune response. Risedronate (Ris) significantly amplified the Mn adjuvant early antibody response by 166-fold and fortified its cellular immunity. However, direct combination of Mn2+ and Ris resulted in increased adjuvant toxicity (40% mouse mortality). By the combination of doping property of hydroxyapatite (HA) and its high affinity for Ris, we designed Ris-functionalized Mn-HA micro-nanoparticles as an organic-inorganic hybrid adjuvant, named MnHARis. MnHARis alleviated adjuvant toxicity (100% vs. 60% survival rate) and exhibited good long-term stability. When formulated with the varicella-zoster virus glycoprotein E (gE) antigen, MnHARis triggered a 274.3-fold increase in IgG titers and a 61.3-fold surge in neutralization titers while maintaining a better long-term humoral immunity compared to the aluminum adjuvant. Its efficacy spanned other antigens, including ovalbumin, HPV18 VLP, and SARS-CoV-2 spike protein. Notably, the cellular immunity elicited by the group of gE + MnHARis was comparable to the renowned Shingrix®. Moreover, intratumoral co-administration with an anti-trophoblast cell surface antigen 2 nanobody revealed synergistic antitumor capabilities. These findings underscore the potential of MnHARis as a potent adjuvant for augmenting vaccine immune responses and improving cancer immunotherapy outcomes.


Assuntos
Manganês , Neoplasias , Glicoproteína da Espícula de Coronavírus , Camundongos , Humanos , Animais , Ácido Risedrônico , Durapatita , Adjuvantes Imunológicos , Vacinas de Subunidades Antigênicas , Antígenos , Adjuvantes Farmacêuticos , Imunoterapia , Anticorpos Antivirais
19.
Nat Commun ; 15(1): 5310, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906867

RESUMO

Epstein-Barr virus (EBV) infects more than 95% of adults worldwide and is closely associated with various malignancies. Considering the complex life cycle of EBV, developing vaccines targeting key entry glycoproteins to elicit robust and durable adaptive immune responses may provide better protection. EBV gHgL-, gB- and gp42-specific antibodies in healthy EBV carriers contributed to sera neutralizing abilities in vitro, indicating that they are potential antigen candidates. To enhance the immunogenicity of these antigens, we formulate three nanovaccines by co-delivering molecular adjuvants (CpG and MPLA) and antigens (gHgL, gB or gp42). These nanovaccines induce robust humoral and cellular responses through efficient activation of dendritic cells and germinal center response. Importantly, these nanovaccines generate high levels of neutralizing antibodies recognizing vulnerable sites of all three antigens. IgGs induced by a cocktail vaccine containing three nanovaccines confer superior protection from lethal EBV challenge in female humanized mice compared to IgG elicited by individual NP-gHgL, NP-gB and NP-gp42. Importantly, serum antibodies elicited by cocktail nanovaccine immunization confer durable protection against EBV-associated lymphoma. Overall, the cocktail nanovaccine shows robust immunogenicity and is a promising candidate for further clinical trials.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Infecções por Vírus Epstein-Barr , Glicoproteínas , Herpesvirus Humano 4 , Animais , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/prevenção & controle , Infecções por Vírus Epstein-Barr/virologia , Anticorpos Neutralizantes/imunologia , Herpesvirus Humano 4/imunologia , Humanos , Feminino , Camundongos , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Glicoproteínas/imunologia , Glicoproteínas/administração & dosagem , Nanopartículas/administração & dosagem , Nanopartículas/química , Adjuvantes Imunológicos/administração & dosagem , Linfoma/imunologia , Linfoma/virologia , Nanovacinas
20.
J Control Release ; 365: 369-383, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37972764

RESUMO

Micro/Nano-scale particles are widely used as vaccine adjuvants to enhance immune response and improve antigen stability. While aluminum salt is one of the most common adjuvants approved for human use, its immunostimulatory capacity is suboptimal. In this study, we modified risedronate, an immunostimulant and anti-osteoporotic drug, to create zinc salt particle-based risedronate (Zn-RS), also termed particulate risedronate. Compared to soluble risedronate, micronanoparticled Zn-RS adjuvant demonstrated increased recruitment of innate cells, enhanced antigen uptake locally, and a similar antigen depot effect as aluminum salt. Furthermore, Zn-RS adjuvant directly and quickly stimulated immune cells, accelerated the formulation of germinal centers in lymph nodes, and facilitated the rapid production of antibodies. Importantly, Zn-RS adjuvant exhibited superior performance in both young and aged mice, effectively protecting against respiratory diseases such as SARS-CoV-2 challenge. Consequently, particulate risedronate showed great potential as an immune-enhancing vaccine adjuvant, particularly beneficial for vaccines targeting the susceptible elderly.


Assuntos
Adjuvantes de Vacinas , Vacinas , Animais , Camundongos , Humanos , Idoso , Ácido Risedrônico/uso terapêutico , Alumínio , Adjuvantes Imunológicos , Imunização , Antígenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA