Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 621(7978): 415-422, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37674080

RESUMO

DNA double-strand breaks (DSBs) are deleterious lesions that challenge genome integrity. To mitigate this threat, human cells rely on the activity of multiple DNA repair machineries that are tightly regulated throughout the cell cycle1. In interphase, DSBs are mainly repaired by non-homologous end joining and homologous recombination2. However, these pathways are completely inhibited in mitosis3-5, leaving the fate of mitotic DSBs unknown. Here we show that DNA polymerase theta6 (Polθ) repairs mitotic DSBs and thereby maintains genome integrity. In contrast to other DSB repair factors, Polθ function is activated in mitosis upon phosphorylation by Polo-like kinase 1 (PLK1). Phosphorylated Polθ is recruited by a direct interaction with the BRCA1 C-terminal domains of TOPBP1 to mitotic DSBs, where it mediates joining of broken DNA ends. Loss of Polθ leads to defective repair of mitotic DSBs, resulting in a loss of genome integrity. This is further exacerbated in cells that are deficient in homologous recombination, where loss of mitotic DSB repair by Polθ results in cell death. Our results identify mitotic DSB repair as the underlying cause of synthetic lethality between Polθ and homologous recombination. Together, our findings reveal the critical importance of mitotic DSB repair in the maintenance of genome integrity.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA Polimerase Dirigida por DNA , Mitose , Proteínas Serina-Treonina Quinases , Humanos , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular/metabolismo , Morte Celular/genética , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Recombinação Homóloga/genética , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Mutações Sintéticas Letais , DNA Polimerase teta , Quinase 1 Polo-Like
2.
Nucleic Acids Res ; 52(12): 7337-7353, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38828772

RESUMO

In vertebrates, the BRCA2 protein is essential for meiotic and somatic homologous recombination due to its interaction with the RAD51 and DMC1 recombinases through FxxA and FxPP motifs (here named A- and P-motifs, respectively). The A-motifs present in the eight BRC repeats of BRCA2 compete with the A-motif of RAD51, which is responsible for its self-oligomerization. BRCs thus disrupt RAD51 nucleoprotein filaments in vitro. The role of the P-motifs is less studied. We recently found that deletion of Brca2 exons 12-14 encoding one of them (the prototypical 'PhePP' motif), disrupts DMC1 but not RAD51 function in mouse meiosis. Here we provide a mechanistic explanation for this phenotype by solving the crystal structure of the complex between a BRCA2 fragment containing the PhePP motif and DMC1. Our structure reveals that, despite sharing a conserved phenylalanine, the A- and P-motifs bind to distinct sites on the ATPase domain of the recombinases. The P-motif interacts with a site that is accessible in DMC1 octamers and nucleoprotein filaments. Moreover, we show that this interaction also involves the adjacent protomer and thus increases the stability of the DMC1 nucleoprotein filaments. We extend our analysis to other P-motifs from RAD51AP1 and FIGNL1.


Assuntos
Motivos de Aminoácidos , Proteína BRCA2 , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Ligação Proteica , Rad51 Recombinase , Rad51 Recombinase/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/química , Proteína BRCA2/metabolismo , Proteína BRCA2/química , Proteína BRCA2/genética , Animais , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/química , Camundongos , Humanos , Sítios de Ligação , Modelos Moleculares , Cristalografia por Raios X , Recombinação Homóloga , Proteínas de Ligação a Fosfato
3.
Nucleic Acids Res ; 52(12): 6964-6976, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38142462

RESUMO

BRCA2 tumor suppressor protein ensures genome integrity by mediating DNA repair via homologous recombination (HR). This function is executed in part by its canonical DNA binding domain located at the C-terminus (BRCA2CTD), the only folded domain of the protein. Most germline pathogenic missense variants are located in this highly conserved region which binds to single-stranded DNA (ssDNA) and to the acidic protein DSS1. These interactions are essential for the HR function of BRCA2. Here, we report that the variant R2645G, identified in breast cancer and located at the DSS1 interface, unexpectedly increases the ssDNA binding activity of BRCA2CTDin vitro. Human cells expressing this variant display a hyper-recombination phenotype, chromosomal instability in the form of chromatid gaps when exposed to DNA damage, and increased PARP inhibitor sensitivity. In mouse embryonic stem cells (mES), this variant alters viability and confers sensitivity to cisplatin and Mitomycin C. These results suggest that BRCA2 interaction with ssDNA needs to be tightly regulated to limit HR and prevent chromosomal instability and we propose that this control mechanism involves DSS1. Given that several missense variants located within this region have been identified in breast cancer patients, these findings might have clinical implications for carriers.


Assuntos
Proteína BRCA2 , DNA de Cadeia Simples , Ligação Proteica , Humanos , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Animais , Camundongos , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/genética , Instabilidade Cromossômica , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Cisplatino/farmacologia , Dano ao DNA , Mutação de Sentido Incorreto , Feminino , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Células-Tronco Embrionárias Murinas/metabolismo , Linhagem Celular Tumoral , Mitomicina/farmacologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Complexo de Endopeptidases do Proteassoma
5.
Nucleic Acids Res ; 50(16): 9260-9278, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36039758

RESUMO

Nestor-Guillermo progeria syndrome (NGPS) is caused by a homozygous alanine-to-threonine mutation at position 12 (A12T) in barrier-to-autointegration factor (BAF). It is characterized by accelerated aging with severe skeletal abnormalities. BAF is an essential protein binding to DNA and nuclear envelope (NE) proteins, involved in NE rupture repair. Here, we assessed the impact of BAF A12T on NE integrity using NGPS-derived patient fibroblasts. We observed a strong defect in lamin A/C accumulation to NE ruptures in NGPS cells, restored upon homozygous reversion of the pathogenic BAF A12T mutation with CRISPR/Cas9. By combining in vitro and cellular assays, we demonstrated that while the A12T mutation does not affect BAF 3D structure and phosphorylation by VRK1, it specifically decreases the interaction between BAF and lamin A/C. Finally, we revealed that the disrupted interaction does not prevent repair of NE ruptures but instead generates weak points in the NE that lead to a higher frequency of NE re-rupturing in NGPS cells. We propose that this NE fragility could directly contribute to the premature aging phenotype in patients.


Assuntos
Senilidade Prematura , Progéria , Humanos , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Progéria/metabolismo , Senilidade Prematura/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a DNA/genética , Mutação , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
6.
Nucleic Acids Res ; 49(7): 3841-3855, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33744941

RESUMO

Barrier-to-autointegration factor (BAF), encoded by the BANF1 gene, is an abundant and ubiquitously expressed metazoan protein that has multiple functions during the cell cycle. Through its ability to cross-bridge two double-stranded DNA (dsDNA), it favours chromosome compaction, participates in post-mitotic nuclear envelope reassembly and is essential for the repair of large nuclear ruptures. BAF forms a ternary complex with the nuclear envelope proteins lamin A/C and emerin, and its interaction with lamin A/C is defective in patients with recessive accelerated aging syndromes. Phosphorylation of BAF by the vaccinia-related kinase 1 (VRK1) is a key regulator of BAF localization and function. Here, we demonstrate that VRK1 successively phosphorylates BAF on Ser4 and Thr3. The crystal structures of BAF before and after phosphorylation are extremely similar. However, in solution, the extensive flexibility of the N-terminal helix α1 and loop α1α2 in BAF is strongly reduced in di-phosphorylated BAF, due to interactions between the phosphorylated residues and the positively charged C-terminal helix α6. These regions are involved in DNA and lamin A/C binding. Consistently, phosphorylation causes a 5000-fold loss of affinity for dsDNA. However, it does not impair binding to lamin A/C Igfold domain and emerin nucleoplasmic region, which leaves open the question of the regulation of these interactions.


Assuntos
Proteínas de Ligação a DNA , DNA/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lamina Tipo A/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Humanos , Fosforilação , Ligação Proteica , Processamento de Proteína Pós-Traducional , Estrutura Secundária de Proteína
7.
Nucleic Acids Res ; 46(19): 10460-10473, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30137533

RESUMO

Lamins are the main components of the nucleoskeleton. Whereas their 3D organization was recently described using cryoelectron tomography, no structural data highlights how they interact with their partners at the interface between the inner nuclear envelope and chromatin. A large number of mutations causing rare genetic disorders called laminopathies were identified in the C-terminal globular Igfold domain of lamins A and C. We here present a first structural description of the interaction between the lamin A/C immunoglobulin-like domain and emerin, a nuclear envelope protein. We reveal that this lamin A/C domain both directly binds self-assembled emerin and interacts with monomeric emerin LEM domain through the dimeric chromatin-associated Barrier-to-Autointegration Factor (BAF) protein. Mutations causing autosomal recessive progeroid syndromes specifically impair proper binding of lamin A/C domain to BAF, thus destabilizing the link between lamin A/C and BAF in cells. Recent data revealed that, during nuclear assembly, BAF's ability to bridge distant DNA sites is essential for guiding membranes to form a single nucleus around the mitotic chromosome ensemble. Our results suggest that BAF interaction with lamin A/C also plays an essential role, and that mutations associated with progeroid syndromes leads to a dysregulation of BAF-mediated chromatin organization and gene expression.


Assuntos
Proteínas de Ligação a DNA/química , Lamina Tipo A/química , Proteínas de Membrana/química , Proteínas Nucleares/química , Progéria/metabolismo , Domínios Proteicos , Cristalografia por Raios X , Proteínas de Ligação a DNA/metabolismo , Genes Recessivos , Humanos , Lamina Tipo A/metabolismo , Proteínas de Membrana/metabolismo , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Mutação , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Progéria/genética , Ligação Proteica , Multimerização Proteica
8.
Angew Chem Int Ed Engl ; 59(26): 10411-10415, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32181947

RESUMO

Abundant phosphorylation events control the activity of nuclear proteins involved in gene regulation and DNA repair. These occur mostly on disordered regions of proteins, which often contain multiple phosphosites. Comprehensive and quantitative monitoring of phosphorylation reactions is theoretically achievable at a residue-specific level using 1 H-15 N NMR spectroscopy, but is often limited by low signal-to-noise at pH>7 and T>293 K. We have developed an improved 13 Cα-13 CO correlation NMR experiment that works equally at any pH or temperature, that is, also under conditions at which kinases are active. This allows us to obtain atomic-resolution information in physiological conditions down to 25 µm. We demonstrate the potential of this approach by monitoring phosphorylation reactions, in the presence of purified kinases or in cell extracts, on a range of previously problematic targets, namely Mdm2, BRCA2, and Oct4.


Assuntos
Proteína BRCA2/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína BRCA2/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Humanos , Concentração de Íons de Hidrogênio , Ressonância Magnética Nuclear Biomolecular , Fator 3 de Transcrição de Octâmero/química , Fosforilação , Proteínas Proto-Oncogênicas c-mdm2/química , Temperatura
9.
Nature ; 503(7475): 281-4, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24132237

RESUMO

Cell migration requires the generation of branched actin networks that power the protrusion of the plasma membrane in lamellipodia. The actin-related proteins 2 and 3 (Arp2/3) complex is the molecular machine that nucleates these branched actin networks. This machine is activated at the leading edge of migrating cells by Wiskott-Aldrich syndrome protein (WASP)-family verprolin-homologous protein (WAVE, also known as SCAR). The WAVE complex is itself directly activated by the small GTPase Rac, which induces lamellipodia. However, how cells regulate the directionality of migration is poorly understood. Here we identify a new protein, Arpin, that inhibits the Arp2/3 complex in vitro, and show that Rac signalling recruits and activates Arpin at the lamellipodial tip, like WAVE. Consistently, after depletion of the inhibitory Arpin, lamellipodia protrude faster and cells migrate faster. A major role of this inhibitory circuit, however, is to control directional persistence of migration. Indeed, Arpin depletion in both mammalian cells and Dictyostelium discoideum amoeba resulted in straighter trajectories, whereas Arpin microinjection in fish keratocytes, one of the most persistent systems of cell migration, induced these cells to turn. The coexistence of the Rac-Arpin-Arp2/3 inhibitory circuit with the Rac-WAVE-Arp2/3 activatory circuit can account for this conserved role of Arpin in steering cell migration.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Movimento Celular/genética , Pseudópodes/genética , Pseudópodes/metabolismo , Transdução de Sinais , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Dictyostelium/genética , Dictyostelium/metabolismo , Embrião não Mamífero , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Camundongos , Proteínas/genética , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Peixe-Zebra/genética
10.
Chemphyschem ; 19(19): 2457-2460, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-29917302

RESUMO

Proton detection and fast magic-angle spinning have advanced biological solid-state NMR, allowing for the backbone assignment of complex protein assemblies with high sensitivity and resolution. However, so far no method has been proposed to detect intermolecular interfaces in these assemblies by proton detection. Herein, we introduce a concept based on methyl labeling that allows for the assignment of these moieties and for the study of protein-protein interfaces at atomic resolution.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Proteínas/química , Sequência de Aminoácidos , Glicoproteínas/química , Isoleucina/química , Estrutura Terciária de Proteína , Prótons
11.
Proc Natl Acad Sci U S A ; 112(22): 7009-14, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25991862

RESUMO

Many icosahedral viruses use a specialized portal vertex to control genome encapsidation and release from the viral capsid. In tailed bacteriophages, the portal system is connected to a tail structure that provides the pipeline for genome delivery to the host cell. We report the first, to our knowledge, subnanometer structures of the complete portal-phage tail interface that mimic the states before and after DNA release during phage infection. They uncover structural rearrangements associated with intimate protein-DNA interactions. The portal protein gp6 of bacteriophage SPP1 undergoes a concerted reorganization of the structural elements of its central channel during interaction with DNA. A network of protein-protein interactions primes consecutive binding of proteins gp15 and gp16 to extend and close the channel. This critical step that prevents genome leakage from the capsid is achieved by a previously unidentified allosteric mechanism: gp16 binding to two different regions of gp15 drives correct positioning and folding of an inner gp16 loop to interact with equivalent loops of the other gp16 subunits. Together, these loops build a plug that closes the channel. Gp16 then fastens the tail to yield the infectious virion. The gatekeeper system opens for viral genome exit at the beginning of infection but recloses afterward, suggesting a molecular diaphragm-like mechanism to control DNA efflux. The mechanisms described here, controlling the essential steps of phage genome movements during virus assembly and infection, are likely to be conserved among long-tailed phages, the largest group of viruses in the Biosphere.


Assuntos
Bacteriófagos/química , Genoma Viral/fisiologia , Modelos Moleculares , Proteínas Virais/química , Proteínas da Cauda Viral/química , Montagem de Vírus/fisiologia , Internalização do Vírus , Bacteriófagos/ultraestrutura , Microscopia Crioeletrônica , Genoma Viral/genética , Conformação Proteica , Proteínas Virais/metabolismo , Proteínas Virais/ultraestrutura , Proteínas da Cauda Viral/metabolismo , Proteínas da Cauda Viral/ultraestrutura
12.
Angew Chem Int Ed Engl ; 56(32): 9497-9501, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28644511

RESUMO

Obtaining unambiguous resonance assignments remains a major bottleneck in solid-state NMR studies of protein structure and dynamics. Particularly for supramolecular assemblies with large subunits (>150 residues), the analysis of crowded spectral data presents a challenge, even if three-dimensional (3D) spectra are used. Here, we present a proton-detected 4D solid-state NMR assignment procedure that is tailored for large assemblies. The key to recording 4D spectra with three indirect carbon or nitrogen dimensions with their inherently large chemical shift dispersion lies in the use of sparse non-uniform sampling (as low as 2 %). As a proof of principle, we acquired 4D (H)COCANH, (H)CACONH, and (H)CBCANH spectra of the 20 kDa bacteriophage tail-tube protein gp17.1 in a total time of two and a half weeks. These spectra were sufficient to obtain complete resonance assignments in a straightforward manner without use of previous solution NMR data.

13.
J Biol Chem ; 290(6): 3836-49, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25525268

RESUMO

The majority of known bacteriophages have long tails that serve for bacterial target recognition and viral DNA delivery into the host. These structures form a tube from the viral capsid to the bacterial cell. The tube is formed primarily by a helical array of tail tube protein (TTP) subunits. In phages with a contractile tail, the TTP tube is surrounded by a sheath structure. Here, we report the first evidence that a phage TTP, gp17.1 of siphophage SPP1, self-assembles into long tubes in the absence of other viral proteins. gp17.1 does not exhibit a stable globular structure when monomeric in solution, even if it was confidently predicted to adopt the ß-sandwich fold of phage λ TTP. However, Fourier transform infrared and nuclear magnetic resonance spectroscopy analyses showed that its ß-sheet content increases significantly during tube assembly, suggesting that gp17.1 acquires a stable ß-sandwich fold only after self-assembly. EM analyses revealed that the tube is formed by hexameric rings stacked helicoidally with the same organization and helical parameters found for the tail of SPP1 virions. These parameters were used to build a pseudo-atomic model of the TTP tube. The large loop spanning residues 40-56 is located on the inner surface of the tube, at the interface between adjacent monomers and hexamers. In line with our structural predictions, deletion of this loop hinders gp17.1 tube assembly in vitro and interferes with SPP1 tail assembly during phage particle morphogenesis in bacteria.


Assuntos
Dobramento de Proteína , Proteínas Virais/química , Sequência de Aminoácidos , Bacteriófagos/química , Dados de Sequência Molecular , Estrutura Terciária de Proteína
14.
BMC Genomics ; 15: 1027, 2014 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-25428721

RESUMO

BACKGROUND: The genetic diversity observed among bacteriophages remains a major obstacle for the identification of homologs and the comparison of their functional modules. In the structural module, although several classes of homologous proteins contributing to the head and tail structure can be detected, proteins of the head-to-tail connection (or neck) are generally more divergent. Yet, molecular analyses of a few tailed phages belonging to different morphological classes suggested that only a limited number of structural solutions are used in order to produce a functional virion. To challenge this hypothesis and analyze proteins diversity at the virion neck, we developed a specific computational strategy to cope with sequence divergence in phage proteins. We searched for homologs of a set of proteins encoded in the structural module using a phage learning database. RESULTS: We show that using a combination of iterative profile-profile comparison and gene context analyses, we can identify a set of head, neck and tail proteins in most tailed bacteriophages of our database. Classification of phages based on neck protein sequences delineates 4 Types corresponding to known morphological subfamilies. Further analysis of the most abundant Type 1 yields 10 Clusters characterized by consistent sets of head, neck and tail proteins. We developed Virfam, a webserver that automatically identifies proteins of the phage head-neck-tail module and assign phages to the most closely related cluster of phages. This server was tested against 624 new phages from the NCBI database. 93% of the tailed and unclassified phages could be assigned to our head-neck-tail based categories, thus highlighting the large representativeness of the identified virion architectures. Types and Clusters delineate consistent subgroups of Caudovirales, which correlate with several virion properties. CONCLUSIONS: Our method and webserver have the capacity to automatically classify most tailed phages, detect their structural module, assign a function to a set of their head, neck and tail genes, provide their morphologic subtype and localize these phages within a "head-neck-tail" based classification. It should enable analysis of large sets of phage genomes. In particular, it should contribute to the classification of the abundant unknown viruses found on assembled contigs of metagenomic samples.


Assuntos
Bacteriófagos/classificação , Biologia Computacional/métodos , Bacteriófagos/genética , Bacteriófagos/metabolismo , Evolução Biológica , Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Família Multigênica , Filogenia , Software , Proteínas Virais/genética , Proteínas Virais/metabolismo , Navegador
15.
Nucleic Acids Res ; 40(7): 3197-207, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22139930

RESUMO

Rap1 is an essential DNA-binding factor from the yeast Saccharomyces cerevisiae involved in transcription and telomere maintenance. Its binding to DNA targets Rap1 at particular loci, and may optimize its ability to form functional macromolecular assemblies. It is a modular protein, rich in large potentially unfolded regions, and comprising BRCT, Myb and RCT well-structured domains. Here, we present the architectures of Rap1 and a Rap1/DNA complex, built through a step-by-step integration of small angle X-ray scattering, X-ray crystallography and nuclear magnetic resonance data. Our results reveal Rap1 structural adjustment upon DNA binding that involves a specific orientation of the C-terminal (RCT) domain with regard to the DNA binding domain (DBD). Crystal structure of DBD in complex with a long DNA identifies an essential wrapping loop, which constrains the orientation of the RCT and affects Rap1 affinity to DNA. Based on our structural information, we propose a model for Rap1 assembly at telomere.


Assuntos
DNA/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Ligação a Telômeros/química , Fatores de Transcrição/química , Cristalografia por Raios X , DNA/metabolismo , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Espalhamento a Baixo Ângulo , Complexo Shelterina , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Fatores de Transcrição/metabolismo , Difração de Raios X
16.
J Mol Biol ; 435(2): 167888, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36402223

RESUMO

Barrier-to-Autointegration Factor (BAF) is a highly conserved DNA binding protein important for genome integrity. Its localization and function are regulated through phosphorylation. Previously reported structures of BAF suggested that it is fully ordered, but our recent NMR analysis revealed that its N-terminal region is flexible in solution and that S4/T3 di-phosphorylation by VRK1 reduces this flexibility. Here, molecular dynamics (MD) simulation was used to unveil the conformational ensembles accessible to the N-terminal region of BAF either unphosphorylated, mono-phosphorylated on S4 or di-phosphorylated on S4/T3 (pBAF) and to reveal the interactions that contribute to define these ensembles. We show that the intrinsic flexibility observed in the N-terminal region of BAF is reduced by S4 phosphorylation and to a larger extent by S4/T3 di-phosphorylation. Thanks to the atomic description offered by MD supported by the NMR study of several BAF mutants, we identified the dynamic network of salt bridge interactions responsible for the conformational restriction involving pS4 and pT3 with residues located in helix α1 and α6. Using MD, we showed that the flexibility in the N-terminal region of BAF depends on the ionic strength and on the pH. We show that the presence of two negative charges of the phosphoryl groups is required for a substantial decrease in flexibility in pBAF. Using MD supported by NMR, we also showed that H7 deprotonation reduces the flexibility in the N-terminal region of BAF. Thus, the conformation of the intrinsically disordered N-terminal region of BAF is highly tunable, likely related to its diverse functions.


Assuntos
Proteínas de Ligação a DNA , Proteínas Intrinsicamente Desordenadas , Proteínas Nucleares , Proteínas de Ligação a DNA/química , Proteínas Nucleares/química , Fosforilação , Proteínas Intrinsicamente Desordenadas/química , Conformação Proteica , Humanos , Concentração de Íons de Hidrogênio
17.
Cells ; 12(6)2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36980188

RESUMO

Barrier-to-autointegration factor (BAF) is an essential component of the nuclear lamina. Encoded by BANF1, this DNA binding protein contributes to the regulation of gene expression, cell cycle progression, and nuclear integrity. A rare recessive BAF variant, Ala12Thr, causes the premature aging syndrome, Néstor-Guillermo progeria syndrome (NGPS). Here, we report the first dominant pathogenic BAF variant, Gly16Arg, identified in a patient presenting with progressive neuromuscular weakness. Although disease variants carry nearby amino acid substitutions, cellular and biochemical properties are distinct. In contrast to NGPS, Gly16Arg patient fibroblasts show modest changes in nuclear lamina structure and increases in repressive marks associated with heterochromatin. Structural studies reveal that the Gly16Arg substitution introduces a salt bridge between BAF monomers, reducing the conformation ensemble available to BAF. We show that this structural change increases the double-stranded DNA binding affinity of BAF Gly16Arg. Together, our findings suggest that BAF Gly16Arg has an increased chromatin occupancy that leads to epigenetic changes and impacts nuclear functions. These observations provide a new example of how a missense mutation can change a protein conformational equilibrium to cause a dominant disease and extend our understanding of mechanisms by which BAF function impacts human health.


Assuntos
Núcleo Celular , Proteínas Nucleares , Humanos , Proteínas Nucleares/metabolismo , Núcleo Celular/metabolismo , Cromatina , Proteínas de Ligação a DNA/metabolismo , Fibrinogênio
18.
Cancer Gene Ther ; 30(8): 1144-1155, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37248434

RESUMO

The tumor suppressor gene WWOX is localized in an unstable chromosomal region and its expression is decreased or absent in several types of cancer. A low expression of WWOX is associated with a poor prognosis in breast cancer (BC). It has recently been shown that WWOX contributes to genome stability through its role in the DNA damage response (DDR). In breast cancer cells, WWOX inhibits homologous recombination (HR), and thus promotes the repair of DNA double-stranded breaks (DSBs) by non-homologous end joining (NHEJ). The fine-tuning modulation of HR activity is crucial. Its under or overstimulation inducing genome alterations that can induce cancer. MERIT40 is a positive regulator of the DDR. This protein is indispensable for the function of the multi-protein complex BRCA1-A, which suppresses excessive HR activity. MERIT40 also recruits Tankyrase, a positive regulator of HR, to the DSBs to stimulate DNA repair. Here, we identified MERIT40 as a new molecular partner of WWOX. We demonstrated that WWOX inhibited excessive HR activity induced by overexpression of MERIT40. We showed that WWOX impaired the MERIT40-Tankyrase interaction preventing the role of the complex on DSBs. Furthermore, we found that MERIT40 is overexpressed in BC and that this overexpression is associated to a poor prognosis. These results strongly suggest that WWOX, through its interaction with MERIT40, prevents the deleterious impact of excessive HR on BC development by inhibiting MERIT40-Tankyrase association. This inhibitory effect of WWOX would oppose MERIT40-dependent BC development.


Assuntos
Neoplasias da Mama , Recombinação Homóloga , Feminino , Humanos , Neoplasias da Mama/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Tanquirases/genética , Tanquirases/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Oxidorredutase com Domínios WW/genética , Oxidorredutase com Domínios WW/metabolismo
19.
Sci Adv ; 9(43): eadi7352, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37889963

RESUMO

In meiotic homologous recombination (HR), BRCA2 facilitates loading of the recombinases RAD51 and DMC1 at the sites of double-strand breaks (DSBs). The HSF2BP-BRME1 complex interacts with BRCA2. Its absence causes a severe reduction in recombinase loading at meiotic DSB. We previously showed that, in somatic cancer cells ectopically producing HSF2BP, DNA damage can trigger HSF2BP-dependent degradation of BRCA2, which prevents HR. Here, we report that, upon binding to BRCA2, HSF2BP forms octameric rings that are able to interlock into a large ring-shaped 24-mer. Addition of BRME1 leads to dissociation of both of these ring structures and cancels the disruptive effect of HSF2BP on cancer cell resistance to DNA damage. It also prevents BRCA2 degradation during interstrand DNA crosslink repair in Xenopus egg extracts. We propose that, during meiosis, the control of HSF2BPBRCA2 oligomerization by BRME1 ensures timely assembly of the ring complex that concentrates BRCA2 and controls its turnover, thus promoting HR.


Assuntos
Recombinação Homóloga , Rad51 Recombinase , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Dano ao DNA
20.
J Biol Chem ; 286(36): 31661-75, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-21685390

RESUMO

The snake toxin MT7 is a potent and specific allosteric modulator of the human M1 muscarinic receptor (hM1). We previously characterized by mutagenesis experiments the functional determinants of the MT7-hM1 receptor interaction (Fruchart-Gaillard, C., Mourier, G., Marquer, C., Stura, E., Birdsall, N. J., and Servent, D. (2008) Mol. Pharmacol. 74, 1554-1563) and more recently collected evidence indicating that MT7 may bind to a dimeric form of hM1 (Marquer, C., Fruchart-Gaillard, C., Mourier, G., Grandjean, O., Girard, E., le Maire, M., Brown, S., and Servent, D. (2010) Biol. Cell 102, 409-420). To structurally characterize the MT7-hM1 complex, we adopted a strategy combining double mutant cycle experiments and molecular modeling calculations. First, thirty-three ligand-receptor proximities were identified from the analysis of sixty-one double mutant binding affinities. Several toxin residues that are more than 25 Å apart still contact the same residues on the receptor. As a consequence, attempts to satisfy all the restraints by docking the toxin onto a single receptor failed. The toxin was then positioned onto two receptors during five independent flexible docking simulations. The different possible ligand and receptor extracellular loop conformations were described by performing simulations in explicit solvent. All the docking calculations converged to the same conformation of the MT7-hM1 dimer complex, satisfying the experimental restraints and in which (i) the toxin interacts with the extracellular side of the receptor, (ii) the tips of MT7 loops II and III contact one hM1 protomer, whereas the tip of loop I binds to the other protomer, and (iii) the hM1 dimeric interface involves the transmembrane helices TM6 and TM7. These results structurally support the high affinity and selectivity of the MT7-hM1 interaction and highlight the atypical mode of interaction of this allosteric ligand on its G protein-coupled receptor target.


Assuntos
Venenos Elapídicos/química , Modelos Moleculares , Receptor Muscarínico M1/química , Receptor Muscarínico M1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Simulação por Computador , Humanos , Ligantes , Mutagênese , Ligação Proteica , Multimerização Proteica , Receptor Muscarínico M1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA