Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nature ; 614(7947): 349-357, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36725930

RESUMO

Tissues derive ATP from two pathways-glycolysis and the tricarboxylic acid (TCA) cycle coupled to the electron transport chain. Most energy in mammals is produced via TCA metabolism1. In tumours, however, the absolute rates of these pathways remain unclear. Here we optimize tracer infusion approaches to measure the rates of glycolysis and the TCA cycle in healthy mouse tissues, Kras-mutant solid tumours, metastases and leukaemia. Then, given the rates of these two pathways, we calculate total ATP synthesis rates. We find that TCA cycle flux is suppressed in all five primary solid tumour models examined and is increased in lung metastases of breast cancer relative to primary orthotopic tumours. As expected, glycolysis flux is increased in tumours compared with healthy tissues (the Warburg effect2,3), but this increase is insufficient to compensate for low TCA flux in terms of ATP production. Thus, instead of being hypermetabolic, as commonly assumed, solid tumours generally produce ATP at a slower than normal rate. In mouse pancreatic cancer, this is accommodated by the downregulation of protein synthesis, one of this tissue's major energy costs. We propose that, as solid tumours develop, cancer cells shed energetically expensive tissue-specific functions, enabling uncontrolled growth despite a limited ability to produce ATP.


Assuntos
Trifosfato de Adenosina , Neoplasias da Mama , Ciclo do Ácido Cítrico , Desaceleração , Neoplasias Pulmonares , Metástase Neoplásica , Neoplasias Pancreáticas , Animais , Camundongos , Trifosfato de Adenosina/biossíntese , Trifosfato de Adenosina/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo do Ácido Cítrico/fisiologia , Metabolismo Energético , Glicólise , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Especificidade de Órgãos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Biossíntese de Proteínas
2.
Blood ; 138(15): 1317-1330, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33876224

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy. Despite recent advances in treatments with intensified chemotherapy regimens, relapse rates and associated morbidities remain high. In this context, metabolic dependencies have emerged as a druggable opportunity for the treatment of leukemia. Here, we tested the antileukemic effects of MB1-47, a newly developed mitochondrial uncoupling compound. MB1-47 treatment in T-ALL cells robustly inhibited cell proliferation via both cytostatic and cytotoxic effects as a result of compromised mitochondrial energy and metabolite depletion, which severely impaired nucleotide biosynthesis. Mechanistically, acute treatment with MB1-47 in primary leukemias promoted adenosine monophosphate-activated serine/threonine protein kinase (AMPK) activation and downregulation of mammalian target of rapamycin (mTOR) signaling, stalling anabolic pathways that support leukemic cell survival. Indeed, MB1-47 treatment in mice harboring either murine NOTCH1-induced primary leukemias or human T-ALL patient-derived xenografts (PDXs) led to potent antileukemic effects with a significant extension in survival without overlapping toxicities. Overall, our findings demonstrate a critical role for mitochondrial oxidative phosphorylation in T-ALL and uncover MB1-47-driven mitochondrial uncoupling as a novel therapeutic strategy for the treatment of this disease.


Assuntos
Antineoplásicos/uso terapêutico , Mitocôndrias/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Desacopladores/uso terapêutico , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Camundongos , Mitocôndrias/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Desacopladores/farmacologia
3.
Semin Cancer Biol ; 53: 48-58, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30130663

RESUMO

Most tumors exhibit intra-tumor heterogeneity, which is associated with disease progression and an impaired response to therapy. Cancer cell plasticity has been proposed as being an important mechanism that, along with genetic and epigenetic alterations, promotes cancer cell diversity and contributes to intra-tumor heterogeneity. Plasticity endows cancer cells with the capacity to shift dynamically between a differentiated state, with limited tumorigenic potential, and an undifferentiated or cancer stem-like cell (CSC) state, which is responsible for long-term tumor growth. In addition, it confers the ability to transit into distinct CSC states with different competence to invade, disseminate and seed metastasis. Cancer cell plasticity has been linked to the epithelial-to-mesenchymal transition program and relies not only on cell-autonomous mechanisms, but also on signals provided by the tumor microenvironment and/or induced in response to therapy. We provide an overview of the dynamic transition for cancer cell states, the mechanisms governing cell plasticity and their impact on tumor progression, metastasis and therapy response. Understanding the mechanisms involved in cancer cell plasticity will provide insights for establishing new therapeutic interventions.


Assuntos
Plasticidade Celular/genética , Transição Epitelial-Mesenquimal/genética , Neoplasias/genética , Células-Tronco Neoplásicas/metabolismo , Diferenciação Celular/genética , Progressão da Doença , Variação Genética , Humanos , Neoplasias/patologia , Transdução de Sinais/genética , Microambiente Tumoral/genética
5.
Nat Commun ; 15(1): 5352, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914547

RESUMO

Immune checkpoint blockade (ICB) approaches have changed the therapeutic landscape for many tumor types. However, half of cutaneous squamous cell carcinoma (cSCC) patients remain unresponsive or develop resistance. Here, we show that, during cSCC progression in male mice, cancer cells acquire epithelial/mesenchymal plasticity and change their immune checkpoint (IC) ligand profile according to their features, dictating the IC pathways involved in immune evasion. Epithelial cancer cells, through the PD-1/PD-L1 pathway, and mesenchymal cancer cells, through the CTLA-4/CD80 and TIGIT/CD155 pathways, differentially block antitumor immune responses and determine the response to ICB therapies. Accordingly, the anti-PD-L1/TIGIT combination is the most effective strategy for blocking the growth of cSCCs that contain both epithelial and mesenchymal cancer cells. The expression of E-cadherin/Vimentin/CD80/CD155 proteins in cSCC, HNSCC and melanoma patient samples predicts response to anti-PD-1/PD-L1 therapy. Collectively, our findings indicate that the selection of ICB therapies should take into account the epithelial/mesenchymal features of cancer cells.


Assuntos
Antígeno B7-H1 , Carcinoma de Células Escamosas , Plasticidade Celular , Transição Epitelial-Mesenquimal , Inibidores de Checkpoint Imunológico , Imunoterapia , Neoplasias Cutâneas , Animais , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/terapia , Neoplasias Cutâneas/tratamento farmacológico , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/tratamento farmacológico , Camundongos , Humanos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Masculino , Imunoterapia/métodos , Transição Epitelial-Mesenquimal/imunologia , Plasticidade Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/metabolismo , Antígeno CTLA-4/imunologia , Receptores Virais/metabolismo , Receptores Virais/genética , Antígeno B7-1/metabolismo , Receptores Imunológicos/metabolismo
6.
Blood Cancer Discov ; 4(1): 12-33, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36322781

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is a NOTCH1-driven disease in need of novel therapies. Here, we identify a NOTCH1-SIRT1-KAT7 link as a therapeutic vulnerability in T-ALL, in which the histone deacetylase SIRT1 is overexpressed downstream of a NOTCH1-bound enhancer. SIRT1 loss impaired leukemia generation, whereas SIRT1 overexpression accelerated leukemia and conferred resistance to NOTCH1 inhibition in a deacetylase-dependent manner. Moreover, pharmacologic or genetic inhibition of SIRT1 resulted in significant antileukemic effects. Global acetyl proteomics upon SIRT1 loss uncovered hyperacetylation of KAT7 and BRD1, subunits of a histone acetyltransferase complex targeting H4K12. Metabolic and gene-expression profiling revealed metabolic changes together with a transcriptional signature resembling KAT7 deletion. Consistently, SIRT1 loss resulted in reduced H4K12ac, and overexpression of a nonacetylatable KAT7-mutant partly rescued SIRT1 loss-induced proliferation defects. Overall, our results uncover therapeutic targets in T-ALL and reveal a circular feedback mechanism balancing deacetylase/acetyltransferase activation with potentially broad relevance in cancer. SIGNIFICANCE: We identify a T-ALL axis whereby NOTCH1 activates SIRT1 through an enhancer region, and SIRT1 deacetylates and activates KAT7. Targeting SIRT1 shows antileukemic effects, partly mediated by KAT7 inactivation. Our results reveal T-ALL therapeutic targets and uncover a rheostat mechanism between deacetylase/acetyltransferase activities with potentially broader cancer relevance. This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Leucemia de Células T , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Transdução de Sinais , Receptor Notch1/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sirtuína 1/farmacologia , Acetiltransferases/metabolismo , Acetiltransferases/farmacologia , Acetiltransferases/uso terapêutico , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/farmacologia , Histona Acetiltransferases/uso terapêutico
7.
bioRxiv ; 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37034581

RESUMO

T-cell Acute Lymphoblastic Leukemia (T-ALL) is a hematological malignancy in need of novel therapeutic approaches. Here, we identify the ATP-citrate lyase ACLY as a novel therapeutic target in T-ALL. Our results show that ACLY is overexpressed in T-ALL, and its expression correlates with NOTCH1 activity. To test the effects of ACLY in leukemia progression and the response to NOTCH1 inhibition, we developed an isogenic model of NOTCH1-induced Acly conditional knockout leukemia. Importantly, we observed intrinsic antileukemic effects upon loss of ACLY, which further synergized with NOTCH1 inhibition in vivo . Gene expression profiling analyses showed that the transcriptional signature of ACLY loss very significantly correlates with the signature of NOTCH1 inhibition in vivo , with significantly downregulated pathways related to oxidative phosphorylation, electron transport chain, ribosomal biogenesis and nucleosome biology. Consistently, metabolomic profiling upon ACLY loss revealed a metabolic crisis with accumulation of nucleotide intermediates and reduced levels of several amino acids. Overall, our results identify a link between NOTCH1 and ACLY and unveil ACLY as a novel promising target for T-ALL treatment.

8.
Nat Commun ; 13(1): 7404, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456551

RESUMO

T cell development requires the coordinated rearrangement of T cell receptor (TCR) gene segments and the expression of either αß or γδ TCR. However, whether and how de novo synthesis of nutrients contributes to thymocyte commitment to either lineage remains unclear. Here, we find that T cell-specific deficiency in glutamine:fructose-6-phosphate aminotransferase 1 (GFAT1), the rate-limiting enzyme of the de novo hexosamine biosynthesis pathway (dn-HBP), attenuates hexosamine levels, blunts N-glycosylation of TCRß chains, reduces surface expression of key developmental receptors, thus impairing αß-T cell ontogeny. GFAT1 deficiency triggers defects in N-glycans, increases the unfolded protein response, and elevates  γδ-T cell numbers despite reducing γδ-TCR diversity. Enhancing TCR expression or PI3K/Akt signaling does not reverse developmental defects. Instead, dietary supplementation with the salvage metabolite, glucosamine, and an α-ketoglutarate analogue partially restores αß-T cell development in GFAT1T-/- mice, while fully rescuing it in ex vivo fetal thymic organ cultures. Thus, dn-HBP fulfils, while salvage nutrients partially satisfy, the elevated demand for hexosamines during early T cell development.


Assuntos
Glucosamina , Hexosaminas , Animais , Camundongos , Fosfatidilinositol 3-Quinases , Nutrientes , Receptores de Antígenos de Linfócitos T gama-delta
9.
Leukemia ; 35(2): 377-388, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32382081

RESUMO

Folate metabolism enables cell growth by providing one-carbon (1C) units for nucleotide biosynthesis. The 1C units are carried by tetrahydrofolate, whose production by the enzyme dihydrofolate reductase is targeted by the important anticancer drug methotrexate. 1C units come largely from serine catabolism by the enzyme serine hydroxymethyltransferase (SHMT), whose mitochondrial isoform is strongly upregulated in cancer. Here we report the SHMT inhibitor SHIN2 and demonstrate its in vivo target engagement with 13C-serine tracing. As methotrexate is standard treatment for T-cell acute lymphoblastic leukemia (T-ALL), we explored the utility of SHIN2 in this disease. SHIN2 increases survival in NOTCH1-driven mouse primary T-ALL in vivo. Low dose methotrexate sensitizes Molt4 human T-ALL cells to SHIN2, and cells rendered methotrexate resistant in vitro show enhanced sensitivity to SHIN2. Finally, SHIN2 and methotrexate synergize in mouse primary T-ALL and in a human patient-derived xenograft in vivo, increasing survival. Thus, SHMT inhibition offers a complementary strategy in the treatment of T-ALL.


Assuntos
Sinergismo Farmacológico , Regulação Leucêmica da Expressão Gênica , Glicina Hidroximetiltransferase/antagonistas & inibidores , Metotrexato/farmacologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Animais , Antimetabólitos Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Blood Cancer Discov ; 2(1): 92-109, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33458694

RESUMO

Long-range oncogenic enhancers play an important role in cancer. Yet, whether similar regulation of tumor suppressor genes is relevant remains unclear. Loss of expression of PTEN is associated with the pathogenesis of various cancers, including T-cell leukemia (T-ALL). Here, we identify a highly conserved distal enhancer (PE) that interacts with the PTEN promoter in multiple hematopoietic populations, including T-cells, and acts as a hub of relevant transcription factors in T-ALL. Consistently, loss of PE leads to reduced PTEN levels in T-ALL cells. Moreover, PE-null mice show reduced Pten levels in thymocytes and accelerated development of NOTCH1-induced T-ALL. Furthermore, secondary loss of PE in established leukemias leads to accelerated progression and a gene expression signature driven by Pten loss. Finally, we uncovered recurrent deletions encompassing PE in T-ALL, which are associated with decreased PTEN levels. Altogether, our results identify PE as the first long-range tumor suppressor enhancer directly implicated in cancer.


Assuntos
Elementos Facilitadores Genéticos , PTEN Fosfo-Hidrolase , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptor Notch1 , Animais , Diferenciação Celular , Genes Supressores de Tumor , Camundongos , PTEN Fosfo-Hidrolase/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Receptor Notch1/genética , Transdução de Sinais
11.
Clin Cancer Res ; 27(5): 1491-1504, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33262138

RESUMO

PURPOSE: Recurrent and/or metastatic unresectable cutaneous squamous cell carcinomas (cSCCs) are treated with chemotherapy or radiotherapy, but have poor clinical responses. A limited response (up to 45% of cases) to EGFR-targeted therapies was observed in clinical trials with patients with advanced and metastatic cSCC. Here, we analyze the molecular traits underlying the response to EGFR inhibitors, and the mechanisms responsible for cSCC resistance to EGFR-targeted therapy. EXPERIMENTAL DESIGN: We generated primary cell cultures and patient cSCC-derived xenografts (cSCC-PDXs) that recapitulate the histopathologic and molecular features of patient tumors. Response to gefitinib treatment was tested and gefitinib-resistant (GefR) cSCC-PDXs were developed. RNA sequence analysis was performed in matched untreated and GefR cSCC-PDXs to determine the mechanisms driving gefitinib resistance. RESULTS: cSCCs conserving epithelial traits exhibited strong activation of EGFR signaling, which promoted tumor cell proliferation, in contrast to mesenchymal-like cSCCs. Gefitinib treatment strongly blocked epithelial-like cSCC-PDX growth in the absence of EGFR and RAS mutations, whereas tumors carrying the E545K PIK3CA-activating mutation were resistant to treatment. A subset of initially responding tumors acquired resistance after long-term treatment, which was induced by the bypass from EGFR to FGFR signaling to allow tumor cell proliferation and survival upon gefitinib treatment. Pharmacologic inhibition of FGFR signaling overcame resistance to EGFR inhibitor, even in PIK3CA-mutated tumors. CONCLUSIONS: EGFR-targeted therapy may be appropriate for treating many epithelial-like cSCCs without PIK3CA-activating mutations. Combined EGFR- and FGFR-targeted therapy may be used to treat cSCCs that show intrinsic or acquired resistance to EGFR inhibitors.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Gefitinibe/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Epiteliais e Glandulares/tratamento farmacológico , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Neoplasias Cutâneas/tratamento farmacológico , Animais , Apoptose , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Proliferação de Células , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Epiteliais e Glandulares/patologia , Inibidores de Proteínas Quinases/farmacologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Oncogene ; 38(25): 5021-5037, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30874597

RESUMO

Advanced and undifferentiated skin squamous cell carcinomas (SCCs) exhibit aggressive growth and enhanced metastasis capability, which is associated in mice with an expansion of the cancer stem-like cell (CSC) population and with changes in the regulatory mechanisms that control the proliferation and invasion of these cells. Indeed, autocrine activation of PDGFRα induces CSC invasion and promotes distant metastasis in advanced SCCs. However, the mechanisms involved in this process were unclear. Here, we show that CSCs of mouse advanced SCCs (L-CSCs) express CXCR4 and CXCR7, both receptors of SDF-1. PDGFRα signaling induces SDF-1 expression and secretion, and the autocrine activation of this pathway in L-CSCs. Autocrine SDF-1/CXCR4 signaling induces L-CSC proliferation and survival, and mediates PDGFRα-induced invasion, promoting in vivo lung metastasis. Validation of these findings in patient samples of skin SCCs shows a strong correlation between the expression of SDF1, PDGFRA, and PDGFRB, which is upregulated, along CXCR4 in tumor cells of advanced SCCs. Furthermore, PDGFR regulates SDF-1 expression and inhibition of SDF-1/CXCR4 and PDGFR pathways blocks distant metastasis of human PD/S-SCCs. Our results indicate that functional crosstalk between PDGFR/SDF-1 signaling regulates tumor cell invasion and metastasis in human and mouse advanced SCCs, and suggest that CXCR4 and/or PDGFR inhibitors could be used to block metastasis of these aggressive tumors.


Assuntos
Carcinoma de Células Escamosas/patologia , Quimiocina CXCL12/metabolismo , Células-Tronco Neoplásicas/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/fisiologia , Neoplasias Cutâneas/patologia , Animais , Comunicação Autócrina/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos Transgênicos , Metástase Neoplásica , Células-Tronco Neoplásicas/patologia , Transdução de Sinais/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo
13.
Cancer Res ; 76(5): 1245-59, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26719534

RESUMO

Cancer stem-like cells (CSC) play key roles in long-term tumor propagation and metastasis, but their dynamics during disease progression are not understood. Tumor relapse in patients with initially excised skin squamous cell carcinomas (SCC) is characterized by increased metastatic potential, and SCC progression is associated with an expansion of CSC. Here, we used genetically and chemically-induced mouse models of skin SCC to investigate the signaling pathways contributing to CSC function during disease progression. We found that CSC regulatory mechanisms change in advanced SCC, correlating with aggressive tumor growth and enhanced metastasis. ß-Catenin and EGFR signaling, induced in early SCC CSC, were downregulated in advanced SCC. Instead, autocrine FGFR1 and PDGFRα signaling, which have not been previously associated with skin SCC CSC, were upregulated in late CSC and promoted tumor growth and metastasis, respectively. Finally, high-grade and recurrent human skin SCC recapitulated the signaling changes observed in advanced mouse SCC. Collectively, our findings suggest a stage-specific switch in CSC regulation during disease progression that could be therapeutically exploited by targeting the PDGFR and FGFR1 pathways to block relapse and metastasis of advanced human skin SCC.


Assuntos
Carcinoma de Células Escamosas/patologia , Células-Tronco Neoplásicas/fisiologia , Transdução de Sinais/fisiologia , Neoplasias Cutâneas/patologia , Animais , Carcinoma de Células Escamosas/secundário , Linhagem da Célula , Proliferação de Células , Progressão da Doença , Receptores ErbB/fisiologia , Humanos , Camundongos , Estadiamento de Neoplasias , Fator de Crescimento Derivado de Plaquetas/fisiologia
14.
Cell Stem Cell ; 8(5): 511-24, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21419747

RESUMO

A frequent complication in colorectal cancer (CRC) is regeneration of the tumor after therapy. Here, we report that a gene signature specific for adult intestinal stem cells (ISCs) predicts disease relapse in CRC patients. ISCs are marked by high expression of the EphB2 receptor, which becomes gradually silenced as cells differentiate. Using EphB2 and the ISC marker Lgr5, we have FACS-purified and profiled mouse ISCs, crypt proliferative progenitors, and late transient amplifying cells to define a gene program specific for normal ISCs. Furthermore, we discovered that ISC-specific genes identify a stem-like cell population positioned at the bottom of tumor structures reminiscent of crypts. EphB2 sorted ISC-like tumor cells display robust tumor-initiating capacity in immunodeficient mice as well as long-term self-renewal potential. Taken together, our data suggest that the ISC program defines a cancer stem cell niche within colorectal tumors and plays a central role in CRC relapse.


Assuntos
Células-Tronco Adultas/metabolismo , Neoplasias do Colo/diagnóstico , Intestinos/patologia , Células-Tronco Neoplásicas/metabolismo , Receptor EphB3/metabolismo , Células-Tronco Adultas/patologia , Animais , Diferenciação Celular , Separação Celular , Extensões da Superfície Celular/patologia , Células Cultivadas , Neoplasias do Colo/patologia , Neoplasias do Colo/fisiopatologia , Citometria de Fluxo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Camundongos Knockout , Recidiva Local de Neoplasia , Células-Tronco Neoplásicas/patologia , Prognóstico , Receptor EphB3/genética , Receptores Acoplados a Proteínas G/metabolismo , Nicho de Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA