Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.102
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 604(7905): 343-348, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35322228

RESUMO

Gene therapy is a potentially curative medicine for many currently untreatable diseases, and recombinant adeno-associated virus (rAAV) is the most successful gene delivery vehicle for in vivo applications1-3. However, rAAV-based gene therapy suffers from several limitations, such as constrained DNA cargo size and toxicities caused by non-physiological expression of a transgene4-6. Here we show that rAAV delivery of a suppressor tRNA (rAAV.sup-tRNA) safely and efficiently rescued a genetic disease in a mouse model carrying a nonsense mutation, and effects lasted for more than 6 months after a single treatment. Mechanistically, this was achieved through a synergistic effect of premature stop codon readthrough and inhibition of nonsense-mediated mRNA decay. rAAV.sup-tRNA had a limited effect on global readthrough at normal stop codons and did not perturb endogenous tRNA homeostasis, as determined by ribosome profiling and tRNA sequencing, respectively. By optimizing the AAV capsid and the route of administration, therapeutic efficacy in various target tissues was achieved, including liver, heart, skeletal muscle and brain. This study demonstrates the feasibility of developing a toolbox of AAV-delivered nonsense suppressor tRNAs operating on premature termination codons (AAV-NoSTOP) to rescue pathogenic nonsense mutations and restore gene function under endogenous regulation. As nonsense mutations account for 11% of pathogenic mutations, AAV-NoSTOP can benefit a large number of patients. AAV-NoSTOP obviates the need to deliver a full-length protein-coding gene that may exceed the rAAV packaging limit, elicit adverse immune responses or cause transgene-related toxicities. It therefore represents a valuable addition to gene therapeutics.


Assuntos
Códon sem Sentido , Dependovirus , Terapia Genética , Adenoviridae , Animais , Códon sem Sentido/genética , Códon de Terminação/genética , Códon de Terminação/metabolismo , Dependovirus/genética , Doenças Genéticas Inatas/terapia , Vetores Genéticos , Humanos , Camundongos , Degradação do RNAm Mediada por Códon sem Sentido/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo
2.
Nature ; 609(7927): 616-621, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35917926

RESUMO

The PIN-FORMED (PIN) protein family of auxin transporters mediates polar auxin transport and has crucial roles in plant growth and development1,2. Here we present cryo-electron microscopy structures of PIN3 from Arabidopsis thaliana in the apo state and in complex with its substrate indole-3-acetic acid and the inhibitor N-1-naphthylphthalamic acid (NPA). A. thaliana PIN3 exists as a homodimer, and its transmembrane helices 1, 2 and 7 in the scaffold domain are involved in dimerization. The dimeric PIN3 forms a large, joint extracellular-facing cavity at the dimer interface while each subunit adopts an inward-facing conformation. The structural and functional analyses, along with computational studies, reveal the structural basis for the recognition of indole-3-acetic acid and NPA and elucidate the molecular mechanism of NPA inhibition on PIN-mediated auxin transport. The PIN3 structures support an elevator-like model for the transport of auxin, whereby the transport domains undergo up-down rigid-body motions and the dimerized scaffold domains remain static.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestrutura , Arabidopsis/química , Arabidopsis/metabolismo , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/ultraestrutura , Transporte Biológico/efeitos dos fármacos , Microscopia Crioeletrônica , Ácidos Indolacéticos/química , Ácidos Indolacéticos/metabolismo , Ftalimidas/química , Ftalimidas/farmacologia , Domínios Proteicos , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(52): e2311673120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38109541

RESUMO

The unbalanced immune state is the dominant feature of myocardial injury. However, the complicated pathology of cardiovascular diseases and the unique structure of cardiac tissue lead to challenges for effective immunoregulation therapy. Here, we exploited oral fullerene nanoscavenger (OFNS) to maintain intestinal redox homeostasis to resolve systemic inflammation for effectively preventing distal myocardial injury through bidirectional communication along the heart-gut immune axis. Observably, OFNS regulated redox microenvironment to repair cellular injury and reduce inflammation in vitro. Subsequently, OFNS prevented myocardial injury by regulating intestinal redox homeostasis and recovering epithelium barrier integrity in vivo. Based on the profiles of transcriptomics and proteomics, we demonstrated that OFNS balanced intestinal and systemic immune homeostasis for remote cardioprotection. Of note, we applied this principle to intervene myocardial infarction in mice and mini-pigs. These findings highlight that locally addressing intestinal redox to inhibit systemic inflammation could be a potent strategy for resolving remote tissue injury.


Assuntos
Fulerenos , Infarto do Miocárdio , Suínos , Camundongos , Animais , Fulerenos/farmacologia , Porco Miniatura , Inflamação/patologia , Infarto do Miocárdio/prevenção & controle , Homeostase , Mucosa Intestinal
4.
Bioinformatics ; 40(8)2024 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-39180771

RESUMO

MOTIVATION: A key challenge in metabolomics is annotating measured spectra from a biological sample with chemical identities. Currently, only a small fraction of measurements can be assigned identities. Two complementary computational approaches have emerged to address the annotation problem: mapping candidate molecules to spectra, and mapping query spectra to molecular candidates. In essence, the candidate molecule with the spectrum that best explains the query spectrum is recommended as the target molecule. Despite candidate ranking being fundamental in both approaches, limited prior works incorporated rank learning tasks in determining the target molecule. RESULTS: We propose a novel machine learning model, Ensemble Spectral Prediction (ESP), for metabolite annotation. ESP takes advantage of prior neural network-based annotation models that utilize multilayer perceptron (MLP) networks and Graph Neural Networks (GNNs). Based on the ranking results of the MLP- and GNN-based models, ESP learns a weighting for the outputs of MLP and GNN spectral predictors to generate a spectral prediction for a query molecule. Importantly, training data is stratified by molecular formula to provide candidate sets during model training. Further, baseline MLP and GNN models are enhanced by considering peak dependencies through label mixing and multi-tasking on spectral topic distributions. When trained on the NIST 2020 dataset and evaluated on the relevant candidate sets from PubChem, ESP improves average rank by 23.7% and 37.2% over the MLP and GNN baselines, respectively, demonstrating performance gain over state-of-the-art neural network approaches. However, MLP approaches remain strong contenders when considering top five ranks. Importantly, we show that annotation performance is dependent on the training dataset, the number of molecules in the candidate set and candidate similarity to the target molecule. AVAILABILITY AND IMPLEMENTATION: The ESP code, a trained model, and a Jupyter notebook that guide users on using the ESP tool is available at https://github.com/HassounLab/ESP.


Assuntos
Aprendizado de Máquina , Metabolômica , Redes Neurais de Computação , Metabolômica/métodos , Algoritmos , Metaboloma
5.
J Proteome Res ; 23(6): 1960-1969, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38770571

RESUMO

Peptide identification is important in bottom-up proteomics. Post-translational modifications (PTMs) are crucial in regulating cellular activities. Many database search methods have been developed to identify peptides with PTMs and characterize the PTM patterns. However, the PTMs on peptides hinder the peptide identification rate and the PTM characterization precision, especially for peptides with multiple PTMs. To address this issue, we present a sensitive open search engine, PIPI2, with much better performance on peptides with multiple PTMs than other methods. With a greedy approach, we simplify the PTM characterization problem into a linear one, which enables characterizing multiple PTMs on one peptide. On the simulation data sets with up to four PTMs per peptide, PIPI2 identified over 90% of the spectra, at least 56% more than five other competitors. PIPI2 also characterized these PTM patterns with the highest precision of 77%, demonstrating a significant advantage in handling peptides with multiple PTMs. In the real applications, PIPI2 identified 30% to 88% more peptides with PTMs than its competitors.


Assuntos
Bases de Dados de Proteínas , Peptídeos , Processamento de Proteína Pós-Traducional , Proteômica , Ferramenta de Busca , Peptídeos/química , Peptídeos/metabolismo , Proteômica/métodos , Humanos , Software , Sequência de Aminoácidos , Algoritmos
6.
Clin Immunol ; 260: 109919, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38309448

RESUMO

Chronic granulomatous disease (CGD) in children is a rare primary immunodeficiency disorder that can lead to life-threatening infections and inflammatory complications. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is increasingly being used to treat severe CGD in children. We conducted a multicenter retrospective analysis of children with CGD who were treated with allo-HSCT at four pediatric hematopoietic stem cell transplant centers in China from September 2005 to December 2019. The study included a total of 171 patients (169 males and 2 females). The median age at the time of transplantation was 6.1 (0-16.4) years. Among them, 154 patients had X-linked recessive inheritance caused by CYBB gene mutations, 12 patients were autosomal recessive, 1 patient had DNAH11 and HYDIN gene mutations, and 4 patients had no gene mutations. The median follow-up period was 36.3 (1.9-79) months. All participating patients were applied to myeloablative conditioning (MAC) regimens. The rates of OS, EFS, and GEFS within three years were 87.5%, 85.3%, and 75.2%, respectively. The total graft failure and the total mortality rate were 5.3% and 11.1%. The cumulative incidence of acute GVHD was 53.8% and the incidence of chronic GVHD was 12.9%, The incidence of chronic GVHD was higher for patients who received unrelated donor cord blood stem cell transplantation (UD-CB) (P = 0.001). Chronic GVHD and coinfections are the risk factors for OS and EFS in patients with CGD after receiving allo-HSCT. UD-CB is a risk factor for EFS and the presence of pneumonia before transplantation is a risk factor for OS. In conclusion, through this study, we have demonstrated that allo-HSCT has excellent efficacy in the treatment of CGD in children, especially, RD-haplo is associated with a lower rate of graft failure incidence and mortality than the treatment modalities of other donor type. Therefore, allo-HSCT is strongly recommended when a well-matched donor is available. If a well-matched donor is not available, the HLA-mismatched donor should be carefully evaluated, and the conditioning regimen modified accordingly.


Assuntos
Doença Enxerto-Hospedeiro , Doença Granulomatosa Crônica , Transplante de Células-Tronco Hematopoéticas , Masculino , Criança , Feminino , Humanos , Adolescente , Estudos Retrospectivos , Doença Granulomatosa Crônica/genética , Doença Granulomatosa Crônica/terapia , Doença Granulomatosa Crônica/complicações , Doença Enxerto-Hospedeiro/etiologia , Doadores não Relacionados , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , China , Condicionamento Pré-Transplante
7.
Respir Res ; 25(1): 89, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341529

RESUMO

BACKGROUND: The morbidity and mortality among hospital inpatients with AECOPD and CVDs remains unacceptably high. Currently, no risk score for predicting mortality has been specifically developed in patients with AECOPD and CVDs. We therefore aimed to derive and validate a simple clinical risk score to assess individuals' risk of poor prognosis. STUDY DESIGN AND METHODS: We evaluated inpatients with AECOPD and CVDs in a prospective, noninterventional, multicenter cohort study. We used multivariable logistic regression analysis to identify the independent prognostic risk factors and created a risk score model according to patients' data from a derivation cohort. Discrimination was evaluated by the area under the receiver-operating characteristic curve (AUC), and calibration was assessed by the Hosmer-Lemeshow goodness-of-fit test. The model was validated and compared with the BAP-65, CURB-65, DECAF and NIVO models in a validation cohort. RESULTS: We derived a combined risk score, the ABCDMP score, that included the following variables: age > 75 years, BUN > 7 mmol/L, consolidation, diastolic blood pressure ≤ 60 mmHg, mental status altered, and pulse > 109 beats/min. Discrimination (AUC 0.847, 95% CI, 0.805-0.890) and calibration (Hosmer‒Lemeshow statistic, P = 0.142) were good in the derivation cohort and similar in the validation cohort (AUC 0.811, 95% CI, 0.755-0.868). The ABCDMP score had significantly better predictivity for in-hospital mortality than the BAP-65, CURB-65, DECAF, and NIVO scores (all P < 0.001). Additionally, the new score also had moderate predictive performance for 3-year mortality and can be used to stratify patients into different management groups. CONCLUSIONS: The ABCDMP risk score could help predict mortality in AECOPD and CVDs patients and guide further clinical research on risk-based treatment. CLINICAL TRIAL REGISTRATION: Chinese Clinical Trail Registry NO.:ChiCTR2100044625; URL: http://www.chictr.org.cn/showproj.aspx?proj=121626 .


Assuntos
Doenças Cardiovasculares , Doença Pulmonar Obstrutiva Crônica , Humanos , Idoso , Estudos de Coortes , Doenças Cardiovasculares/diagnóstico , Estudos Prospectivos , Fatores de Risco , Mortalidade Hospitalar , Estudos Retrospectivos
8.
Phys Rev Lett ; 132(22): 221802, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38877918

RESUMO

To enhance the scientific discovery power of high-energy collider experiments, we propose and realize the concept of jet-origin identification that categorizes jets into five quark species (b,c,s,u,d), five antiquarks (b[over ¯],c[over ¯],s[over ¯],u[over ¯],d[over ¯]), and the gluon. Using state-of-the-art algorithms and simulated νν[over ¯]H,H→jj events at 240 GeV center-of-mass energy at the electron-positron Higgs factory, the jet-origin identification simultaneously reaches jet flavor tagging efficiencies ranging from 67% to 92% for bottom, charm, and strange quarks and jet charge flip rates of 7%-24% for all quark species. We apply the jet-origin identification to Higgs rare and exotic decay measurements at the nominal luminosity of the Circular Electron Positron Collider and conclude that the upper limits on the branching ratios of H→ss[over ¯],uu[over ¯],dd[over ¯] and H→sb,db,uc,ds can be determined to 2×10^{-4} to 1×10^{-3} at 95% confidence level. The derived upper limit for H→ss[over ¯] decay is approximately 3 times the prediction of the standard model.

9.
BMC Cancer ; 24(1): 438, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594670

RESUMO

PURPOSE: Based on the quantitative and qualitative features of CT imaging, a model for predicting the invasiveness of ground-glass nodules (GGNs) was constructed, which could provide a reference value for preoperative planning of GGN patients. MATERIALS AND METHODS: Altogether, 702 patients with GGNs (including 748 GGNs) were included in this study. The GGNs operated between September 2020 and July 2022 were classified into the training group (n = 555), and those operated between August 2022 and November 2022 were classified into the validation group (n = 193). Clinical data and the quantitative and qualitative features of CT imaging were harvested from these patients. In the training group, the quantitative and qualitative characteristics in CT imaging of GGNs were analyzed by using performing univariate and multivariate logistic regression analyses, followed by constructing a nomogram prediction model. The differentiation, calibration, and clinical practicability in both the training and validation groups were assessed by the nomogram models. RESULTS: In the training group, multivariate logistic regression analysis disclosed that the maximum diameter (OR = 4.707, 95%CI: 2.06-10.758), consolidation/tumor ratio (CTR) (OR = 1.027, 95%CI: 1.011-1.043), maximum CT value (OR = 1.025, 95%CI: 1.004-1.047), mean CT value (OR = 1.035, 95%CI: 1.008-1.063; P = 0.012), spiculation sign (OR = 2.055, 95%CI: 1.148-3.679), and vascular convergence sign (OR = 2.508, 95%CI: 1.345-4.676) were independent risk parameters for invasive adenocarcinoma. Based on these findings, we established a nomogram model for predicting the invasiveness of GGN, and the AUC was 0.910 (95%CI: 0.885-0.934) and 0.902 (95%CI: 0.859-0.944) in the training group and the validation group, respectively. The internal validation of the Bootstrap method showed an AUC value of 0.905, indicating a good differentiation of the model. Hosmer-Lemeshow goodness of fit test for the training and validation groups indicated that the model had a good fitting effect (P > 0.05). Furthermore, the calibration curve and decision analysis curve of the training and validation groups reflected that the model had a good calibration degree and clinical practicability. CONCLUSION: Combined with the quantitative and qualitative features of CT imaging, a nomogram prediction model can be created to forecast the invasiveness of GGNs. This model has good prediction efficacy for the invasiveness of GGNs and can provide help for the clinical management and decision-making of GGNs.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/cirurgia , Neoplasias Pulmonares/patologia , Nomogramas , Tomografia Computadorizada por Raios X/métodos , Invasividade Neoplásica/patologia , Adenocarcinoma de Pulmão/diagnóstico por imagem , Adenocarcinoma de Pulmão/cirurgia , Adenocarcinoma de Pulmão/patologia , Estudos Retrospectivos
10.
J Magn Reson Imaging ; 59(1): 242-252, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37183807

RESUMO

BACKGROUND: Cognitive impairment frequently occurs in patients with brain metastases (BM) after whole-brain radiotherapy (WBRT). It is crucial to explore the underlying mechanisms of cognitive impairment in BM patients receiving WBRT. PURPOSE: To detect brain microstructural alterations in patients after WBRT by neurite orientation dispersion and density imaging (NODDI), and evaluate the performance of microstructural alterations in predicting cognitive impairment. STUDY TYPE: Prospective. POPULATION: Twenty-six patients (seven female; mean age, 60.9 years). FIELD STRENGTH/SEQUENCE: 3-T, multi-shell diffusion-weighted single-shot echo-planar sequence. Three-dimensional magnetization-prepared rapid acquisition with gradient echo sequence. ASSESSMENT: Mini-mental state examination (MMSE) evaluations were conducted prior to, following, 1 and 3 months after WBRT. The diffusion data were collected twice, 1 week before and 1 week after WBRT. NODDI analysis was conducted to assess microstructural alterations in whole brain (orientation dispersion index, neurite density index, volume fraction of isotropic water molecules). Reliable change indices (RCI) of MMSE were used to measure cognitive decline. The performance of support vector machine models based on NODDI parameters and clinical features (prednisone usage, tumor volume, etc.) in predicting MMSE-RCI was evaluated. STATISTICAL TESTS: Paired t-test to assess alterations of NODDI measures and MMSE during follow-up. Statistical significance level of P-value <0.05. RESULTS: Significantly decreased MMSE score was found at 3 months after WBRT. After WBRT, corpus callosum, medial prefrontal cortex, limbic lobe, occipital lobe, parietal lobe, putamen, globus pallidus lentiform, and thalamus demonstrated damage in NODDI parameters. The predicted MMSE-RCI based on NODDI features was significantly associated with the measured MMSE-RCI at 1 month (R = 0.573; P = 0.003) and 3 months (R = 0.687; P < 0.0001) after WBRT. DATA CONCLUSION: Microstructural alterations in several brain regions including the middle prefrontal and limbic cortexes were observed in patients with BM following WBRT, which may contribute to subsequent cognitive decline. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.


Assuntos
Neoplasias Encefálicas , Disfunção Cognitiva , Humanos , Feminino , Pessoa de Meia-Idade , Neuritos/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patologia , Estudos Prospectivos , Irradiação Craniana , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imagem de Tensor de Difusão/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia
11.
Langmuir ; 40(29): 14749-14765, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38989975

RESUMO

Motivated by the remarkable innate characteristics of cells in living organisms, we have found that hybrid materials that combine bioorganisms with nanomaterials have significantly propelled advancements in industrial applications. However, the practical deployment of unmodified living entities is inherently limited due to their sensitivity to environmental fluctuations. To surmount these challenges, an efficacious strategy for the biomimetic mineralization of living organisms with nanomaterials has emerged, demonstrating extraordinary potential in biotechnology. Among them, innovative composites have been engineered by enveloping bioorganisms with a metal-organic framework (MOF) coating. This review systematically summarizes the latest developments in living cells/MOF-based composites, detailing the methodologies employed in structure fabrication and their diverse applications, such as bioentity preservation, sensing, catalysis, photoluminescence, and drug delivery. Moreover, the synergistic benefits arising from the individual compounds are elucidated. This review aspires to illuminate new prospects for fabricating living cells/MOF composites and concludes with a perspective on the prevailing challenges and impending opportunities for future research in this field.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Humanos , Animais
12.
Pharmacol Res ; 206: 107252, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945380

RESUMO

Adagrasib (MRTX849), an approved and promising KRAS G12C inhibitor, has shown the promising results for treating patients with advanced non-small cell lung cancer (NSCLC) or colorectal cancer (CRC) harboring KRAS-activating mutations. However, emergence of the acquired resistance limits its long-term efficacy and clinical application. Further understanding of the mechanism of the acquired resistance is crucial for developing more new effective therapeutic strategies. Herein, we firstly found a new connection between the acquired resistance to MRTX849 and nuclear factor erythroid 2-related factor 2 (Nrf2). The expression levels of Nrf2 and GLS1 proteins were substantially elevated in different CRC cell lines with the acquired resistance to MRTX849 in comparison with their corresponding parental cell lines. Next, we discovered that RA-V, one of natural cyclopeptides isolated from the roots of Rubia yunnanensis, could restore the response of resistant CRC cells to MRTX849. The results of molecular mechanisms showed that RA-V suppressed Nrf2 protein through the ubiquitin-proteasome-dependent degradation, leading to the induction of oxidative and ER stress, and DNA damage in CRC cell lines. Consequently, RA-V reverses the resistance to MRTX849 by inhibiting the Nrf2/GLS1 axis, which shows the potential for further developing into one of novel adjuvant therapies of MRTX849.


Assuntos
Neoplasias Colorretais , Fator 2 Relacionado a NF-E2 , Peptídeos Cíclicos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Linhagem Celular Tumoral , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Animais , Antineoplásicos Fitogênicos/farmacologia , Camundongos Nus
13.
Pharmacol Res ; 201: 107084, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295915

RESUMO

The endocytic trafficking pathway is a highly organized cellular program responsible for the regulation of membrane components and uptake of extracellular substances. Molecules internalized into the cell through endocytosis will be sorted for degradation or recycled back to membrane, which is determined by a series of sorting events. Many receptors, enzymes, and transporters on the membrane are strictly regulated by endocytic trafficking process, and thus the endocytic pathway has a profound effect on cellular homeostasis. However, the endocytic trafficking process is typically dysregulated in cancers, which leads to the aberrant retention of receptor tyrosine kinases and immunosuppressive molecules on cell membrane, the loss of adhesion protein, as well as excessive uptake of nutrients. Therefore, hijacking endocytic trafficking pathway is an important approach for tumor cells to obtain advantages of proliferation and invasion, and to evade immune attack. Here, we summarize how dysregulated endocytic trafficking process triggers tumorigenesis and progression from the perspective of several typical cancer hallmarks. The impact of endocytic trafficking pathway to cancer therapy efficacy is also discussed.


Assuntos
Neoplasias , Transdução de Sinais , Humanos , Transdução de Sinais/fisiologia , Neoplasias/metabolismo , Endocitose/fisiologia , Membrana Celular/metabolismo , Transporte Proteico
14.
Parasite Immunol ; 46(8-9): e13061, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39313941

RESUMO

Hepatic ischaemia-reperfusion (I/R) injury is a frequent and nearly inevitable pathophysiological process without widely accepted effective therapy. Soluble egg antigen (SEA) of Schistosoma japonicum (S. japonicum) is the main mediators capable of regulating immunological activities and has received increased attention in immune-mediated diseases. But its role in hepatic I/R injury has not been well defined. This study aimed to elucidate whether SEA protects liver against hepatic I/R injury and explore underlying mechanism. After intraperitoneal injecting SEA three times a week for 4 weeks, mice underwent 70% hepatic I/R injury. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), haematoxylin-eosin (HE) and TdT-mediated dUTP nick-end labelling (TUNEL) staining were used to evaluate liver injury. The severity related to the inflammatory response was also investigated. Furthermore, immunofluorescence was used to detect macrophage polarisation. Compared with the hepatic I/R injury group, SEA pretreatment significantly alleviated hepatic I/R injury induced liver damage, apoptosis and inflammatory. Interestingly, SEA enhanced the polarisation of macrophages towards M2 macrophages in vivo. We are the first to investigate the therapeutic efficacy of S. japonicum SEA in a hepatic I/R injury model in mice. We provided the first direct evidence that SEA attenuated hepatic I/R injury by promoting M2 macrophage polarisation.


Assuntos
Fígado , Macrófagos , Traumatismo por Reperfusão , Animais , Traumatismo por Reperfusão/imunologia , Camundongos , Macrófagos/imunologia , Fígado/patologia , Fígado/imunologia , Antígenos de Helmintos/imunologia , Masculino , Schistosoma japonicum/imunologia , Modelos Animais de Doenças , Apoptose , Aspartato Aminotransferases/sangue , Alanina Transaminase/sangue , Camundongos Endogâmicos C57BL
15.
Cerebrovasc Dis ; 53(5): 579-587, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38113871

RESUMO

BACKGROUND: The relationship between ischemic stroke (IS) and lipoprotein-associated phospholipase A2 (Lp-PLA2) activity is still unclear, and there is a dearth of stratified research on the relationship between Lp-PLA2 activity and different IS subtypes. Therefore, Mendelian randomization (MR) was used in this study to examine the relationship between genetically proxied Lp-PLA2 activity and the risks of IS and its subtypes. METHODS: Based on information from a meta-analysis of genome-wide association studies, which included 13,664 European people, five single nucleotide polymorphisms related to Lp-PLA2 activity were chosen as instrumental variables. Summary statistics information about the MEGESTROKE consortium with the European group (40,585 cases and 406,111 controls) include any IS (AIS; n = 34,217), large-artery stroke (LAS; n = 4,373), cardioembolic stroke (CES; n = 7,193), and small-vessel stroke (SVS; n = 5,386). In order to determine the causal relationships between Lp-PLA2 activity and IS as well as its subtypes, the inverse-variance-weighted (IVW) approach was chosen as the primary analysis. Significant estimates were then tested by sensitivity analysis to rule out heterogeneity and pleiotropy. RESULTS: IVW showed that Lp-PLA2 activity was causally associated with LAS (odds ratio = 3.25, 95% confidence interval = 1.65-6.41, p = 0.0007) but not with other subtypes of stroke. Sensitivity analysis for causal estimates between Lp-PLA2 activity and LAS showed no significant heterogeneity or pleiotropy. CONCLUSIONS: These MR analyses support a causal effect of Lp-PLA2 activity on LAS but not on AIS, CES, or SVS, which suggests that serum Lp-PLA2 activity might be a biomarker for prediction of LAS.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , AVC Isquêmico , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Humanos , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , 1-Alquil-2-acetilglicerofosfocolina Esterase/sangue , AVC Isquêmico/genética , AVC Isquêmico/sangue , AVC Isquêmico/diagnóstico , Fatores de Risco , Medição de Risco , Fenótipo , Estudos de Casos e Controles , Fosfolipases A2 do Grupo VI
16.
Environ Sci Technol ; 58(26): 11514-11524, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38757358

RESUMO

PFAS (poly- and per-fluorinated alkyl substances) represent a large family of recalcitrant organic compounds that are widely used and pose serious threats to human and ecosystem health. Here, palladium (Pd0)-catalyzed defluorination and microbiological mineralization were combined in a denitrifying H2-based membrane biofilm reactor to remove co-occurring perfluorooctanoic acid (PFOA) and nitrate. The combined process, i.e., Pd-biofilm, enabled continuous removal of ∼4 mmol/L nitrate and ∼1 mg/L PFOA, with 81% defluorination of PFOA. Metagenome analysis identified bacteria likely responsible for biodegradation of partially defluorinated PFOA: Dechloromonas sp. CZR5, Kaistella koreensis, Ochrobacterum anthropic, and Azospira sp. I13. High-performance liquid chromatography-quadrupole time-of-flight mass spectrometry and metagenome analyses revealed that the presence of nitrate promoted microbiological oxidation of partially defluorinated PFOA. Taken together, the results point to PFOA-oxidation pathways that began with PFOA adsorption to Pd0, which enabled catalytic generation of partially or fully defluorinated fatty acids and stepwise oxidation and defluorination by the bacteria. This study documents how combining catalysis and microbiological transformation enables the simultaneous removal of PFOA and nitrate.


Assuntos
Biotransformação , Nitratos , Paládio , Nitratos/metabolismo , Paládio/química , Paládio/metabolismo , Catálise , Poluentes Químicos da Água/metabolismo , Fluorocarbonos/metabolismo , Caprilatos/metabolismo , Biodegradação Ambiental
17.
Environ Sci Technol ; 58(2): 1390-1398, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38165826

RESUMO

The efficient transfer of H2 plays a critical role in catalytic hydrogenation, particularly for the removal of recalcitrant contaminants from water. One of the most persistent contaminants, perfluorooctanoic acid (PFOA), was used to investigate how the method of H2 transfer affected the catalytic hydrodefluorination ability of elemental palladium nanoparticles (Pd0NPs). Pd0NPs were synthesized through an in situ autocatalytic reduction of Pd2+ driven by H2 from the membrane. The Pd0 nanoparticles were directly deposited onto the membrane fibers to form the catalyst film. Direct delivery of H2 to Pd0NPs through the walls of nonporous gas transfer membranes enhanced the hydrodefluorination of PFOA, compared to delivering H2 through the headspace. A higher H2 lumen pressure (20 vs 5 psig) also significantly increased the defluorination rate, although 5 psig H2 flux was sufficient for full reductive defluorination of PFOA. Calculations made using density functional theory (DFT) suggest that subsurface hydrogen delivered directly from the membrane increases and accelerates hydrodefluorination by creating a higher coverage of reactive hydrogen species on the Pd0NP catalyst compared to H2 delivery through the headspace. This study documents the crucial role of the H2 transfer method in the catalytic hydrogenation of PFOA and provides mechanistic insights into how membrane delivery accelerates hydrodefluorination.


Assuntos
Caprilatos , Fluorocarbonos , Nanopartículas Metálicas , Paládio , Hidrogênio
18.
Bioorg Med Chem ; 99: 117595, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244254

RESUMO

Nicotinamide phosphoribosyltransferase (NAMPT) is a key rate-limiting enzyme in the nicotinamide adenine dinucleotide (NAD+) salvage pathway, primarily catalyzing the synthesis of nicotinamide mononucleotide (NMN) from nicotinamide (NAM), phosphoribosyl pyrophosphate (PRPP), and adenosine triphosphate (ATP). Metabolic diseases, aging-related diseases, inflammation, and cancers can lead to abnormal expression levels of NAMPT due to the pivotal role of NAD+ in redox metabolism, aging, the immune system, and DNA repair. In addition, NAMPT can be secreted by cells as a cytokine that binds to cell membrane receptors to regulate intracellular signaling pathways. Furthermore, NAMPT is able to reduce therapeutic efficacy by enhancing acquired resistance to chemotherapeutic agents. Recently, a few novel activators and inhibitors of NAMPT for neuroprotection and anti-tumor have been reported, respectively. However, NAMPT activators are still in preclinical studies, and only five NAMPT inhibitors have entered the clinical stage, unfortunately, three of which were terminated or withdrawn due to safety concerns. Novel drug design strategies such as proteolytic targeting chimera (PROTAC), antibody-drug conjugate (ADC), and dual-targeted inhibitors also provide new directions for the development of NAMPT inhibitors. In this perspective, we mainly discuss the structure, biological function, and role of NAMPT in diseases and the currently discovered activators and inhibitors. It is our hope that this work will provide some guidance for the future design and optimization of NAMPT activators and inhibitors.


Assuntos
NAD , Neoplasias , Humanos , NAD/metabolismo , Nicotinamida Fosforribosiltransferase , Citocinas/metabolismo , Niacinamida , Descoberta de Drogas , Neoplasias/tratamento farmacológico
19.
J Fluoresc ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691280

RESUMO

A novel fluorescent sensor for the detection of Cu2+ was developed based on carbazole derivatives. After the addition of Cu2+, the sensor exhibited obvious fluorescence quenching phenomenon, and the optical signal variation also enabled the sensor to quantitatively analyze Cu2+ due to the formation of a stable 1:1 metal-ligand complex in a short time. In addition, the sensor possessed chemical reversibility and pH stability. The cell imaging and zebra fish experiments also verified its application value in biological system.

20.
Mol Biol Rep ; 51(1): 113, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227102

RESUMO

BACKGROUND: Essential tremor (ET) is a neurological disease characterized by action tremor in upper arms. Although its high heritability and prevalence worldwide, its etiology and association with other diseases are still unknown. METHOD: We investigated 10 common spinocerebellar ataxias (SCAs), including SCA1, SCA2, SCA3, SCA6, SCA7, SCA8, SCA12, SCA17, SCA36, dentatorubral-pallidoluysian atrophy (DRPLA) in 92 early-onset familial ET pedigrees in China collected from 2016 to 2022. RESULT: We found one SCA12 proband carried 51 CAG repeats within PPP2R2B gene and one SCA3 proband with intermediate CAG repeats (55) with ATXN3 gene. The other 90 ET probands all had normal repeat expansions. CONCLUSION: Tremor can be the initial phenotype of certain SCA. For early-onset, familial ET patients, careful physical examinations are needed before genetic SCA screening.


Assuntos
Tremor Essencial , Ataxias Espinocerebelares , Humanos , Tremor Essencial/epidemiologia , Tremor Essencial/genética , China/epidemiologia , Ataxias Espinocerebelares/epidemiologia , Ataxias Espinocerebelares/genética , Nucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA