Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(43): e2307901120, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844253

RESUMO

The efficiency of transition-metal oxide materials toward oxygen-related electrochemical reactions is classically controlled by metal-oxygen hybridization. Recently, the unique magnetic exchange interactions in transition-metal oxides are proposed to facilitate charge transfer and reduce activation barrier in electrochemical reactions. Such spin/magnetism-related effects offer a new and rich playground to engineer oxide electrocatalysts, but their connection with the classical metal-oxygen hybridization theory remains an open question. Here, using the MnxVyOz family as a platform, we show that ferromagnetic (FM) ordering is intrinsically correlated with the strong manganese (Mn)-oxygen (O) hybridization of Mn oxides, thus significantly increasing the oxygen reduction reaction (ORR) activity. We demonstrate that this enhanced Mn-O hybridization in FM Mn oxides is closely associated with the generation of active Mn sites on the oxide surface and obtaining favorable reaction thermodynamics under operating conditions. As a result, FM-Mn2V2O7 with a high degree of Mn-O hybridization achieves a record high ORR activity. Our work highlights the potential applications of magnetic oxide materials with strong metal-oxygen hybridization in energy devices.

2.
J Phys Chem Lett ; : 10535-10543, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39401088

RESUMO

Adsorption configurations of molecules on a surface play an important role in the on-surface reaction. In the on-surface synthesis reaction, most of the molecules prefer the lying adsorption configuration to maximize the interaction between the molecule and substrate. In this work, we report an on-surface study of 2,3,4,5-tetrabromothiophene by scanning tunneling microscopy, density functional theory, and X-ray photoelectron spectroscopy. Due to different interactions between thiophene and metal surfaces, lying or standing configurations of 2,3,4,5-tetrabromothiophene can be selected by the choice of metal substrates. Moreover, a catalytic role of the metal substrate in the molecular reaction with lying and standing adsorption configurations is demonstrated at the molecular level. This work broadens the understanding of thiophene's configurations in surface reactions and the product diversity driven by adsorption configurations. It also offers a guiding framework for synthesizing multifunctional materials by thiophene derivatives.

3.
Front Pharmacol ; 15: 1364135, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510648

RESUMO

The rapid evolution of gene editing technology has markedly improved the outlook for treating genetic diseases. Base editing, recognized as an exceptionally precise genetic modification tool, is emerging as a focus in the realm of genetic disease therapy. We provide a comprehensive overview of the fundamental principles and delivery methods of cytosine base editors (CBE), adenine base editors (ABE), and RNA base editors, with a particular focus on their applications and recent research advances in the treatment of genetic diseases. We have also explored the potential challenges faced by base editing technology in treatment, including aspects such as targeting specificity, safety, and efficacy, and have enumerated a series of possible solutions to propel the clinical translation of base editing technology. In conclusion, this article not only underscores the present state of base editing technology but also envisions its tremendous potential in the future, providing a novel perspective on the treatment of genetic diseases. It underscores the vast potential of base editing technology in the realm of genetic medicine, providing support for the progression of gene medicine and the development of innovative approaches to genetic disease therapy.

4.
Natl Sci Rev ; 11(1): nwae015, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38328681

RESUMO

The nature of catalysis has been hotly pursued for over a century, and current research is focused on understanding active centers and their electronic structures. Herein, the concept of conductive catalysis is proposed and verified by theoretical simulations and experimental observations. Metallic systems containing buried catalytically active transitional metals and exposed catalytically inert main group metals are constructed, and the electronic interaction between them via metallic bonding is disclosed. Through the electronic interaction, the catalytic properties of subsurface transitional metals (Pd or Rh) can be transferred to outermost main group metals (Al or Mg) for several important transformations like semi-hydrogenation, Suzuki-coupling and hydroformylation. The catalytic force is conductive, in analogy with the magnetic force and electrostatic force. The traditional definition of active centers is challenged by the concept of conductive catalysis and the electronic nature of catalysis is more easily understood. It might provide new opportunities for shielding traditional active centers against poisoning or leaching and allow for precise regulation of their catalytic properties by the conductive layer.

5.
Front Mol Neurosci ; 16: 1100254, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36756614

RESUMO

Microglia are the primary resident retinal macrophages that monitor neuronal activity in real-time and facilitate angiogenesis during retinal development. In certain retinal diseases, the activated microglia promote retinal angiogenesis in hypoxia stress through neurovascular coupling and guide neovascularization to avascular areas (e.g., the outer nuclear layer and macula lutea). Furthermore, continuously activated microglia secrete inflammatory factors and expedite the loss of the blood-retinal barrier which causes irreversible damage to the secondary death of neurons. In this review, we support microglia can be a potential cellular therapeutic target in retinopathy. We briefly describe the relevance of microglia to the retinal vasculature and blood-retinal barrier. Then we discuss the signaling pathway related to how microglia move to their destinations and regulate vascular regeneration. We summarize the properties of microglia in different retinal disease models and propose that reducing the number of pro-inflammatory microglial death and conversing microglial phenotypes from pro-inflammatory to anti-inflammatory are feasible for treating retinal neovascularization and the damaged blood-retinal barrier (BRB). Finally, we suppose that the unique properties of microglia may aid in the vascularization of retinal organoids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA