Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(11)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37298352

RESUMO

Growing evidence proves that amino acid restriction can reverse obesity by reducing adipose tissue mass. Amino acids are not only the building blocks of proteins but also serve as signaling molecules in multiple biological pathways. The study of adipocytes' response to amino acid level changes is crucial. It has been reported that a low concentration of lysine suppresses lipid accumulation and transcription of several adipogenic genes in 3T3-L1 preadipocytes. However, the detailed lysine-deprivation-induced cellular transcriptomic changes and the altered pathways have yet to be fully studied. Here, using 3T3-L1 cells, we performed RNA sequencing on undifferentiated and differentiated cells, and differentiated cells under a lysine-free environment, and the data were subjected to KEGG enrichment. We found that the differentiation process of 3T3-L1 cells to adipocytes required the large-scale upregulation of metabolic pathways, mainly on the mitochondrial TCA cycle, oxidative phosphorylation, and downregulation of the lysosomal pathway. Single amino acid lysine depletion suppressed differentiation dose dependently. It disrupted the metabolism of cellular amino acids, which could be partially reflected in the changes in amino acid levels in the culture medium. It inhibited the mitochondria respiratory chain and upregulated the lysosomal pathway, which are essential for adipocyte differentiation. We also noticed that cellular interleukin 6 (IL6) expression and medium IL6 level were dramatically increased, which was one of the targets for suppressing adipogenesis induced by lysine depletion. Moreover, we showed that the depletion of some essential amino acids such as methionine and cystine could induce similar phenomena. This suggests that individual amino acid deprivation may share some common pathways. This descriptive study dissects the pathways for adipogenesis and how the cellular transcriptome was altered under lysine depletion.


Assuntos
Adipogenia , Lisina , Camundongos , Animais , Adipogenia/genética , Células 3T3-L1 , Lisina/genética , Interleucina-6/genética , Diferenciação Celular/genética , Perfilação da Expressão Gênica , PPAR gama/metabolismo
2.
Clin Exp Rheumatol ; 38(3): 543-551, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32105594

RESUMO

Rheumatoid arthritis (RA) is the most common autoimmune disease, resulting in synovitis, joint pain and stiffness, even deformity and disability. The interactions between leukotriene B4 (LTB4) and neutrophils in RA progression have not been elucidated in detail. Our review focuses on the correlation of LTB4 and neutrophils in the development of RA especially in terms of infiltration and delayed life span of neutrophils. In this article, the roles of LTB4 in the anti-apoptosis of neutrophils will be detailed, which is achieved by suppressed pro-apoptotic Bax and up-regulated anti-apoptotic Mcl-1, and several key molecules, as well as signalling pathways and factors relevant to the enhancement of LTB4 production and functions. The mechanisms of LTB4-induced anti-apoptosis and infiltration of neutrophils provide more potential targets in the treatment of RA and recent therapeutic strategies are also discussed.


Assuntos
Artrite Reumatoide/imunologia , Leucotrieno B4/imunologia , Neutrófilos/imunologia , Apoptose , Artrite Reumatoide/patologia , Humanos , Receptores do Leucotrieno B4 , Transdução de Sinais
3.
Clin Exp Rheumatol ; 37(5): 872-878, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30943138

RESUMO

Rheumatoid arthritis is a chronic autoimmune disease characterised by unbearable joint pain as well as bone and cartilage destruction. Although RA development is greatly controlled, the pain and bone damage failed to be relieved and managed. Leukotriene B4 (LTB4) has been proved to play an essential role in the induction of pain and bone damage. The nerve injury of RA can promote the production of LTB4, which act on their receptors, leading to the increased release of pro-inflammatory cytokines and ROS to reduce neuron viability and pain threshold. Moreover, LTB4-BLT1 activation can also increase intracellular calcium concentration and neuron excitability as well as NF-κB pathway activation, which further promote the production of MMP-9 and CXC3R-1. The mutual promotion between LTB4 and neutrophil accumulation accelerates the release of TNF-α and IL-ß, which enhance both peripheral and central nerve system sensitisation. LTB4 also involve in TrpV1 channel activation and modulation of P2X3 receptor activation. All above mechanisms contribute to the development of RA pain. IL-23, cPLA2 and PI3K increase the production of CD11b+Gr1high myeloid subtype and calcium concentration, which promote the production of LTB4 and further accelerate IL-17 and TNF activation as well as calcium influx to conduce to osteoclastogenesis, resulting in aggregated bone damage. Our review is the first to conclude the signalling pathways and associated molecules in LTB4-induced pain and bone damage.


Assuntos
Artrite Reumatoide , Osso e Ossos/metabolismo , Leucotrieno B4 , Dor/metabolismo , Receptores do Leucotrieno B4/metabolismo , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/terapia , Humanos , Leucotrieno B4/metabolismo , Leucotrieno B4/fisiologia , Terapia de Alvo Molecular , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA