Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(14): 10494-10505, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38517057

RESUMO

Hexagonal boron nitride possesses a unique layered structure, high specific surface area and similar electronic properties as graphene, which makes it not only a promising catalyst support, but also a highly effective metal-free catalyst in the booming field of green chemistry. Reactions involving small molecules (e.g., oxygen, low carbon alkanes, nitrogen and carbon dioxide) have always been a hot topic in catalytic research, especially associated with the adsorption and activation regime of different forms of small molecules on catalysts. In this review, we have investigated the adsorption of different small molecules and the relevant activation mechanisms of four typical chemical bonds (OO, C-H, NN, CO) on hexagonal boron nitride. Recent progress on approaches adopted to enhance the activation capacity such as doping, defect engineering and heterostructuring are summarized, highlighting the potential applications of nonmetallic hexagonal boron nitride catalysts in various reactions. This comprehensive investigation offers a reference point for the enhanced mechanistic understanding and future design of effective and sustainable catalytic systems based on boron nitride.

2.
Nat Commun ; 14(1): 1123, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849602

RESUMO

Subnanometric Cu clusters that contain only a small number of atoms exhibit unique and, often, unexpected catalytic behaviors compared with Cu nanoparticles and single atoms. However, due to the high mobility of Cu species, scalable synthesis of stable Cu clusters is still a major challenge. Herein, we report a facile and practical approach for scalable synthesis of stable supported Cu cluster catalysts. This method involves the atomic diffusion of Cu from the supported Cu nanoparticles to CeO2 at a low temperature of 200 °C to form stable Cu clusters with tailored sizes. Strikingly, these Cu clusters exhibit high yield of intermediate product (95%) in consecutive hydrogenation reactions due to their balanced adsorption of the intermediate product and dissociation of H2. The scalable synthesis strategy reported here makes the stable Cu cluster catalysts one step closer to practical semi-hydrogenation applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA