Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.082
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 625(7995): 516-522, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38233617

RESUMO

Perovskite solar cells (PSCs) comprise a solid perovskite absorber sandwiched between several layers of different charge-selective materials, ensuring unidirectional current flow and high voltage output of the devices1,2. A 'buffer material' between the electron-selective layer and the metal electrode in p-type/intrinsic/n-type (p-i-n) PSCs (also known as inverted PSCs) enables electrons to flow from the electron-selective layer to the electrode3-5. Furthermore, it acts as a barrier inhibiting the inter-diffusion of harmful species into or degradation products out of the perovskite absorber6-8. Thus far, evaporable organic molecules9,10 and atomic-layer-deposited metal oxides11,12 have been successful, but each has specific imperfections. Here we report a chemically stable and multifunctional buffer material, ytterbium oxide (YbOx), for p-i-n PSCs by scalable thermal evaporation deposition. We used this YbOx buffer in the p-i-n PSCs with a narrow-bandgap perovskite absorber, yielding a certified power conversion efficiency of more than 25%. We also demonstrate the broad applicability of YbOx in enabling highly efficient PSCs from various types of perovskite absorber layer, delivering state-of-the-art efficiencies of 20.1% for the wide-bandgap perovskite absorber and 22.1% for the mid-bandgap perovskite absorber, respectively. Moreover, when subjected to ISOS-L-3 accelerated ageing, encapsulated devices with YbOx exhibit markedly enhanced device stability.

2.
Mol Cell ; 82(10): 1850-1864.e7, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35429439

RESUMO

YAP and TAZ (YAP/TAZ), two major effectors of the Hippo signaling pathway, are frequently activated in human cancers. The activity of YAP/TAZ is strictly repressed upon phosphorylation by LATS1/2 tumor suppressors. However, it is unclear how LATS1/2 are precisely regulated by upstream factors such as Hippo kinases MST1/2. Here, we show that WWC proteins (WWC1/2/3) directly interact with LATS1/2 and SAV1, and SAV1, in turn, brings in MST1/2 to phosphorylate and activate LATS1/2. Hence, WWC1/2/3 play an organizer role in a signaling module that mediates LATS1/2 activation by MST1/2. Moreover, we have defined a minimum protein interaction interface on WWC1/2/3 that is sufficient to activate LATS1/2 in a robust and specific manner. The corresponding minigene, dubbed as SuperHippo, can effectively suppress tumorigenesis in multiple tumor models. Our study has uncovered a molecular mechanism underlying LATS1/2 regulation and provides a strategy for treating diverse malignancies related to Hippo pathway dysregulation.


Assuntos
Proteínas Serina-Treonina Quinases , Transdução de Sinais , Carcinogênese , Via de Sinalização Hippo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Proteínas Supressoras de Tumor/metabolismo
3.
EMBO J ; 42(15): e112900, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37350545

RESUMO

The scaffolding protein angiomotin (AMOT) is indispensable for vertebrate embryonic angiogenesis. Here, we report that AMOT undergoes cleavage in the presence of lysophosphatidic acid (LPA), a lipid growth factor also involved in angiogenesis. AMOT cleavage is mediated by aspartic protease DNA damage-inducible 1 homolog 2 (DDI2), and the process is tightly regulated by a signaling axis including neurofibromin 2 (NF2), tankyrase 1/2 (TNKS1/2), and RING finger protein 146 (RNF146), which induce AMOT membrane localization, poly ADP ribosylation, and ubiquitination, respectively. In both zebrafish and mice, the genetic inactivation of AMOT cleavage regulators leads to defective angiogenesis, and the phenotype is rescued by the overexpression of AMOT-CT, a C-terminal AMOT cleavage product. In either physiological or pathological angiogenesis, AMOT-CT is required for vascular expansion, whereas uncleavable AMOT represses this process. Thus, our work uncovers a signaling pathway that regulates angiogenesis by modulating a cleavage-dependent activation of AMOT.


Assuntos
Angiomotinas , Peixe-Zebra , Animais , Camundongos , Peixe-Zebra/metabolismo , Proteínas dos Microfilamentos/metabolismo , Peptídeo Hidrolases , Peptídeos e Proteínas de Sinalização Intercelular/genética
4.
EMBO J ; 42(11): e112126, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36919851

RESUMO

The Hippo pathway is a central regulator of organ size and tumorigenesis and is commonly depicted as a kinase cascade, with an increasing number of regulatory and adaptor proteins linked to its regulation over recent years. Here, we propose that two Hippo signaling modules, MST1/2-SAV1-WWC1-3 (HPO1) and MAP4K1-7-NF2 (HPO2), together regulate the activity of LATS1/2 kinases and YAP/TAZ transcriptional co-activators. In mouse livers, the genetic inactivation of either HPO1 or HPO2 module results in partial activation of YAP/TAZ, bile duct hyperplasia, and hepatocellular carcinoma (HCC). On the contrary, inactivation of both HPO1 and HPO2 modules results in full activation of YAP/TAZ, rapid development of intrahepatic cholangiocarcinoma (iCCA), and early lethality. Interestingly, HPO1 has a predominant role in regulating organ size. HPO1 inactivation causes a homogenous YAP/TAZ activation and cell proliferation across the whole liver, resulting in a proportional and rapid increase in liver size. Thus, this study has reconstructed the order of the Hippo signaling network and suggests that LATS1/2 and YAP/TAZ activities are finetuned by HPO1 and HPO2 modules to cause different cell fates, organ size changes, and tumorigenesis trajectories.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Via de Sinalização Hippo , Transdução de Sinais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Carcinoma Hepatocelular/genética , Proteínas de Sinalização YAP , Neoplasias Hepáticas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Carcinogênese/genética , Transformação Celular Neoplásica , Fosfoproteínas/genética , Fosfoproteínas/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(21): e2209829120, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37200363

RESUMO

Solids built out of active components have exhibited odd elastic stiffness tensors whose active moduli appear in the antisymmetric part and which give rise to non-Hermitian static and dynamic phenomena. Here, we present a class of active metamaterial featured with an odd mass density tensor whose asymmetric part arises from active and nonconservative forces. The odd mass density is realized using metamaterials with inner resonators connected by asymmetric and programmable feed-forward control on acceleration and active forces along the two perpendicular directions. The active forces produce unbalanced off-diagonal mass density coupling terms, leading to non-Hermiticity. The odd mass is then experimentally validated through a one-dimensional nonsymmetric wave coupling where propagating transverse waves are coupled with longitudinal ones whereas the reverse is forbidden. We reveal that the two-dimensional active metamaterials with the odd mass can perform in either energy-unbroken or energy-broken phases separated by exceptional points along principal directions of the mass density. The odd mass density contributes to the wave anisotropy in the energy-unbroken phase and directional wave energy gain in the energy-broken phase. We also numerically illustrate and experimentally demonstrate the two-dimensional wave propagation phenomena that arise from the odd mass in active solids. Finally, the existence of non-Hermitian skin effect is discussed in which boundaries host an extensive number of localized modes. It is our hope that the emergent concept of the odd mass can open up a new research platform for mechanical non-Hermitian system and pave the ways for developing next-generation wave steering devices.

6.
Proc Natl Acad Sci U S A ; 120(26): e2303262120, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37339215

RESUMO

Graphene nanoribbons (GNRs) are widely recognized as intriguing building blocks for high-performance electronics and catalysis owing to their unique width-dependent bandgap and ample lone pair electrons on both sides of GNR, respectively, over the graphene nanosheet counterpart. However, it remains challenging to mass-produce kilogram-scale GNRs to render their practical applications. More importantly, the ability to intercalate nanofillers of interest within GNR enables in-situ large-scale dispersion and retains structural stability and properties of nanofillers for enhanced energy conversion and storage. This, however, has yet to be largely explored. Herein, we report a rapid, low-cost freezing-rolling-capillary compression strategy to yield GNRs at a kilogram scale with tunable interlayer spacing for situating a set of functional nanomaterials for electrochemical energy conversion and storage. Specifically, GNRs are created by sequential freezing, rolling, and capillary compression of large-sized graphene oxide nanosheets in liquid nitrogen, followed by pyrolysis. The interlayer spacing of GNRs can be conveniently regulated by tuning the amount of nanofillers of different dimensions added. As such, heteroatoms; metal single atoms; and 0D, 1D, and 2D nanomaterials can be readily in-situ intercalated into the GNR matrix, producing a rich variety of functional nanofiller-dispersed GNR nanocomposites. They manifest promising performance in electrocatalysis, battery, and supercapacitor due to excellent electronic conductivity, catalytic activity, and structural stability of the resulting GNR nanocomposites. The freezing-rolling-capillary compression strategy is facile, robust, and generalizable. It renders the creation of versatile GNR-derived nanocomposites with adjustable interlay spacing of GNR, thereby underpinning future advances in electronics and clean energy applications.

7.
J Biol Chem ; 300(6): 107374, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38762180

RESUMO

The pre-integration steps of the HIV-1 viral cycle are some of the most valuable targets of recent therapeutic innovations. HIV-1 integrase (IN) displays multiple functions, thanks to its considerable conformational flexibility. Recently, such flexible proteins have been characterized by their ability to form biomolecular condensates as a result of Liquid-Liquid-Phase-Separation (LLPS), allowing them to evolve in a restricted microenvironment within cells called membrane-less organelles (MLO). The LLPS context constitutes a more physiological approach to study the integration of molecular mechanisms performed by intasomes (complexes containing viral DNA, IN, and its cellular cofactor LEDGF/p75). We investigated here if such complexes can form LLPS in vitro and if IN enzymatic activities were affected by this LLPS environment. We observed that the LLPS formed by IN-LEDGF/p75 functional complexes modulate the in vitro IN activities. While the 3'-processing of viral DNA ends was drastically reduced inside LLPS, viral DNA strand transfer was strongly enhanced. These two catalytic IN activities appear thus tightly regulated by the environment encountered by intasomes.


Assuntos
Integrase de HIV , HIV-1 , Integração Viral , Integrase de HIV/metabolismo , Integrase de HIV/química , Integrase de HIV/genética , HIV-1/metabolismo , HIV-1/fisiologia , Humanos , DNA Viral/metabolismo , DNA Viral/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/química
8.
Drug Resist Updat ; 72: 101013, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38041877

RESUMO

Radioiodine-refractory differentiated thyroid cancer (RAIR-DTC) is difficult to treat with radioactive iodine because of the absence of the sodium iodide transporter in the basement membrane of thyroid follicular cells for iodine uptake. This is usually due to the mutation or rearrangement of genes and the aberrant activation of signal pathways, which result in abnormal expression of thyroid-specific genes, leading to resistance of differentiated thyroid cancer cells to radioiodine therapy. Therefore, inhibiting the proliferation and growth of RAIR-DTC with multikinase inhibitors and other drugs or restoring its differentiation and then carrying out radioiodine therapy have become the first-line treatment strategies and main research directions. The drugs that regulate these kinases or signaling pathways have been studied in clinical and preclinical settings. In this review, we summarized the major gene mutations, gene rearrangements and abnormal activation of signaling pathways that led to radioiodine resistance of RAIR-DTC, as well as the medicine that have been tested in clinical and preclinical trials.


Assuntos
Neoplasias da Glândula Tireoide , Humanos , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/radioterapia , Radioisótopos do Iodo/uso terapêutico , Transdução de Sinais
9.
Breast Cancer Res ; 26(1): 19, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287441

RESUMO

BACKGROUND: Human epidermal growth factor receptor 2 (HER2)-positive breast cancer accounts for about 20% of all breast cancer cases and is correlated with a high relapse rate and poor prognosis. ADAMTS18 is proposed as an important functional tumor suppressor gene involved in multiple malignancies, including breast cancer. It functions as an extracellular matrix (ECM) modifier. However, it remains unclear whether ADAMTS18 affects mammary tumorigenesis and malignant progression through its essential ECM regulatory function. METHODS: To elucidate the role of ADAMTS18 in HER2-positive mammary tumorigenesis and metastasis in vivo, we compared the incidence of mammary tumor and metastasis between Adamts18-knockout (MMTV)-Her2/ErbB2/Neu+ transgenic mice (i.e., Her2t/w/Adamts18-/-) and Adamts18-wildtype (MMTV)-Her2/ErbB2/Neu+ transgenic mice (i.e., Her2t/w/Adamts18+/+). The underlying mechanisms by which ADAMTS18 regulates HER2-positive tumorigenesis and metastasis were investigated by pathology, cell culture, Western blot and immunochemistry. RESULTS: Adamts18 mRNA is mainly expressed in myoepithelial cells of the mammary duct. ADAMTS18 deficiency leads to a significantly increased incidence of mammary tumors and metastasis, as well as mammary hyperplasia in mice, over 30 months of observation. The proliferation, migration and invasion capacities of primary Her2t/w/Adamts18-/- mammary tumor cells are significantly higher than those of primary Her2t/w/Adamts18+/+ mammary tumor cells in vitro. At 30 months of age, the expression levels of laminin (LNα5), fibronectin (FN) and type I collagen (ColI) in the mammary glands of Her2t/w/Adamts18-/- mice are significantly increased, and the activities of integrin-mediated PI3K/AKT, ERK and JNK signaling pathways are enhanced. CONCLUSIONS: ADAMTS18 deficiency leads to alterations in mammary ECM components (e.g., LNα5, FN, ColI), which are associated with a higher risk of HER2-positive mammary tumorigenesis and metastasis.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Camundongos , Humanos , Animais , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Fosfatidilinositol 3-Quinases , Recidiva Local de Neoplasia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Camundongos Transgênicos , Carcinogênese/genética , Neoplasias Mamárias Animais/metabolismo , Matriz Extracelular/metabolismo , Proteínas ADAMTS/genética
10.
Neurobiol Dis ; 195: 106493, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579913

RESUMO

BACKGROUND: The clinical symptoms of progressive supranuclear palsy (PSP) may be mediated by aberrant dynamic functional network connectivity (dFNC). While earlier research has found altered functional network connections in PSP patients, the majority of those studies have concentrated on static functional connectivity. Nevertheless, in this study, we sought to evaluate the modifications in dynamic characteristics and establish the correlation between these disease-related changes and clinical variables. METHODS: In our study, we conducted a study on 53 PSP patients and 65 normal controls. Initially, we employed a group independent component analysis (ICA) to derive resting-state networks (RSNs), while employing a sliding window correlation approach to produce dFNC matrices. The K-means algorithm was used to cluster these matrices into distinct dynamic states, and then state analysis was subsequently employed to analyze the dFNC and temporal metrics between the two groups. Finally, we made a correlation analysis. RESULTS: PSP patients showed increased connectivity strength between medulla oblongata (MO) and visual network (VN) /cerebellum network (CBN) and decreased connections were found between default mode network (DMN) and VN/CBN, subcortical cortex network (SCN) and CBN. In addition, PSP patients spend less fraction time and shorter dwell time in a diffused state, especially the MO and SCN. Finally, the fraction time and mean dwell time in the distributed connectivity state (state 2) is negatively correlated with duration, bulbar and oculomotor symptoms. DISCUSSION: Our findings were that the altered connectivity was mostly concentrated in the CBN and MO. In addition, PSP patients had different temporal dynamics, which were associated with bulbar and oculomotor symptoms in PSPRS. It suggest that variations in dynamic functional network connectivity properties may represent an essential neurological mechanism in PSP.


Assuntos
Imageamento por Ressonância Magnética , Rede Nervosa , Paralisia Supranuclear Progressiva , Humanos , Paralisia Supranuclear Progressiva/fisiopatologia , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Feminino , Masculino , Idoso , Pessoa de Meia-Idade , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem
11.
Cancer Sci ; 115(6): 1791-1807, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38480904

RESUMO

Dissolving the lipid droplets in tissue section with alcohol during a hematoxylin and eosin (H&E) stain causes the tumor cells to appear like clear soap bubbles under a microscope, which is a key pathological feature of clear cell renal cell carcinoma (ccRCC). Mitochondrial dynamics have been reported to be closely associated with lipid metabolism and tumor development. However, the relationship between mitochondrial dynamics and lipid metabolism reprogramming in ccRCC remains to be further explored. We conducted bioinformatics analysis to identify key genes regulating mitochondrial dynamics differentially expressed between tumor and normal tissues and immunohistochemistry and Western blot to confirm. After the target was identified, we created stable ccRCC cell lines to test the impact of the target gene on mitochondrial morphology, tumorigenesis in culture cells and xenograft models, and profiles of lipid metabolism. It was found that mitofusin 2 (MFN2) was downregulated in ccRCC tissues and associated with poor prognosis in patients with ccRCC. MFN2 suppressed mitochondrial fragmentation, proliferation, migration, and invasion of ccRCC cells and growth of xenograft tumors. Furthermore, MFN2 impacted lipid metabolism and reduced the accumulation of lipid droplets in ccRCC cells. MFN2 suppressed disease progression and improved prognosis for patients with ccRCC possibly by interrupting cellular lipid metabolism and reducing accumulation of lipid droplets.


Assuntos
Carcinoma de Células Renais , GTP Fosfo-Hidrolases , Neoplasias Renais , Gotículas Lipídicas , Metabolismo dos Lipídeos , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Gotículas Lipídicas/metabolismo , Camundongos Nus , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Proteínas Mitocondriais , Prognóstico
12.
Plant Biotechnol J ; 22(7): 1881-1896, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38346083

RESUMO

Plants grow rapidly for maximal production under optimal conditions; however, they adopt a slower growth strategy to maintain survival when facing environmental stresses. As salt stress restricts crop architecture and grain yield, identifying genetic variations associated with growth and yield responses to salinity is critical for breeding optimal crop varieties. OsDSK2a is a pivotal modulator of plant growth and salt tolerance via the modulation of gibberellic acid (GA) metabolism; however, its regulation remains unclear. Here, we showed that OsDSK2a can be phosphorylated at the second amino acid (S2) to maintain its stability. The gene-edited mutant osdsk2aS2G showed decreased plant height and enhanced salt tolerance. SnRK1A modulated OsDSK2a-S2 phosphorylation and played a substantial role in GA metabolism. Genetic analysis indicated that SnRK1A functions upstream of OsDSK2a and affects plant growth and salt tolerance. Moreover, SnRK1A activity was suppressed under salt stress, resulting in decreased phosphorylation and abundance of OsDSK2a. Thus, SnRK1A preserves the stability of OsDSK2a to maintain plant growth under normal conditions, and reduces the abundance of OsDSK2a to limit growth under salt stress. Haplotype analysis using 3 K-RG data identified a natural variation in OsDSK2a-S2. The allele of OsDSK2a-G downregulates plant height and improves salt-inhibited grain yield. Thus, our findings revealed a new mechanism for OsDSK2a stability and provided a valuable target for crop breeding to overcome yield limitations under salinity stress.


Assuntos
Oryza , Proteínas de Plantas , Proteínas Serina-Treonina Quinases , Tolerância ao Sal , Tolerância ao Sal/genética , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Fosforilação , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Giberelinas/metabolismo , Variação Genética , Plantas Geneticamente Modificadas/genética
13.
J Virol ; 97(1): e0146722, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36475768

RESUMO

Assembly of the adenovirus capsid protein hexon depends on the assistance of the molecular chaperone L4-100K. However, the chaperone mechanisms remain unclear. In this study, we found that L4-100K was involved in the hexon translation process and could prevent hexon degradation by the proteasome in cotransfected human cells. Two nonadjacent domains, 84-133 and 656-697, at the N-terminal and C-terminal regions of human adenovirus type 5 L4-100K, respectively, were found to be crucial and cooperatively responsible for hexon trimer expression and assembly. These two chaperone-related domains were conserved in the sequence of L4-100K and in the function of hexon assembly across different adenovirus serotypes. Different degrees of cross-activity of hexon trimerization with different serotypes were detected in subgroups B, C, and D, which were proven to be controlled by the interaction between the C-terminal chaperone-related domain of L4-100K and hypervariable regions (HVR) of hexon. Additionally, HVR-chimeric hexon mutants were successfully assembled with the assistance of the 1-697 mutant. Structural analysis of 656-697 by nuclear magnetic resonance and structural prediction of L4-100K using Robetta showed that the two conserved domains are mainly composed of α-helices and are located on the surface of the highly folded core region. Our research provides a more complete understanding of hexon assembly and guidance for the development of hexon-chimeric adenovirus vectors that will be safer, smarter, and more efficient. IMPORTANCE Adenovirus vectors have been widely used in clinical trials of vaccines and gene therapy, although some deficiencies remain. Chimeric modification of the hexon was expected to improve the potency of preexisting immune evasion and targeting, but in many cases, viral packaging is prevented by the inability of the chimeric hexon to assemble correctly. So far, few studies have examined the mechanisms of hexon trimer assembly. Here, we show how the chaperone protein L4-100K contributes to the assembly of the adenovirus capsid protein hexon, and these data will provide a guide for novel adenovirus vector design and development, as we desired.


Assuntos
Adenovírus Humanos , Chaperonas Moleculares , Proteínas não Estruturais Virais , Humanos , Adenovírus Humanos/genética , Adenovírus Humanos/metabolismo , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
14.
New Phytol ; 242(6): 2817-2831, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38587065

RESUMO

RNA editing is a crucial modification in plants' organellar transcripts that converts cytidine to uridine (C-to-U; and sometimes uridine to cytidine) in RNA molecules. This post-transcriptional process is controlled by the PLS-class protein with a DYW domain, which belongs to the pentatricopeptide repeat (PPR) protein family. RNA editing is widespread in land plants; however, complex thalloid liverworts (Marchantiopsida) are the only group reported to lack both RNA editing and DYW-PPR protein. The liverwort Cyathodium cavernarum (Marchantiopsida, Cyathodiaceae), typically found in cave habitats, was newly found to have 129 C-to-U RNA editing sites in its chloroplast and 172 sites in its mitochondria. The Cyathodium genus, specifically C. cavernarum, has a large number of PPR editing factor genes, including 251 DYW-type PPR proteins. These DYW-type PPR proteins may be responsible for C-to-U RNA editing in C. cavernarum. Cyathodium cavernarum possesses both PPR DYW proteins and RNA editing. Our analysis suggests that the remarkable RNA editing capability of C. cavernarum may have been acquired alongside the emergence of DYW-type PPR editing factors. These findings provide insight into the evolutionary pattern of RNA editing in land plants.


Assuntos
Hepatófitas , Filogenia , Edição de RNA , Edição de RNA/genética , Hepatófitas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Genes de Plantas , Sequência de Aminoácidos
15.
J Viral Hepat ; 31(3): 143-150, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38235846

RESUMO

Previous studies did not provide substantial evidence for long-term immune persistence after the hepatitis B vaccine (HepB) in preterm birth (PTB) children. Consequently, there is ongoing controversy surrounding the booster immunization strategy for these children. Therefore, we conducted a retrospective cohort study to evaluate the disparities in immune persistence between PTB children and full-term children. A total of 1027 participants were enrolled in this study, including 505 PTB children in the exposure group and 522 full-term children in the control group. The negative rate of hepatitis B surface antibody (HBsAb) in the PTB group was significantly lower than that in the control group (47.9% vs. 41.4%, p = .035). The risk of HBsAb-negative in the exposure group was 1.5 times higher than that in the control group (adjusted odds ratio [aOR] = 1.5, 95% confidence interval [CI]: 1.1-2.0). The geometric mean concentration (GMC) of HBsAb was much lower for participants in the exposure group compared to participants in the control group (9.3 vs. 12.4 mIU/mL, p = .029). Subgroup analysis showed that the very preterm infants (gestational age <32 weeks) and the preterm low birth weight infants (birth weight <2000 g) had relatively low GMC levels of 3.2 mIU/mL (95% CI: 0.9-11.1) and 7.9 mIU/mL (95% CI: 4.2-14.8), respectively. Our findings demonstrated that PTB had a significant impact on the long-term persistence of HBsAb after HepB vaccination. The very preterm infants (gestational age <32 weeks) and the preterm low birth weight infants (birth weight <2000 g) may be special populations that should be given priority for HepB booster vaccination.


Assuntos
Hepatite B , Fenilbutiratos , Nascimento Prematuro , Criança , Feminino , Humanos , Lactente , Recém-Nascido , Peso ao Nascer , Seguimentos , Hepatite B/epidemiologia , Hepatite B/prevenção & controle , Anticorpos Anti-Hepatite B , Antígenos de Superfície da Hepatite B , Vacinas contra Hepatite B , Recém-Nascido Prematuro , Nascimento Prematuro/epidemiologia , Estudos Retrospectivos , Vacinação
16.
J Med Virol ; 96(4): e29592, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38587184

RESUMO

The role of human papillomavirus 16 (HPV 16) in esophageal squamous cell carcinoma (ESCC) remains uncertain. Therefore, this study aimed to investigate the prevalence of HPV 16 in patients with ESCC and its impact on theirprognosis. HPV 16 was detected using FISH, and TP53 status was evaluated via immunohistochemistry. The factors influencing prognosis were ananalyzed using the Log-rank test and Cox regression analyses. Among 178 patients with ESCC, 105 and 73 patients were categorized into concurrent chemoradiotherapy (CCRT) and postoperative chemoradiotherapy (POCRT) cohorts, respectively. Among 178 patients, 87 (48.87%) tested positive for HPV 16. Log-rank tests revealed that the overall survival (OS) of patients with ESCC who were HPV 16-positive was longer than that of those who were HPV 16-negative (median OS: 57 months vs. 27 months, p < 0.01**). HPV 16 infection and TP53 mutation status were identified as independent events. The OS of patients with mutant TP53 who were HPV 16-positive was longer than that of those who were HPV 16-negative in both CCRT and POCRT cohorts (p = 0.002** for CCRT cohorts and p = 0.0023** for POCRT cohorts). Conversely, HPV 16 infection had no effect on OS in the wild-type TP53 subgroup (p = 0.13 and 0.052 for CCRT and POCRT cohorts, respectively). As a conclusion, the positive rate of HPV 16 in ESCC in this study was 48.87% (87/178). Among the patients with ESCC who had TP53 mutation, those who were HPV 16-positive exhibited a better prognosis than those who were HPV 16-negative.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Infecções por Papillomavirus , Humanos , Carcinoma de Células Escamosas do Esôfago/radioterapia , Papillomavirus Humano 16/genética , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas/patologia , Estudos Retrospectivos , Quimiorradioterapia , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/epidemiologia
17.
Plant Physiol ; 193(1): 627-642, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37233029

RESUMO

Protecting haploid pollen and spores against UV-B light and high temperature, 2 major stresses inherent to the terrestrial environment, is critical for plant reproduction and dispersal. Here, we show flavonoids play an indispensable role in this process. First, we identified the flavanone naringenin, which serves to defend against UV-B damage, in the sporopollenin wall of all vascular plants tested. Second, we found that flavonols are present in the spore/pollen protoplasm of all euphyllophyte plants tested and that these flavonols scavenge reactive oxygen species to protect against environmental stresses, particularly heat. Genetic and biochemical analyses showed that these flavonoids are sequentially synthesized in both the tapetum and microspores during pollen ontogeny in Arabidopsis (Arabidopsis thaliana). We show that stepwise increases in the complexity of flavonoids in spores/pollen during plant evolution mirror their progressive adaptation to terrestrial environments. The close relationship between flavonoid complexity and phylogeny and its strong association with pollen survival phenotypes suggest that flavonoids played a central role in the progression of plants from aquatic environments into progressively dry land habitats.


Assuntos
Arabidopsis , Flavonoides , Plantas , Pólen/genética , Arabidopsis/genética , Flavonóis , Esporos
18.
BMC Cancer ; 24(1): 744, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890593

RESUMO

BACKGROUND: Tumor hypoxia is associated with prostate cancer (PCa) treatment resistance and poor prognosis. Pimonidazole (PIMO) is an investigational hypoxia probe used in clinical trials. A better understanding of the clinical significance and molecular alterations underpinning PIMO-labeled tumor hypoxia is needed for future clinical application. Here, we investigated the clinical significance and molecular alterations underpinning PIMO-labeled tumor hypoxia in patients with localized PCa, in order to apply PIMO as a prognostic tool and to identify potential biomarkers for future clinical translation. METHODS: A total of 39 patients with localized PCa were recruited and administered oral PIMO before undergoing radical prostatectomy (RadP). Immunohistochemical staining for PIMO was performed on 37 prostatectomy specimens with staining patterns evaluated and clinical association analyzed. Whole genome bisulfite sequencing was performed using laser-capture of microdissected specimen sections comparing PIMO positive and negative tumor areas. A hypoxia related methylation molecular signature was generated by integrating the differentially methylated regions with previously established RNA-seq datasets. RESULTS: Three PIMO staining patterns were distinguished: diffuse, focal, and comedo-like. The comedo-like staining pattern was more commonly associated with adverse pathology. PIMO-defined hypoxia intensity was positively correlated with advanced pathologic stage, tumor invasion, and cribriform and intraductal carcinoma morphology. The generated DNA methylation signature was found to be a robust hypoxia biomarker, which could risk-stratify PCa patients across multiple clinical datasets, as well as be applicable in other cancer types. CONCLUSIONS: Oral PIMO unveiled clinicopathologic features of disease aggressiveness in localized PCa. The generated DNA methylation signature is a novel and robust hypoxia biomarker that has the potential for future clinical translation.


Assuntos
Metilação de DNA , Epigênese Genética , Nitroimidazóis , Prostatectomia , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Neoplasias da Próstata/metabolismo , Idoso , Pessoa de Meia-Idade , Hipóxia Tumoral/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Prognóstico , Administração Oral
19.
Arch Microbiol ; 206(4): 157, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480543

RESUMO

Potassium-solubilizing microorganisms are capable of secreting acidic chemicals that dissolve and release potassium from soil minerals, thus facilitating potassium uptake by plants. In this study, three potassium-dissolving filamentous fungi were isolated from the rhizosphere soil of a poplar plantation in Jiangsu Province, China. Phylogenetic analyses based on ITS, 18 S, and 28 S showed that these three isolates were most similar to Mortierella. These strains also possessed spherical or ellipsoidal spores, produced sporangia at the hyphal tip, and formed petal-like colonies on PDA media resembling those of Mortierella species. These findings, along with further phenotypic observations, suggest that these isolates were Mortierella species. In addition, the potassium-dissolution experiment showed that strain 2K4 had a relatively high potassium-solubilizing capacity among these isolated fungi. By investigating the influences of different nutrient conditions (carbon source, nitrogen source, and inorganic salt) and initial pH values on the potassium-dissolving ability, the optimal potassium-solubilization conditions of the isolate were determined. When potassium feldspar powder was used as an insoluble potassium source, isolate 2K4 exhibited a significantly better polysaccharide aggregation ability on the formed mycelium-potassium feldspar complex. The composition and content of organic acids secreted by strain 2K4 were further detected, and the potassium-dissolution mechanism of the Mortierella species and its growth promotion effect were discussed, using maize as an example.


Assuntos
Silicatos de Alumínio , Mortierella , Compostos de Potássio , Solo , Solo/química , Fosfatos , Mortierella/genética , Potássio , Rizosfera , Filogenia , Microbiologia do Solo , Fungos
20.
World J Urol ; 42(1): 273, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689135

RESUMO

PURPOSE: The purpose of this study is to evaluate the incidence, risk factors, and salvage management of retrievable covered expandable metallic stent (RCEMS) migration in patients with persistent benign ureter strictures. MATERIALS AND METHODS: A retrospective study was performed on 117 consecutive patients who underwent implantation of RCEMS. Univariate and multivariate analyses were used to identify prognostic factors for stent migration, including stricture location and length, hydronephrosis-cortex ratio, ureteral dilation, and the diameter of the narrowest portion of the stricture. RESULTS: Stent migration occurred in 22 (19.5%) of 113 patients who met inclusion criteria. Of the 22 patients, 16 (72.7%) had ordinary ureteral stricture, 3 (13.6%) had stricture in transplanted kidneys, and 3 patients (13.6%) had ureter stricture in orthotopic neobladders. The mean creatinine for the entire cohorts showed significant improvement (p = 0.038). Multivariate analysis identified the following prognostic factors for migration: distal ureteral stricture (p = 0.006), patients who underwent balloon dilation (p = 0.003), hydronephrosis-cortex ratio ≧10 (p = 0.017), larger diameter of wasting of RCEMS (p < 0.001), and patients with a shorter stricture length (p = 0.006). Salvage management was required in 4 of the 22 patients. The strictures in the remaining 18 patients improved with observation. CONCLUSIONS: Stent migration is more likely to occur in patients with the five prognostic factors mentioned above. Our study developed a nomogram to predict stent migration in patients with ureteral strictures treated using RCEMS.


Assuntos
Migração de Corpo Estranho , Obstrução Ureteral , Humanos , Masculino , Estudos Retrospectivos , Obstrução Ureteral/etiologia , Obstrução Ureteral/terapia , Obstrução Ureteral/cirurgia , Feminino , Pessoa de Meia-Idade , Migração de Corpo Estranho/epidemiologia , Fatores de Risco , Adulto , Idoso , Remoção de Dispositivo , Stents Metálicos Autoexpansíveis , Falha de Prótese , Constrição Patológica , Stents/efeitos adversos , Desenho de Prótese , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA