Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Invest Dermatol ; 144(3): 547-562.e9, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37716646

RESUMO

Plectin, a highly versatile and multifunctional cytolinker, has been implicated in several multisystemic disorders. Most sequence variations in the human plectin gene (PLEC) cause epidermolysis bullosa simplex with muscular dystrophy (EBS-MD), an autosomal recessive skin-blistering disorder associated with progressive muscle weakness. In this study, we performed a comprehensive cell biological analysis of dermal fibroblasts from three different patients with EBS-MD, where PLEC expression analyses revealed preserved mRNA levels in all cases, whereas full-length plectin protein content was significantly reduced or completely absent. Downstream effects of pathogenic PLEC sequence alterations included massive bundling of vimentin intermediate filament networks, including the occurrence of ring-like nuclei-encasing filament bundles, elongated mitochondrial networks, and abnormal nuclear morphologies. We found that essential fibroblast functions such as wound healing, migration, or orientation upon cyclic stretch were significantly impaired in the cells of patients with EBS-MD. Finally, EBS-MD fibroblasts displayed reduced adhesion capacities, which could be attributed to smaller focal adhesion contacts. Our study not only emphasizes plectin's functional role in human skin fibroblasts, it also provides further insights into the understanding of EBS-MD-associated disease mechanisms.


Assuntos
Epidermólise Bolhosa Simples , Distrofia Muscular do Cíngulo dos Membros , Distrofias Musculares , Humanos , Filamentos Intermediários/metabolismo , Plectina/genética , Epidermólise Bolhosa Simples/patologia , Distrofias Musculares/complicações , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Mitocôndrias/metabolismo , Fibroblastos/metabolismo , Proteínas de Filamentos Intermediários/metabolismo
2.
Cells ; 12(9)2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37174658

RESUMO

Plectin, a highly versatile cytolinker protein, is crucial for myofiber integrity and function. Accordingly, mutations in the human gene (PLEC) cause several rare diseases, denoted as plectinopathies, with most of them associated with progressive muscle weakness. Of several plectin isoforms expressed in skeletal muscle and the heart, P1d is the only isoform expressed exclusively in these tissues. Using high-resolution stimulated emission depletion (STED) microscopy, here we show that plectin is located within the gaps between individual α-actinin-positive Z-disks, recruiting and bridging them to desmin intermediate filaments (Ifs). Loss of plectin in myofibril bundles led to a complete loss of desmin Ifs. Loss of Z-disk-associated plectin isoform P1d led to disorganization of muscle fibers and slower relaxation of myofibrils upon mechanical strain, in line with an observed inhomogeneity of muscle ultrastructure. In addition to binding to α-actinin and thereby providing structural support, P1d forms a scaffolding platform for the chaperone-assisted selective autophagy machinery (CASA) by directly interacting with HSC70 and synpo2. In isoform-specific knockout (P1d-KO) mouse muscle and mechanically stretched plectin-deficient myoblasts, we found high levels of undigested filamin C, a bona fide substrate of CASA. Similarly, subjecting P1d-KO mice to forced swim tests led to accumulation of filamin C aggregates in myofibers, highlighting a specific role of P1d in tension-induced proteolysis activated upon high loads of physical exercise and muscle contraction.


Assuntos
Actinina , Plectina , Animais , Humanos , Camundongos , Desmina/genética , Desmina/metabolismo , Filaminas , Plectina/metabolismo , Isoformas de Proteínas/metabolismo
4.
Cells ; 10(9)2021 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-34572129

RESUMO

Plectin is a giant cytoskeletal crosslinker and intermediate filament stabilizing protein. Mutations in the human plectin gene (PLEC) cause several rare diseases that are grouped under the term plectinopathies. The most common disorder is autosomal recessive disease epidermolysis bullosa simplex with muscular dystrophy (EBS-MD), which is characterized by skin blistering and progressive muscle weakness. Besides EBS-MD, PLEC mutations lead to EBS with nail dystrophy, EBS-MD with a myasthenic syndrome, EBS with pyloric atresia, limb-girdle muscular dystrophy type R17, or EBS-Ogna. In this review, we focus on the clinical and pathological manifestations caused by PLEC mutations on skeletal and cardiac muscle. Skeletal muscle biopsies from EBS-MD patients and plectin-deficient mice revealed severe dystrophic features with variation in fiber size, degenerative myofibrillar changes, mitochondrial alterations, and pathological desmin-positive protein aggregates. Ultrastructurally, PLEC mutations lead to a disorganization of myofibrils and sarcomeres, Z- and I-band alterations, autophagic vacuoles and cytoplasmic bodies, and misplaced and degenerating mitochondria. We also summarize a variety of genetically manipulated mouse and cell models, which are either plectin-deficient or that specifically lack a skeletal muscle-expressed plectin isoform. These models are powerful tools to study functional and molecular consequences of PLEC defects and their downstream effects on the skeletal muscle organization.


Assuntos
Epidermólise Bolhosa Simples/patologia , Músculo Esquelético/patologia , Distrofias Musculares/patologia , Plectina/metabolismo , Animais , Epidermólise Bolhosa Simples/metabolismo , Humanos , Músculo Esquelético/metabolismo , Distrofias Musculares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA