Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Orthop Trauma Surg ; 143(8): 5405-5415, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36629904

RESUMO

INTRODUCTION: Increased risk of periprosthetic joint infection (PJI) in minimally invasive (MIS) total hip arthroplasty (THA) is still debated. This study aimed to identify differences in surgical and patient-related risk factors for PJI between an MIS anterolateral approach and transgluteal-modified Hardinge approach. METHODS: A retrospective cohort of 5315 THAs performed between 2006 and 2019 at a single institution was screened. Short stem THAs performed via an MIS anterolateral approach in the supine position and standard straight stem THAs performed via a transgluteal modified Hardinge approach were included. Propensity score matching was performed to control for selection bias. After matching, 1405 (34.3%) short stem THAs implanted via MIS anterolateral approach and 2687 (65.7%) straight stem THAs implanted via a transgluteal modified Hardinge approach were included. The risk of PJI due to patient-specific and surgical factors was retrospectively analyzed using chi-square test and multivariate regression analysis. RESULTS: PJI occurred in 1.1% in both MIS anterolateral and transgluteal approach (p = 0.823). Multivariate regression showed an increased infection risk for patients with a BMI between 35 and 39.99 kg/m2 (OR 6.696; CI 1.799-24.923; p = 0.005), which could not be demonstrated for transgluteal approach (OR 0.900; CI 0.900-4.144; p = 0.93). A BMI ≥ 40 kg/m2 (OR 14.150; CI 2.416-82.879; p = 0.003) was detected as a risk factor for PJI only in anterolateral approach. Increased operation time ≥ 121 min showed a significantly increased risk for PJI in the general cohort (OR 6.989; CI1.286-37.972; p = 0.024). CONCLUSION: Minimally invasive anterolateral and transgluteal THA show a comparable rate of early PJI within the first year of index surgery. A BMI of ≥ 35 kg/m2 was detected as a clear risk factor for infection in the anterolateral approach. Prolonged operation time ≥ 121 min increases the risk of PJI regardless of approach.


Assuntos
Artrite Infecciosa , Artroplastia de Quadril , Prótese de Quadril , Infecções Relacionadas à Prótese , Humanos , Artroplastia de Quadril/efeitos adversos , Estudos Retrospectivos , Infecções Relacionadas à Prótese/epidemiologia , Infecções Relacionadas à Prótese/etiologia , Infecções Relacionadas à Prótese/cirurgia , Pontuação de Propensão , Prótese de Quadril/efeitos adversos , Fatores de Risco , Artrite Infecciosa/cirurgia
2.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806299

RESUMO

Thimet oligopeptidase (TOP) is a metallopeptidase involved in the metabolism of oligopeptides inside and outside cells of various tissues. It has been proposed that substrate or inhibitor binding in the TOP active site induces a large hinge-bending movement leading to a closed structure, in which the bound ligand is enclosed. The main goal of the present work was to study this conformational change, and fluorescence techniques were used. Four active TOP mutants were created, each equipped with a single-Trp residue (fluorescence donor) and a p-nitro-phenylalanine (pNF) residue as fluorescence acceptor at opposite sides of the active site. pNF was biosynthetically incorporated with high efficiency using the amber codon suppression technology. Inhibitor binding induced shorter Donor-Acceptor (D-A) distances in all mutants, supporting the view that a hinge-like movement is operative in TOP. The activity of TOP is known to be dependent on the ionic strength of the assay buffer and D-A distances were measured at different ionic strengths. Interestingly, a correlation between the D-A distance and the catalytic activity of TOP was observed: the highest activities corresponded to the shortest D-A distances. In this study for the first time the hinge-bending motion of a metallopeptidase in solution could be studied, yielding insight about the position of the equilibrium between the open and closed conformation. This information will contribute to a more detailed understanding of the mode of action of these enzymes, including therapeutic targets like neurolysin and angiotensin-converting enzyme 2 (ACE2).


Assuntos
Metaloendopeptidases , Oligopeptídeos , Domínio Catalítico , Ligantes , Metaloendopeptidases/química , Oligopeptídeos/metabolismo , Especificidade por Substrato
3.
Anal Chem ; 93(23): 8196-8202, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34053216

RESUMO

Data-independent acquisition (DIA) is an increasingly used approach for quantitative proteomics. However, most current isotope labeling strategies are not suitable for DIA as they lead to more complex MS2 spectra or severe ratio distortion. As a result, DIA suffers from a lower throughput than data-dependent acquisition (DDA) due to a lower level of multiplexing. Herein, we synthesized an isotopically labeled acetyl-isoleucine-proline (Ac-IP) tag for multiplexed quantification in DIA. Differentially labeled peptides have distinct precursor ions carrying the quantitative information but identical MS2 spectra since the isotopically labeled Ac-Ile part leaves as a neutral loss upon collision-induced dissociation, while fragmentation of the peptide backbone generates regular fragment ions for identification. The Ac-IP-labeled samples can be analyzed using general DIA liquid chromatography-mass spectrometry settings, and the data obtained can be processed with established approaches. Relative quantification requires deconvolution of the isotope envelope of the respective precursor ions. Suitability of the Ac-IP tag is demonstrated with a triplex-labeled yeast proteome spiked with bovine serum albumin that was mixed at 10:5:1 ratios, resulting in measured ratios of 9.7:5.3:1.1.


Assuntos
Isoleucina , Proteoma , Marcação por Isótopo , Prolina , Proteômica
4.
J Proteome Res ; 19(9): 3817-3824, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32786690

RESUMO

Quantifying peptides based on unique peptide fragment ions avoids the issue of ratio distortion that is commonly observed for reporter ion-based quantification approaches. Herein, we present a collision-induced dissociation-cleavable, isobaric acetyl-isoleucine-proline-glycine (Ac-IPG) tag, which conserves the merits of quantifying peptides based on unique fragments while reducing the complexity of the b-ion series compared to conventional fragment ion-based quantification methods thus facilitating data processing. Multiplex labeling is based on selective N-terminal dimethylation followed by derivatization of the ε-amino group of the C-terminal Lys residue of LysC peptides with isobaric Ac-IPG tags having complementary isotope distributions on Pro-Gly and Ac-Ile. Upon fragmentation between Ile and Pro, the resulting y ions, with the neutral loss of Ac-Ile, can be distinguished between the different labeling channels based on different numbers of isotope labels on the Pro-Gly part and thus contain the information for relative quantification, while b ions of different labeling channels have the same m/z values. The proteome quantification capability of this method was demonstrated by triplex labeling of a yeast proteome spiked with bovine serum albumin (BSA) over a 10-fold dynamic range. With the yeast proteins as the background, BSA was detected at ratios of 1.14:5.06:9.78 when spiked at 1:5:10 ratios. The raw mass data is available on the ProteomeXchange with the identifier PXD 018790.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Íons , Marcação por Isótopo , Fragmentos de Peptídeos , Peptídeos , Proteoma
5.
Anal Chem ; 92(24): 16149-16157, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33256395

RESUMO

Quantifying proteins based on peptide-coupled reporter ions is a multiplexed quantitative strategy in proteomics that alleviates the problem of ratio distortion caused by peptide cofragmentation, as commonly observed in other reporter-ion-based approaches, such as TMT and iTRAQ. Data-independent acquisition (DIA) is an attractive alternative to data-dependent acquisition (DDA) due to its better reproducibility. While multiplexed labeling is widely used in DDA, it is rarely used in DIA, presumably because current approaches lead to more complex MS2 spectra, severe ratio distortion, or to a reduction in quantification accuracy and precision. Herein, we present a versatile acetyl-alanine-glycine (Ac-AG) tag that conceals quantitative information in isobarically labeled peptides and reveals it upon tandem MS in the form of peptide-coupled reporter ions. Since the peptide-coupled reporter ion is precursor-specific while fragment ions of the peptide backbone originating from different labeling channels are identical, the Ac-AG tag is compatible with both DDA and DIA. By isolating the monoisotopic peak of the precursor ion in DDA, intensities of the peptide-coupled reporter ions represent the relative ratios between constituent samples, whereas in DIA, the ratio can be inferred after deconvoluting the peptide-coupled reporter ion isotopes. The proteome quantification capability of the Ac-AG tag was demonstrated by triplex labeling of a yeast proteome spiked with bovine serum albumin (BSA) over a 10-fold dynamic range. Within this complex proteomics background, BSA spiked at 1:5:10 ratios was detected at ratios of 1.00:4.87:10.13 in DDA and 1.16:5.20:9.64 in DIA.


Assuntos
Espectrometria de Massas , Proteômica/métodos , Glicina/química , Limite de Detecção , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Coloração e Rotulagem
6.
Anal Chem ; 92(11): 7836-7844, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32319746

RESUMO

Isobaric peptide termini labeling (IPTL) is an attractive protein quantification method because it provides more accurate and reliable quantification information than traditional isobaric labeling methods (e.g., TMT and iTRAQ) by making use of the entire fragment-ion series instead of only a single reporter ion. The multiplexing capacity of published IPTL implementations is, however, limited to three. Here, we present a selective maleylation-directed isobaric peptide termini labeling (SMD-IPTL) approach for quantitative proteomics of LysC protein digestion. SMD-IPTL extends the multiplexing capacity to 4-plex with the potential for higher levels of multiplexing using commercially available 13C/15N labeled amino acids. SMD-IPTL is achieved in a one-pot reaction in three consecutive steps: (1) selective maleylation at the N-terminus; (2) labeling at the ε-NH2 group of the C-terminal Lys with isotopically labeled acetyl-alanine; (3) thiol Michael addition of an isotopically labeled acetyl-cysteine at the maleylated N-terminus. The isobarically labeled peptides are fragmented into sets of b- and y-ion clusters upon LC-MS/MS, which convey not only sequence information but also quantitative information for every labeling channel and avoid the issue of ratio distortion observed with reporter-ion-based approaches. We demonstrate the SMD-IPTL approach with a 4-plex labeled sample of bovine serum albumin (BSA) and yeast lysates mixed at different ratios. With the use of SMD-IPTL for labeling and a narrow precursor isolation window of 0.8 Th with an offset of -0.2 Th, accurate ratios were measured across a 10-fold mixing range of BSA in a background of yeast proteome. With the yeast proteins mixed at ratios of 1:5:1:5, BSA was detected at ratios of 0.94:2.46:4.70:9.92 when spiked at 1:2:5:10 ratios with an average standard deviation of peptide ratios of 0.34.


Assuntos
Marcação por Isótopo , Peptídeos/química , Proteoma/análise , Proteínas de Saccharomyces cerevisiae/análise , Soroalbumina Bovina/análise , Animais , Bovinos
7.
Anal Chem ; 89(13): 7123-7129, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28593756

RESUMO

Specific digestion of proteins is an essential step for mass spectrometry-based proteomics, and the chemical labeling of the resulting peptides is often used for peptide enrichment or the introduction of desirable tags. Electrochemical oxidation yielding specific cleavage C-terminal to tyrosine (Tyr) and tryptophan (Trp) residues provides a potential alternative to enzymatic digestion and a possibility for further chemical labeling by introducing reactive spirolactone moieties. However, spirolactone-containing peptides suffer from low stability due to hydrolysis and intramolecular side reactions. We found that Cu(II) ions stabilize the spirolactone and prevent intramolecular side reactions during chemical labeling, allowing efficient chemical tagging with a reduced excess of labeling reagent without intramolecular side reactions. On the basis of this reaction, we developed an analytical procedure combining electrochemical digestion, Cu(II)-mediated spirolactone biotinylation, and enrichment by avidin affinity chromatography with mass spectrometry. The method was optimized with the tripeptide LWL and subsequently applied to chicken egg white lysozyme, in which one biotinylated electrochemistry (EC)-cleaved peptide was identified after affinity enrichment. This proof-of-principle shows that specific enrichment of electrochemically cleaved spirolactone-containing peptides can be used for protein identification and notably that inclusion of Cu(II) ions is essential for stabilizing spirolactones for subsequent biotinylation.


Assuntos
Cobre/química , Técnicas Eletroquímicas/métodos , Lactonas/química , Muramidase/química , Oligopeptídeos/química , Compostos de Espiro/química , Animais , Biotinilação , Galinhas , Oxirredução , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Triptofano/química , Tirosina/química
8.
Anal Chem ; 88(12): 6465-71, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27247048

RESUMO

Specific digestion of proteins is an essential step for mass spectrometry-based proteomics, and the chemical labeling of the resulting peptides is often used for peptide enrichment or the introduction of desirable tags. Cleavage of the peptide bond following electrochemical oxidation of Tyr or Trp results in a spirolactone moiety at the newly formed C-terminus offering a handle for chemical labeling. In this work, we developed a highly efficient and selective chemical labeling approach based on spirolactone chemistry. Electrochemically generated peptide-spirolactones readily undergo an intramolecular rearrangement yielding isomeric diketopiperazines precluding further chemical labeling. A strategy was established to prevent intramolecular arrangement by acetylating the N-terminal amino group prior to electrochemical oxidation and cleavage allowing the complete and selective chemical labeling of the tripeptide LWL and the decapeptide ACTH 1-10 with amine-containing reagents. As examples, we show the successful introduction of a fluorescent label and biotin for detection or affinity enrichment. Electrochemical digestion of peptides and proteins followed by efficient chemical labeling constitutes a new, powerful tool in protein chemistry and protein analysis.


Assuntos
Técnicas Eletroquímicas , Corantes Fluorescentes/química , Peptídeos/química , Espironolactona/química , Coloração e Rotulagem , Acetilação , Aminas/química , Biotina/química , Técnicas Eletroquímicas/métodos , Oxirredução , Piperazinas/química , Coloração e Rotulagem/métodos
9.
Amino Acids ; 48(5): 1309-18, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26872656

RESUMO

Lantibiotics are posttranslationally modified peptides with efficient inhibitory activity against various Gram-positive bacteria. In addition to the original modifications, incorporation of non-canonical amino acids can render new properties and functions to lantibiotics. Nisin is the most studied lantibiotic and contains no tryptophan residues. In this study, a system was constructed to incorporate tryptophan analogues into nisin, which included the modification machinery (NisBTC) and the overexpression of tryptophanyl-tRNA synthetase (TrpRS). Tryptophan and three different tryptophan analogues (5-fluoroTrp (5FW), 5-hydroxyTrp (5HW) and 5-methylTrp (5MeW)) were successfully incorporated at four different positions of nisin (I1W, I4W, M17W and V32W). The incorporation efficiency of tryptophan analogues into mutants I1W, M17W and V32W was over 97 %, while the mutant I4W showed relatively low incorporation efficiency (69-93 %). The variants with 5FW showed relatively higher production yield, while 5MeW-containing variants showed the lowest yield. The dehydration efficiency of serines or threonines was affected by the tryptophan mutants of I4W and V32W. The affinity of the peptides for the cation-ion exchange and reverse phase chromatography columns was significantly reduced when 5HW was incorporated. The antimicrobial activity of IIW and its 5FW analogue both decreased two times compared to that of nisin, while that of its 5HW analogue decreased four times. The 5FW analogue of I4W also showed two times decreased activity than nisin. However, the mutant M17W and its 5HW analogue both showed 32 times reduced activity relative to that of nisin.


Assuntos
Bacteriocinas/química , Nisina/química , Nisina/farmacologia , Triptofano/farmacologia , Bacteriocinas/genética , Bacteriocinas/farmacologia , Lactococcus lactis/efeitos dos fármacos , Estrutura Molecular , Nisina/genética , Triptofano/análogos & derivados , Triptofano/genética
10.
Biochemistry ; 54(5): 1219-32, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25565350

RESUMO

The vast majority of characterized oxygenases use bound cofactors to activate molecular oxygen to carry out oxidation chemistry. Here, we show that an enzyme of unknown activity, RhCC from Rhodococcus jostii RHA1, functions as an oxygenase, using 4-hydroxyphenylenolpyruvate as a substrate. This unique and complex reaction yields 3-hydroxy-3-(4-hydroxyphenyl)-pyruvate, 4-hydroxybenzaldehyde, and oxalic acid as major products. Incubations with H2(18)O, (18)O2, and a substrate analogue suggest that this enzymatic oxygenation reaction likely involves a peroxide anion intermediate. Analysis of sequence similarity and the crystal structure of RhCC (solved at 1.78 Å resolution) reveal that this enzyme belongs to the tautomerase superfamily. Members of this superfamily typically catalyze tautomerization, dehalogenation, or decarboxylation reactions rather than oxygenation reactions. The structure shows the absence of cofactors, establishing RhCC as a rare example of a redox-metal- and coenzyme-free oxygenase. This sets the stage to study the mechanistic details of cofactor-independent oxygen activation in the unusual context of the tautomerase superfamily.


Assuntos
Proteínas de Bactérias/química , Oxigenases/química , Rhodococcus/enzimologia , Cristalografia por Raios X , Estrutura Terciária de Proteína , Ácido Pirúvico/análogos & derivados , Ácido Pirúvico/química
11.
J Agric Food Chem ; 72(6): 3017-3024, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38315649

RESUMO

Dehydrosqualene synthase (CrtM), as a squalene synthase-like enzyme from Staphylococcus aureus, can naturally utilize farnesyl diphosphate to produce dehydrosqualene (C30H48). However, no study has documented the natural production of squalene (C30H50) by CrtM. Here, based on an HPLC-Q-Orbitrap-MS/MS study, we report that the expression of crtM in vitro or in Bacillus subtilis 168 both results in the output of squalene, dehydrosqualene, and phytoene (C40H64). Notably, wild-type CrtM exhibits a significantly higher squalene yield compared to squalene synthase (SQS) from Bacillus megaterium with an approximately 2.4-fold increase. Moreover, the examination of presqualene diphosphate's stereostructures in both CrtM and SQS enzymes provides further understanding into the presence of multiple identified terpenoids. In summary, this study not only provides insights into the promiscuity demonstrated by squalene synthase-like enzymes but also highlights a new strategy of utilizing CrtM as a potential replacement for SQS in cell factories, thereby enhancing squalene production.


Assuntos
Farnesil-Difosfato Farnesiltransferase , Esqualeno , Esqualeno/análogos & derivados , Esqualeno/metabolismo , Farnesil-Difosfato Farnesiltransferase/genética , Farnesil-Difosfato Farnesiltransferase/metabolismo , Espectrometria de Massas em Tandem , Terpenos/metabolismo , Óxido Nítrico Sintase
12.
Pharmaceutics ; 14(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36432676

RESUMO

Cell-derived extracellular vesicles (EVs) are effectors of cell-to-cell communication that are in the spotlight as promising candidates for in vivo drug delivery because of their ability to enter cells and deliver cargo. For example, proteins of interest can be loaded into EVs to mediate protein transfer into target cells. To determine causality between EV content and function, which is also important to assess the clinical safety of EVs, it is crucial to comprehensively characterize their complete molecular composition. Here, we investigated EVs loaded with the chaperone protein DNAJB6. Chaperone proteins assist in protein folding and have been suggested to alleviate protein aggregation diseases, such as Alzheimer's disease and Huntington's disease. We analyzed and compared the proteome of EVs isolated from wildtype HEK293T cells with that of EVs from HEK 293T cells overexpressing DNAJB6-WT or loss-of-function mutant DNAJB6-M3. Comprehensive analysis of proteomics data showed enhanced levels of DNAJB6 as well as protein-folding-related proteins in EVs derived from DNAJB6-overexpression cells. Interestingly, upregulation of a chaperone and its protein-folding-related proteins resulted in downregulation of another chaperone plus its related proteins, and vice versa. This implies the presence of compensatory mechanisms in the cellular expression of chaperones. Collectively, we provide the proteomic EV signatures underlying EV mediated DNAJB6 transmission by HEK293T cells, with the aim of establishing a causal relationship between EV protein content and EV function.

13.
Sci Total Environ ; 831: 154898, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35364158

RESUMO

Enteric fermentation and manure methane emissions from livestock are major anthropogenic greenhouse gas emissions. In general, direct measurements of farm-scale methane emissions are scarce due to the source complexity and the limitations of existing atmospheric sampling methods. Using an innovative UAV-based active AirCore system, we have performed accurate atmospheric measurements of CH4 mole fractions downwind of a dairy cow farm in the Netherlands on four individual days during the period from March 2017 to March 2019. The total CH4 emission rates from the farm were determined using the UAV-based mass balance approach to be 1.1-2.4 g/s. After subtracting estimated emission factors of manure onsite, we derived the enteric emission factors to be 0.20-0.51 kgCH4/AU/d (1 AU = 500 kg animal weight) of dairy cows. We show that the uncertainties of the estimates were dominated by the variabilities in the wind speed and the angle between the wind and the flight transect. Furthermore, nonsimultaneous sampling in the vertical direction of the plume is one of the main limiting factors to achieving accurate estimate of the CH4 emissions from the farm. In addition, a N2O tracer release experiment at the farm was performed when both a UAV and a mobile van were present to simultaneously sample the N2O tracer and the CH4 plumes from the farm, improving the source quantification with a correction factor of 1.04 and 1.22 for the inverse Gaussian approach and for the mass balance approach, respectively. The UAV-based active AirCore system is capable of providing useful estimates of CH4 emissions from dairy cow farms. The uncertainties of the estimates can be improved when combined with accurate measurements of local wind speed and direction or when combined with a tracer approach.


Assuntos
Gases de Efeito Estufa , Metano , Animais , Bovinos , Fazendas , Feminino , Esterco , Metano/análise , Leite/química , Dispositivos Aéreos não Tripulados
14.
Acta Biomater ; 141: 209-218, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35038586

RESUMO

Lung implantable devices have been widely adopted as mechanical interventions for a wide variety of pulmonary pathologies. Despite successful initial treatment, long-term efficacy can often be impacted by fibrotic or granulation tissue formation at the implant sites. This study aimed to explore the lung-device interface by identifying the adhered proteome on lung devices explanted from patients with severe emphysema. In this study, scanning electron microscopy is used to visualize the adhesion of cells and proteins to silicone and nitinol surfaces of explanted endobronchial valves. By applying high-resolution mass-spectrometry, the surface proteome of eight explanted valves is characterized, identifying 263 unique protein species to be mutually adsorbed on the valves. This subset is subjected to gene enrichment analysis, matched with known databases and further validated using immunohistochemistry. Enrichment analyses reveal dominant clusters of functionally-related ontology terms associated with coagulation, pattern recognition receptor signaling, immune responses, cytoskeleton organization, cell adhesion and migration. Matching results show that extracellular matrix proteins and damage-associated molecular patterns are cardinal in the formation of the surface proteome. This is the first study investigating the composition of the adhered proteome on explanted lung devices, setting the groundwork for hypothesis generation and further exploration. STATEMENT OF SIGNIFICANCE: This is the first study investigating the composition of the adhered proteome on explanted lung devices. Lung implantable devices have been widely adopted as mechanical interventions for pulmonary pathologies. Despite successful initial treatment, long-term efficacy can often be impacted by fibrotic or granulation tissue formation around the implant sites. We identified the adhered proteome on explanted lung devices using several techniques. We identified 263 unique protein species to be mutually adsorbed on explanted lung devices. Pathway analyses revealed that these proteins are associated with coagulation, pattern recognition receptor signaling, immune responses, cytoskeleton organization, cell adhesion and migration. Furthermore, we identified that especially extracellular matrix proteins and damage-associated molecular patterns were cardinal in the formation of the surface proteome.


Assuntos
Proteoma , Silicones , Ligas , Proteínas da Matriz Extracelular , Humanos , Pulmão , Receptores de Reconhecimento de Padrão
15.
Proteomics ; 11(24): 4622-31, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21956891

RESUMO

The global analysis of metabolism by liquid chromatography coupled to mass spectrometry is often hampered by a large amount of biological and technical variability. Here, we introduce an experimental and analytical strategy that can produce robust metabolome profiles in the face of this challenge. By applying a new computational approach based on concordance analysis to an extremely large number of analytical replicates, we are able to show that the overexpression of an antisense non-coding RNA targeting glutamine synthetase I results in a major reorganization of the metabolism of Streptomyces coelicolor, the model species of antibiotic-producing bacteria. We identified 97 metabolites with statistically significant reproducible dynamic behavior across the time series. The observed metabolic changes are very rapid, specific and widespread across metabolism, but focus on the nitrogen assimilation pathways. Our results demonstrate the power of highly replicated experimental designs for the robust characterization of metabolite dynamics. The identified global rearrangement of metabolism suggests the usefulness of RNA interference as an efficient strategy to manipulate the physiology of bacteria with wider biotechnological applicability in microorganisms.


Assuntos
Glutamato-Amônia Ligase/genética , Metabolômica/métodos , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Regulação Bacteriana da Expressão Gênica , Metaboloma , Interferência de RNA , Pequeno RNA não Traduzido/biossíntese
16.
Mol Cell Proteomics ; 8(2): 316-24, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18840871

RESUMO

Adipose tissue is an endocrine organ involved in regulation of whole-body energy metabolism via storage of lipids and secretion of various peptide hormones (adipokines). We previously characterized the adipose tissue secretome and showed that [(13)C]lysine incorporation into secreted proteins can be used to determine the origin of identified proteins. In the present study we determined the effect of insulin on the secretome by comparing incorporation rates of (13)C-labeled lysine in the presence and absence of insulin. Human visceral adipose tissue from one patient was divided over six dishes. After subsequent washes to remove serum proteins, [(13)C]lysine-containing medium was added. Three dishes also received 60 nm insulin. The other three were controls. After 72 h of culture, media were collected and processed separately, involving concentration by ultrafiltration and fractionation by SDS-PAGE followed by in-gel digestion of excised bands and LC-MS/MS analyses. The obtained spectra were used for database searching and calculation of heavy/light ratios. The three control data sets shared 342 proteins of which 156 were potentially secreted and contained label. The three insulin-derived data sets shared 361 proteins of which 141 were potentially secreted and contained label. After discarding secreted proteins with very low label incorporation, 121 and 113 proteins remained for control and insulin data sets, respectively. The average coefficient of variation for control triplicates was 10.0% and for insulin triplicates was 18.3%. By comparing heavy/light ratios in the absence and presence of insulin we found 24 up-regulated proteins and four down-regulated proteins, and 58 proteins showed no change. Proteins involved in the endoplasmic reticulum stress response and in extracellular matrix remodeling were up-regulated by insulin. In conclusion, comparison of isotope-labeled amino acid incorporation rates (CILAIR) allows quantitative assessment of changes in protein secretion without the need for 100% label incorporation, which cannot be reached in differentiated tissues or cells.


Assuntos
Aminoácidos/metabolismo , Marcação por Isótopo/métodos , Proteoma/análise , Proteoma/metabolismo , Adulto , Feminino , Humanos , Insulina/farmacologia , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo
17.
iScience ; 24(5): 102435, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34113809

RESUMO

In an attempt to unravel functionality of the non-canonical PRC1.1 Polycomb complex in human leukemogenesis, we show that USP7 and TRIM27 are integral components of PRC1.1. USP7 interactome analyses show that PRC1.1 is the predominant Polycomb complex co-precipitating with USP7. USP7 inhibition results in PRC1.1 disassembly and loss of chromatin binding, coinciding with reduced H2AK119ub and H3K27ac levels and diminished gene transcription of active PRC1.1-controlled loci, whereas H2AK119ub marks are also lost at PRC1 loci. TRIM27 and USP7 are reciprocally required for incorporation into PRC1.1, and TRIM27 knockdown partially rescues USP7 inhibitor sensitivity. USP7 inhibitors effectively impair proliferation in AML cells in vitro, also independent of the USP7-MDM2-TP53 axis, and MLL-AF9-induced leukemia is delayed in vivo in human leukemia xenografts. We propose a model where USP7 counteracts TRIM27 E3 ligase activity, thereby maintaining PRC1.1 integrity and function. Moreover, USP7 inhibition may be a promising new strategy to treat AML patients.

18.
J Proteome Res ; 9(11): 6052-9, 2010 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-20839884

RESUMO

Hedgehog is one of the major morphogens and fulfils critical functions in both the development and maintenance of the vasculature. Hedgehog is highly hydrophobic and its diffusion toward target tissues remains only partly understood. In Drosophila, hedgehog transport via lipophorins is relevant for development, but neither the presence nor a function for a mammalian Hedgehog carried by human plasma lipoproteins has been established. We investigated the presence of Hedgehog on lipoprotein particles and determined its importance for maintaining the endothelium. LTQ-Orbitrap XL analysis of defined plasma lipoproteins revealed that Indian Hedgehog (Ihh) is present in the human very low density lipoprotein (VLDL) fraction but not in other plasma lipoprotein fractions (low density lipoprotein (LDL) and high density lipoprotein (HDL)). Using the same approach, neither Sonic Hedgehog nor Desert Hedgehog could be detected in plasma lipoprotein fractions. Most likely, primary white adipocytes are the source of Ihh loading on VLDL as both transcriptome as well as immunofluorescence analysis showed high expression of Ihh in these cells. Additionally, we show that the endothelial compartment is most likely to be affected by the presence of Ihh on VLDL. Indeed, VLDL increased survival of primary endothelial cells, suggesting that Ihh transport by VLDL is important for maintaining the human endothelium. In conclusion, our study shows that VLDL carries Ihh throughout the body in mammals and Hedgehog signaling by human plasma VLDL particles may affect blood vessel pathophysiology. A combination of three state-of-the-art technologies, proteomics, genomics, and confocal microscopy, appeared to be a powerful tool for analyzing plasma lipoprotein-associated proteins.


Assuntos
Proteínas Hedgehog/metabolismo , Lipoproteínas VLDL/metabolismo , Adipócitos , Humanos , Lipoproteínas , Lipoproteínas VLDL/sangue , Ligação Proteica , Transporte Proteico
19.
Appl Environ Microbiol ; 76(8): 2574-81, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20190082

RESUMO

The humicolous actinomycete Streptomyces coelicolor routinely adapts to a wide variety of habitats and rapidly changing environments. Upon salt stress, the organism is also known to increase the levels of various compatible solutes. Here we report the results of the first high-resolution metabolomics time series analysis of various strains of S. coelicolor exposed to salt stress: the wild type, mutants with progressive knockouts of the ectoine biosynthesis pathway, and two stress regulator mutants (with disruptions of the sigB and osaB genes). Samples were taken from cultures at 0, 4, 8, and 24 h after salt stress treatment and analyzed by liquid chromatography-mass spectrometry with an LTQ Orbitrap XL mass spectrometer. The results suggest that a large fraction of amino acids is upregulated in response to the salt stress, as are proline/glycine-containing di- and tripeptides. Additionally we found that 5'-methylthioadenosine, a known inhibitor of polyamine biosynthesis, is downregulated upon salt stress. Strikingly, no major differences between the wild-type cultures and the two stress regulator mutants were found, indicating a considerable robustness of the metabolomic response to salt stress, compared to the more volatile changes in transcript abundance reported earlier.


Assuntos
Metaboloma , Pressão Osmótica , Sais/toxicidade , Streptomyces coelicolor/fisiologia , Estresse Fisiológico , Actinomycetales , Diamino Aminoácidos/biossíntese , Proteínas de Bactérias/genética , Vias Biossintéticas/genética , Cromatografia Líquida , Técnicas de Inativação de Genes , Espectrometria de Massas , Metabolômica
20.
NPJ Biofilms Microbiomes ; 6(1): 30, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32764612

RESUMO

Bacteria display social behavior and establish cooperative or competitive interactions in the niches they occupy. The human skin is a densely populated environment where many bacterial species live. Thus, bacterial inhabitants are expected to find a balance in these interactions, which eventually defines their spatial distribution and the composition of our skin microbiota. Unraveling the physiological basis of the interactions between bacterial species in organized environments requires reductionist analyses using functionally relevant species. Here, we study the interaction between two members of our skin microbiota, Bacillus subtilis and Staphylococcus epidermidis. We show that B. subtilis actively responds to the presence of S. epidermidis in its proximity by two strategies: antimicrobial production and development of a subpopulation with migratory response. The initial response of B. subtilis is production of chlorotetain, which degrades the S. epidermidis at the colony level. Next, a subpopulation of B. subtilis motile cells emerges. Remarkably this subpopulation slides towards the remaining S. epidermidis colony and engulfs it. A slow response back from S. epidermidis cells give origin to resistant cells that prevent both attacks from B. subtilis. We hypothesized that this niche conquering and back-down response from B. subtilis and S. epidermidis, respectively, which resembles other conflicts in nature as the ones observed in animals, may play a role in defining the presence of certain bacterial species in the specific microenvironments that these bacteria occupy on our skin.


Assuntos
Bacillus subtilis/fisiologia , Dipeptídeos/farmacologia , Pele/microbiologia , Staphylococcus epidermidis/crescimento & desenvolvimento , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/farmacologia , Dipeptídeos/biossíntese , Humanos , Interações Microbianas , Viabilidade Microbiana/efeitos dos fármacos , Filogenia , Staphylococcus epidermidis/efeitos dos fármacos , Territorialidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA