Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 19(5)2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29735884

RESUMO

Malignant ascites is a highly severe and intractable complication of advanced or recurrent malignant tumors that is often immunotherapy-resistant. Rhizoma Pleionis is widely used in traditional medicine as an antimicrobial and anticancer agent, but its effectiveness in treating malignant ascites is unclear. In the current study, we investigated the effect of polysaccharides isolated from Rhizoma Pleionis (PRP) on murine hepatocarcinoma H22 cells in an ascites model. We have found that the main components of PRP, that presented a relative molecular weight of 383.57 kDa, were mannose and glucose. We also found that PRP reduced the occurrence of abdominal ascites and increased survival in our mouse model. An immune response in the ascites tumor model was observed by performing a lymphocytes proliferation experiment and an E-rosette test. The ratios of CD8+ cytotoxic T cells and NK cells in the spleen were examined by flow cytometry, and the mRNA expression of Foxp3+in CD4⁺CD25⁺ (T regulatory Tregs) was measured by RT-PCR (reverse transcription-polymerase chain reaction). The levels of the cytokines TNF-α (tumor necrosis factor), VEGF (vascular endothelial growth factor), IL-2 (interleukin), and IFN-γ (interferon) in the serum and ascites supernatants were measured by ELISA. The expression of Foxp3 and Stat3 in peritoneal cells in the mouse model was measured by immunocytochemistry. The results indicated that PRP increased H22 tumor cell apoptosis in vivo by activating and enhancing the immune response. Furthermore, the effects of PRP on the proliferation of H22 cells were assessed by the CCK8 assay, Hoechest 33258, and TUNEL staining in vitro. We found that PRP suppressed the proliferation of H22 tumor cells but had no effect on BRL (Big rat liver) -3A rat hepatoma normal cells in vitro. Next, we investigated the underlying immunological mechanism by which PRP inhibits malignant ascites. PRP induced tumor cell apoptosis by inhibiting the Jak1⁻Stat3 pathway and by activating Caspase-3 and Caspase-8 to increase the Bax/Bcl-2 ratio. Collectively, our results indicate that PRP exhibits significant antitumor properties in H22 cells in vivo and in vitro, indicating that PRP may be used as a new therapeutic drug for cancer treatment.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Ascite/tratamento farmacológico , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Orchidaceae/química , Polissacarídeos/uso terapêutico , Animais , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Ascite/patologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Polissacarídeos/química , Rizoma/química
2.
Sci China Life Sci ; 66(8): 1818-1830, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36598621

RESUMO

Multivalent vaccines combining crucial mutations from phylogenetically divergent variants could be an effective approach to defend against existing and future SARS-CoV-2 variants. In this study, we developed a tetravalent COVID-19 vaccine SCTV01E, based on the trimeric Spike protein of SARS-CoV-2 variants Alpha, Beta, Delta, and Omicron BA.1, with a squalene-based oil-in-water adjuvant SCT-VA02B. In the immunogenicity studies in naïve BALB/c and C57BL/6J mice, SCTV01E exhibited the most favorable immunogenic characteristics to induce balanced and broad-spectrum neutralizing potencies against pre-Omicron variants (D614G, Alpha, Beta, and Delta) and newly emerging Omicron subvariants (BA.1, BA.1.1, BA.2, BA.3, and BA.4/5). Booster studies in C57BL/6J mice previously immunized with D614G monovalent vaccine demonstrated superior neutralizing capacities of SCTV01E against Omicron subvariants, compared with the D614G booster regimen. Furthermore, SCTV01E vaccination elicited naïve and central memory T cell responses to SARS-CoV-2 ancestral strain and Omicron spike peptides. Together, our comprehensive immunogenicity evaluation results indicate that SCTV01E could become an important COVID-19 vaccine platform to combat surging infections caused by the highly immune evasive BA.4/5 variants. SCTV01E is currently being studied in a head-to-head immunogenicity comparison phase 3 clinical study with inactivated and mRNA vaccines (NCT05323461).


Assuntos
COVID-19 , SARS-CoV-2 , Camundongos , Animais , Humanos , Camundongos Endogâmicos C57BL , SARS-CoV-2/genética , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Vacinas Combinadas , Esqualeno , Anticorpos Neutralizantes , Anticorpos Antivirais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA