Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 39(14): 5002-5011, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36989403

RESUMO

We report on a new iron (iii)-cyamelurate-based coordination polymer. The new material based on a heptazine derivative was prepared in aqueous medium and characterized by a variety of techniques including TGA, FTIR, XRD, HRTEM, and STEM. Due to the high structural stability of the complex in aqueous media, its heterogeneous Fenton-like catalytic activity was evaluated using a model molecule. The results obtained showed a high catalytic activity in both in basic and acid media. The pseudo-first-order rate constants normalized by iron(III) concentrations was approximately 1000 times higher than the result obtained for traditional heterogeneous catalysts based on iron(III) oxyhydroxides. The best observed catalytic activities were attributed to the increase in the binding sites of Fe3+ ions, in parallel with the increased exposure of the catalytic sites, leading to a higher atomic efficiency of the reaction.

2.
Langmuir ; 33(43): 11857-11861, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-28957632

RESUMO

KOH activation of a mesophase pitch produces very efficient carbons for the removal of sulfide in aqueous solution, increasing the sulfur oxidation rate with the degree of activation of the carbon. These carbons are characterized by their graphitic structures, with domains of sizes of around 20 nm, and a moderate concentration of surface oxygen groups (0.2-0.5 mmol·g-1) dominating the basic groups. Because the activation leads first to a strong development of the micropores and later to a development of the mesopores, the surface area values are always high, reaching values of as high as 3250 m2·g-1 in the most activated carbon, with a volume of mesopores of as high as 44% of the total pore volume. In the presence of this carbon, the sulfide oxidation rate is 100 times higher than that found for a commercial activated carbon, the results indicating that the porosity of the carbon, especially mesoporosity, plays a role more important than the structure or the chemical nature of the carbon in the kinetics of sulfide oxidation to different polysulfides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA