Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Gen Comp Endocrinol ; 230-231: 38-47, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26996426

RESUMO

In many seasonally breeding birds, female and male testosterone (T) levels peak at the start of the breeding season, coinciding with pair bonding and nesting activities. Shortly after the onset of egg laying, T levels slowly decline to baseline levels in both sexes, but more rapidly so in females. During this period, T in males may still function to facilitate territorial behaviour, mate guarding and extra pair copulations, either via short lasting peaks or elevated basal levels of the hormone. In some species, however, males become insensitive to increased T after the onset of egg laying. It has been postulated that in these species bi-parental care is essential for offspring survival, as T is known to inhibit paternal care. However, only very few studies have analysed this for females. As females are heavily involved in parental care, they too might become insensitive to T after egg laying. Alternatively, because territorial defence, mate guarding and extra pair copulations are expected to be less important for females than for males, they may not have had the need to evolve a mechanism to become insensitive to T during the period of maternal care, because their natural T levels are never elevated during this part of the breeding season anyway. We tested these alternative hypotheses in female great tits (Parus major). Male great tits have previously been shown to be insensitive to T after egg laying with regard to nestling feeding behaviour (but not song rate). When females had started nest building, we experimentally elevated their T levels up to the nestling feeding phase, and measured incubation behaviour (only females incubate) and reproductive success. T did not significantly affect nest building or egg laying behaviour, although egg laying tended to be delayed in T females. Females with experimentally enhanced T maintained lower temperature during incubation but did not spend less time incubating. This might explain the reduced hatching success of their eggs, smaller brood size and lower number of fledglings we found in this study. As in this species T-dependent behaviour by females during the phase of parental care is not needed, the results support the hypothesis that in this species the need for selection in favour of T-insensitivity did not occur.


Assuntos
Comportamento de Nidação/fisiologia , Reprodução/fisiologia , Aves Canoras/fisiologia , Testosterona/metabolismo , Animais , Evolução Biológica , Temperatura Corporal , Tamanho da Ninhada , Comportamento Alimentar , Feminino , Oviposição/fisiologia , Estações do Ano , Territorialidade , Testosterona/administração & dosagem , Fatores de Tempo
2.
J Exp Biol ; 210(Pt 11): 2013-24, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17515427

RESUMO

Free-living animals must forage for food and hence may face energetic constraints imposed by their natural environmental conditions (e.g. ambient temperature, food availability). Simulating the variation in such constraints, we have experimentally manipulated the rate of work (wheel running) mice must do to obtain their food, and studied the ensuing behavioural and physiological responses. This was done with a line of mice selectively bred for high spontaneous wheel running and a randomly bred control line that vary in the amount of baseline wheel-running activity. We first determined the maximum workload for each individual. The maximum workload animals could engage in was around 23 km d(-1) in both control and activity-selected mice, and was not associated with baseline wheel-running activity. We then kept mice at 90% of their individual maximum and measured several physiological and behavioural traits. At this high workload, mice increased wheel-running activity from an average of 10 to 20 km d(-1), and decreased food intake and body mass by approximately 20%. Mass-specific resting metabolic rate strongly decreased from 1.43 to 0.98 kJ g(-1) d(-1), whereas daily energy expenditure slightly increased from 2.09 to 2.25 kJ g(-1) d(-1). Costs of running decreased from 2.3 to 1.6 kJ km(-1) between baseline and workload conditions. At high workloads, animals were in a negative energy balance, resulting in a sharp reduction in fat mass as well as a slight decrease in dry lean mass. In addition, corticosterone levels increased, and body temperature was extremely low in some animals at high workloads. When challenged to work for food, mice thus show significant physiological and behavioural adjustments.


Assuntos
Metabolismo Energético , Camundongos/fisiologia , Atividade Motora , Animais , Temperatura Corporal , Peso Corporal , Ingestão de Alimentos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA