Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Radiat Prot Dosimetry ; 122(1-4): 176-9, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17223635

RESUMO

Telomeres are specialised nucleoprotein complexes that serve as protective caps of linear eukaryotic chromosomes. The loss of the ends of the chromosomes due to these un-rejoined double strand breaks (DSBs) may not be lethal to the cell, but may instead result in the loss of functional telomeres, chromosome fusions and initiation of breakage/fusion/bridge cycle-induced chromosome instability. The telomeres also participate in the process of DNA repair, as evidenced by 'de novo' synthesis of telomere repeats at DSBs and by the capacity of telomeres to binding the essential components of the DNA repair machinery. Based on the observation that high-LET radiations efficiently induce chromosome aberrations, it was tested whether protons were able to affect telomere structure. Human primary fibroblasts (HFFF2) and mouse embryonic fibroblasts (MEFs) were irradiated with 4 Gy of 3 MeV protons at the radiobiology facility of the INFN-LNL. Experiments with X rays were also carried out. Cells were fixed after either 24 h or 15 d from treatment. A difference in average telomere length, measured by quantitative fluorescence in situ hybridisation (Q-FISH), between X rays and protons treatment was observed. X rays are able to modify telomere length in HFFF2 harvested at a later time. On the other hand, 3 MeV low-energy protons induced, both in HFFF2 and in MEFs, a significant increase in telomere length at short as well as at long harvesting time periods from treatment. These results seem to indicate that lesions characterised by different complexity, as those expected after low-energy protons and those induced by damage similar to that induced by sparsely ionising radiation, are able to modulate telomere elongation at different time periods.


Assuntos
Dano ao DNA , DNA/genética , DNA/efeitos da radiação , Fibroblastos/fisiologia , Fibroblastos/efeitos da radiação , Telômero/genética , Telômero/efeitos da radiação , Animais , Células Cultivadas , Relação Dose-Resposta à Radiação , Fibroblastos/citologia , Humanos , Transferência Linear de Energia/fisiologia , Transferência Linear de Energia/efeitos da radiação , Camundongos , Doses de Radiação , Radiação Ionizante , Telômero/ultraestrutura
2.
Radiat Prot Dosimetry ; 122(1-4): 271-4, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17251249

RESUMO

Recent experimental evidence has challenged the paradigm according to which radiation traversal through the nucleus of a cell is a prerequisite for producing genetic changes or biological responses. Thus, unexposed cells in the vicinity of directly irradiated cells or recipient cells of medium from irradiated cultures can also be affected. The aim of the present study was to evaluate, by means of the medium transfer technique, whether interleukin-8 and its receptor (CXCR1) may play a role in the bystander effect after gamma irradiation of T98G cells in vitro. In fact the cell specificity in inducing the bystander effect and in receiving the secreted signals that has been described suggests that not only the ability to release the cytokines but also the receptor profiles are likely to modulate the cell responses and the final outcome. The dose and time dependence of the cytokine release into the medium, quantified using an enzyme linked immunosorbent assay, showed that radiation causes alteration in the release of interleukin-8 from exposed cells in a dose-independent but time-dependent manner. The relative receptor expression was also affected in exposed and bystander cells.


Assuntos
Efeito Espectador/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Raios gama , Glioblastoma/metabolismo , Glioblastoma/patologia , Interleucina-8/metabolismo , Receptores de Interleucina-8/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Relação Dose-Resposta à Radiação , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Doses de Radiação , Tolerância a Radiação/fisiologia , Tolerância a Radiação/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA