Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 110(2): 251-272, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36669495

RESUMO

For neurodevelopmental disorders (NDDs), a molecular diagnosis is key for management, predicting outcome, and counseling. Often, routine DNA-based tests fail to establish a genetic diagnosis in NDDs. Transcriptome analysis (RNA sequencing [RNA-seq]) promises to improve the diagnostic yield but has not been applied to NDDs in routine diagnostics. Here, we explored the diagnostic potential of RNA-seq in 96 individuals including 67 undiagnosed subjects with NDDs. We performed RNA-seq on single individuals' cultured skin fibroblasts, with and without cycloheximide treatment, and used modified OUTRIDER Z scores to detect gene expression outliers and mis-splicing by exonic and intronic outliers. Analysis was performed by a user-friendly web application, and candidate pathogenic transcriptional events were confirmed by secondary assays. We identified intragenic deletions, monoallelic expression, and pseudoexonic insertions but also synonymous and non-synonymous variants with deleterious effects on transcription, increasing the diagnostic yield for NDDs by 13%. We found that cycloheximide treatment and exonic/intronic Z score analysis increased detection and resolution of aberrant splicing. Importantly, in one individual mis-splicing was found in a candidate gene nearly matching the individual's specific phenotype. However, pathogenic splicing occurred in another neuronal-expressed gene and provided a molecular diagnosis, stressing the need to customize RNA-seq. Lastly, our web browser application allowed custom analysis settings that facilitate diagnostic application and ranked pathogenic transcripts as top candidates. Our results demonstrate that RNA-seq is a complementary method in the genomic diagnosis of NDDs and, by providing accessible analysis with improved sensitivity, our transcriptome analysis approach facilitates wider implementation of RNA-seq in routine genome diagnostics.


Assuntos
Perfilação da Expressão Gênica , Transtornos do Neurodesenvolvimento , Humanos , RNA-Seq , Cicloeximida , Análise de Sequência de RNA/métodos , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética
2.
Hum Mutat ; 43(12): 2130-2140, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36251260

RESUMO

Neurofibromatosis type 1 (NF1) is caused by inactivating mutations in NF1. Due to the size, complexity, and high mutation rate at the NF1 locus, the identification of causative variants can be challenging. To obtain a molecular diagnosis in 15 individuals meeting diagnostic criteria for NF1, we performed transcriptome analysis (RNA-seq) on RNA obtained from cultured skin fibroblasts. In each case, routine molecular DNA diagnostics had failed to identify a disease-causing variant in NF1. A pathogenic variant or abnormal mRNA splicing was identified in 13 cases: 6 deep intronic variants and 2 transposon insertions causing noncanonical splicing, 3 postzygotic changes, 1 branch point mutation and, in 1 case, abnormal splicing for which the responsible DNA change remains to be identified. These findings helped resolve the molecular findings for an additional 17 individuals in multiple families with NF1, demonstrating the utility of skin-fibroblast-based transcriptome analysis for molecular diagnostics. RNA-seq improves mutation detection in NF1 and provides a powerful complementary approach to DNA-based methods. Importantly, our approach is applicable to other genetic disorders, particularly those caused by a wide variety of variants in a limited number of genes and specifically for individuals in whom routine molecular DNA diagnostics did not identify the causative variant.


Assuntos
Neurofibromatose 1 , Humanos , Neurofibromatose 1/diagnóstico , Neurofibromatose 1/genética , Neurofibromatose 1/patologia , Mutação , Splicing de RNA/genética , DNA , Fibroblastos/patologia , Neurofibromina 1/genética
3.
Brain ; 142(4): 867-884, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30879067

RESUMO

Recessive mutations in RTTN, encoding the protein rotatin, were originally identified as cause of polymicrogyria, a cortical malformation. With time, a wide variety of other brain malformations has been ascribed to RTTN mutations, including primary microcephaly. Rotatin is a centrosomal protein possibly involved in centriolar elongation and ciliogenesis. However, the function of rotatin in brain development is largely unknown and the molecular disease mechanism underlying cortical malformations has not yet been elucidated. We performed both clinical and cell biological studies, aimed at clarifying rotatin function and pathogenesis. Review of the 23 published and five unpublished clinical cases and genomic mutations, including the effect of novel deep intronic pathogenic mutations on RTTN transcripts, allowed us to extrapolate the core phenotype, consisting of intellectual disability, short stature, microcephaly, lissencephaly, periventricular heterotopia, polymicrogyria and other malformations. We show that the severity of the phenotype is related to residual function of the protein, not only the level of mRNA expression. Skin fibroblasts from eight affected individuals were studied by high resolution immunomicroscopy and flow cytometry, in parallel with in vitro expression of RTTN in HEK293T cells. We demonstrate that rotatin regulates different phases of the cell cycle and is mislocalized in affected individuals. Mutant cells showed consistent and severe mitotic failure with centrosome amplification and multipolar spindle formation, leading to aneuploidy and apoptosis, which could relate to depletion of neuronal progenitors often observed in microcephaly. We confirmed the role of rotatin in functional and structural maintenance of primary cilia and determined that the protein localized not only to the basal body, but also to the axoneme, proving the functional interconnectivity between ciliogenesis and cell cycle progression. Proteomics analysis of both native and exogenous rotatin uncovered that rotatin interacts with the neuronal (non-muscle) myosin heavy chain subunits, motors of nucleokinesis during neuronal migration, and in human induced pluripotent stem cell-derived bipolar mature neurons rotatin localizes at the centrosome in the leading edge. This illustrates the role of rotatin in neuronal migration. These different functions of rotatin explain why RTTN mutations can lead to heterogeneous cerebral malformations, both related to proliferation and migration defects.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Adulto , Encéfalo/patologia , Proteínas de Transporte/genética , Ciclo Celular/fisiologia , Cílios/metabolismo , Feminino , Estudos de Associação Genética/métodos , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lactente , Recém-Nascido , Masculino , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/metabolismo , Microcefalia/genética , Mutação , Malformações do Sistema Nervoso/genética , Polimicrogiria/etiologia , Polimicrogiria/patologia
5.
PLoS Genet ; 13(5): e1006809, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28542170

RESUMO

Integrator is an RNA polymerase II (RNAPII)-associated complex that was recently identified to have a broad role in both RNA processing and transcription regulation. Importantly, its role in human development and disease is so far largely unexplored. Here, we provide evidence that biallelic Integrator Complex Subunit 1 (INTS1) and Subunit 8 (INTS8) gene mutations are associated with rare recessive human neurodevelopmental syndromes. Three unrelated individuals of Dutch ancestry showed the same homozygous truncating INTS1 mutation. Three siblings harboured compound heterozygous INTS8 mutations. Shared features by these six individuals are severe neurodevelopmental delay and a distinctive appearance. The INTS8 family in addition presented with neuronal migration defects (periventricular nodular heterotopia). We show that the first INTS8 mutation, a nine base-pair deletion, leads to a protein that disrupts INT complex stability, while the second missense mutation introduces an alternative splice site leading to an unstable messenger. Cells from patients with INTS8 mutations show increased levels of unprocessed UsnRNA, compatible with the INT function in the 3'-end maturation of UsnRNA, and display significant disruptions in gene expression and RNA processing. Finally, the introduction of the INTS8 deletion mutation in P19 cells using genome editing alters gene expression throughout the course of retinoic acid-induced neural differentiation. Altogether, our results confirm the essential role of Integrator to transcriptome integrity and point to the requirement of the Integrator complex in human brain development.


Assuntos
Deficiências do Desenvolvimento/genética , Deleção de Genes , Mutação de Sentido Incorreto , Subunidades Proteicas/genética , RNA Mensageiro/metabolismo , Adulto , Processamento Alternativo , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Criança , Deficiências do Desenvolvimento/diagnóstico , Feminino , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Heterozigoto , Humanos , Masculino , Mutação , Linhagem , Subunidades Proteicas/metabolismo , RNA Mensageiro/genética , Síndrome , Transcriptoma , Proteína Wnt1
6.
Am J Med Genet A ; 164A(9): 2161-71, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24842779

RESUMO

Mutations in WDR62 are associated with primary microcephaly; however, they have been reported with wide phenotypic variability. We report on six individuals with novel WDR62 mutations who illustrate this variability and describe three in greater detail. Of the three, one lacks neuromotor development and has severe pachygyria on MRI, another has only delayed speech and motor development and moderate polymicrogyria, and the third has an intermediate phenotype. We observed a rare copy number change of unknown significance, a 17q25qter duplication, in the first severely affected individual. The 17q25 duplication included an interesting candidate gene, tubulin cofactor D (TBCD), crucial in microtubule assembly and disassembly. Sequencing of the non-duplicated allele showed a TBCD missense mutation, predicted to cause a deleterious p.Phe1121Val substitution. Sequencing of a cohort of five patients with WDR62 mutations, including one with an identical mutation and different phenotype, plus 12 individuals with diagnosis of microlissencephaly and another individual with mild intellectual disability (ID) and a 17q25 duplication, did not reveal TBCD mutations. However, immunostaining with tubulin antibodies of cells from patients with both WDR62 and TBCD mutation showed abnormal tubulin network when compared to controls and cells with only the WDR62 mutation. Therefore, we propose that genetic factors contribute to modify the severity of the WDR62 phenotype and, although based on suggestive evidence, TBCD could function as one of such factors.


Assuntos
Predisposição Genética para Doença , Mutação/genética , Proteínas do Tecido Nervoso/genética , Sequência de Bases , Encéfalo/patologia , Proteínas de Ciclo Celular , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Proteínas Associadas aos Microtúbulos/genética , Dados de Sequência Molecular , Gravidez , Tubulina (Proteína)/metabolismo
7.
Am J Med Genet A ; 161A(9): 2376-84, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23873601

RESUMO

Mutations in FLNA (Filamin A, OMIM 300017) cause X-linked periventricular nodular heterotopia (XL-PNH). XL-PNH-associated mutations are considered lethal in hemizygous males. However, a few males with unusual mutations (including distal truncating and hypomorphic missense mutations), and somatic mosaicism have been reported to survive past infancy. Two brothers had an atypical presentation with failure to thrive and distinct facial appearance including hypertelorism. Evaluations of these brothers and their affected cousin showed systemic involvement including severe intestinal malfunction, malrotation, congenital short bowel, PNH, pyloric stenosis, wandering spleen, patent ductus arteriosus, atrial septal defect, inguinal hernia, and vesicoureteral reflux. The unanticipated finding of PNH led to FLNA testing and subsequent identification of a novel no-stop FLNA mutation (c.7941_7942delCT, p.(*2648Serext*100)). Western blotting and qRT-PCR of patients' fibroblasts showed diminished levels of protein and mRNA. This FLNA mutation, the most distal reported so far, causes in females classical XL-PNH, but in males an unusual, multi-organ phenotype, providing a unique insight into the FLNA-associated phenotypes.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Filaminas/genética , Mutação de Sentido Incorreto , Sequência de Bases , Encéfalo/patologia , Fácies , Feminino , Genótipo , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Linhagem , Heterotopia Nodular Periventricular/diagnóstico , Heterotopia Nodular Periventricular/genética , Fenótipo , Radiografia , Baço/diagnóstico por imagem , Baço/patologia
8.
Gene ; 877: 147566, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37311496

RESUMO

INTRODUCTION: Technological advances in genetic testing, particularly the adoption of noninvasive prenatal screening (NIPS) for single gene disorders such as tuberous sclerosis complex (TSC, OMIM# 613254), mean that putative/possible pathogenetic DNA variants can be identified prior to the appearance of a disease phenotype. Without a phenotype, accurate prediction of variant pathogenicity is crucial. Here, we report a TSC2 frameshift variant, NM_000548.5(TSC2):c.4255_4256delCA, predicted to result in nonsense-mediated mRNA decay (NMD) and cessation of TSC2 protein production and thus pathogenic according to ACMG criteria, identified by NIPS and subsequently detected in family members with few or no symptoms of TSC. Due to the lack of TSC-associated features in the family, we hypothesized that the deletion created a non-canonical 5' donor site resulting in cryptic splicing and a transcript encoding active TSC2 protein. Verifying the predicted effect of the variant was key to designating pathogenicity in this case and should be considered for other frameshift variants in other genetic disorders. METHODS: Phenotypic information on the family members was collected via review of the medical records and patient reports. RNA studies were performed using proband mRNA isolated from blood lymphocytes for RT-PCR and Sanger sequencing. Functional studies were performed by transient expression of the TSC2 variant proteins in cultured cells, followed by immunoblotting. RESULTS: No family members harboring the variant met any major clinical diagnostic criteria for TSC, though a few minor features non-specific to TSC were present. RNA studies supported the hypothesis that the variant caused cryptic splicing, resulting in an mRNA transcript with an in-frame deletion of 93 base pairs r.[4255_4256del, 4251_4343del], p.[(Gln1419Valfs*104), (Gln1419_Ser1449del)]. Expression studies demonstrated that the canonical function of the resulting truncated TSC2 p.Gln1419_Ser1449del protein product was maintained and similar to wildtype. CONCLUSION: Although most frameshift variants are likely to result in NMD, the NM_000548.5(TSC2):c.4255_4256delCA variant creates a cryptic 5' splice donor site, resulting in an in-frame deletion that retains TSC2 function, explaining why carriers of the variant do not have typical features of TSC. The information is important for this family and others with the same variant. Equally important is the lesson that predictions can be inaccurate, and that caution should be used when designating frameshift variants as pathogenic, especially when phenotypic information to corroborate testing results is unavailable. Our work demonstrates that functional RNA- and protein-based confirmation of the effects of DNA variants improves molecular genetic diagnostics.


Assuntos
Proteínas Supressoras de Tumor , Proteínas Supressoras de Tumor/genética , Mutação , Proteína 2 do Complexo Esclerose Tuberosa/genética , Virulência , Fenótipo , RNA Mensageiro
9.
BMC Biochem ; 13: 18, 2012 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-23006675

RESUMO

BACKGROUND: Mutations to the TSC1 and TSC2 genes cause the disease tuberous sclerosis complex. The TSC1 and TSC2 gene products form a protein complex that integrates multiple metabolic signals to regulate the activity of the target of rapamycin (TOR) complex 1 (TORC1) and thereby control cell growth. Here we investigate the quaternary structure of the TSC1-TSC2 complex by gel filtration and coimmunoprecipitation. RESULTS: TSC1 and TSC2 co-eluted in high molecular weight fractions by gel filtration. Coimmunoprecipitation of distinct tagged TSC1 and TSC2 isoforms demonstrated that TSC1-TSC2 complexes contain multiple TSC1 and TSC2 subunits. CONCLUSIONS: TSC1 and TSC2 interact to form large complexes containing multiple TSC1 and TSC2 subunits.


Assuntos
Proteínas Supressoras de Tumor/metabolismo , Cromatografia em Gel , Epitopos , Células HEK293 , Humanos , Imunoprecipitação , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estrutura Quaternária de Proteína , Serina-Treonina Quinases TOR/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/química
10.
Circ Genom Precis Med ; 12(9): 397-406, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31461301

RESUMO

BACKGROUND: Pediatric cardiomyopathies are a clinically and genetically heterogeneous group of heart muscle disorders associated with high morbidity and mortality. Although knowledge of the genetic basis of pediatric cardiomyopathy has improved considerably, the underlying cause remains elusive in a substantial proportion of cases. METHODS: Exome sequencing was used to screen for the causative genetic defect in a pair of siblings with rapidly progressive dilated cardiomyopathy and death in early infancy. Protein expression was assessed in patient samples, followed by an in vitro tail-anchored protein insertion assay and functional analyses in zebrafish. RESULTS: We identified compound heterozygous variants in the highly conserved ASNA1 gene (arsA arsenite transporter, ATP-binding, homolog), which encodes an ATPase required for post-translational membrane insertion of tail-anchored proteins. The c.913C>T variant on the paternal allele is predicted to result in a premature stop codon p.(Gln305*), and likely explains the decreased protein expression observed in myocardial tissue and skin fibroblasts. The c.488T>C variant on the maternal allele results in a valine to alanine substitution at residue 163 (p.Val163Ala). Functional studies showed that this variant leads to protein misfolding as well as less effective tail-anchored protein insertion. Loss of asna1 in zebrafish resulted in reduced cardiac contractility and early lethality. In contrast to wild-type mRNA, injection of either mutant mRNA failed to rescue this phenotype. CONCLUSIONS: Biallelic variants in ASNA1 cause severe pediatric cardiomyopathy and early death. Our findings point toward a critical role of the tail-anchored membrane protein insertion pathway in vertebrate cardiac function and disease.


Assuntos
ATPases Transportadoras de Arsenito/genética , Cardiomiopatias/genética , Citosol/enzimologia , Mutação Puntual , Proteínas de Peixe-Zebra/genética , Alelos , Sequência de Aminoácidos , Animais , ATPases Transportadoras de Arsenito/química , ATPases Transportadoras de Arsenito/metabolismo , Cardiomiopatias/enzimologia , Pré-Escolar , Modelos Animais de Doenças , Exoma , Feminino , Variação Genética , Humanos , Transporte Proteico , Alinhamento de Sequência , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/metabolismo
11.
BMC Mol Biol ; 9: 93, 2008 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-18950503

RESUMO

BACKGROUND: The myeloid translocation gene (MTG) proteins are non-DNA-binding transcriptional regulators capable of interacting with chromatin modifying proteins. As a consequence of leukemia-associated chromosomal translocations, two of the MTG proteins, MTG8 and MTG16, are fused to the DNA-binding domain of AML1, a transcriptional activator crucial for hematopoiesis. The AML1-MTG fusion proteins, as the wild type MTGs, display four conserved homology regions (NHR1-4) related to the Drosophila nervy protein. Structural protein analyses led us to test the hypothesis that specific MTG domains may mediate RNA binding. RESULTS: By using an RNA-binding assay based on synthetic RNA homopolymers and a panel of MTG deletion mutants, here we show that all the MTG proteins can bind RNA. The RNA-binding properties can be traced to two regions: the Zinc finger domains in the NHR4, which mediate Zinc-dependent RNA binding, and a novel short basic region (SBR) upstream of the NHR2, which mediates Zinc-independent RNA binding. The two AML1-MTG fusion proteins, retaining both the Zinc fingers domains and the SBR, also display RNA-binding properties. CONCLUSION: Evidence has been accumulating that RNA plays a role in transcriptional control. Both wild type MTGs and chimeric AML1-MTG proteins display in vitro RNA-binding properties, thus opening new perspectives on the possible involvement of an RNA component in MTG-mediated chromatin regulation.


Assuntos
Cromatina , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Fatores de Transcrição/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteínas Mutantes Quiméricas/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteína 1 Parceira de Translocação de RUNX1 , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
12.
Eur J Med Genet ; 61(12): 783-789, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30391508

RESUMO

Heterozygous gain of function mutations in the ZIC1 gene have been described with syndromic craniosynostosis, variable cerebral or cerebellar abnormalities and mild to moderate developmental delay. Deletion of chromosome 3q25.1 including both adjacent ZIC1 and ZIC4 genes have been described as a cause of variable cerebellar abnormalities including Dandy-Walker malformation. We report two siblings presenting with neonatal microcephaly, agenesis of the corpus callosum, brachycephaly with reduced volume of the posterior fossa, cerebellar and pons hypoplasia, scoliosis and tethered cord (closed neural tube defect). One of the siblings had apparent partial rhombencephalosynapsis. Trio analysis of exome sequencing data revealed a novel heterozygous frameshift mutation in ZIC1 at the end of exon 3 in one sibling and was confirmed by Sanger sequencing in both children. The mutation was not detected in DNA of both parents, which suggests parental gonadal mosaicism. We show that expression of the mutant allele leads to synthesis of a stable abnormal transcript in patient cells, without evidence for nonsense-mediated decay. Craniosynostosis was not present at birth, which explains why ZIC1 mutations were not initially considered. This severe brain malformation indicates that premature closure of sutures can be independent of the abnormal brain development in subjects with pathogenic variants in ZIC1.


Assuntos
Craniossinostoses/genética , Malformações do Desenvolvimento Cortical/genética , Microcefalia/genética , Fatores de Transcrição/genética , Adolescente , Agenesia do Corpo Caloso/genética , Agenesia do Corpo Caloso/fisiopatologia , Cerebelo/fisiopatologia , Criança , Pré-Escolar , Craniossinostoses/fisiopatologia , Feminino , Mutação da Fase de Leitura , Humanos , Lactente , Masculino , Malformações do Desenvolvimento Cortical/fisiopatologia , Microcefalia/fisiopatologia , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/fisiopatologia , Fenótipo , Escoliose/genética , Escoliose/fisiopatologia
13.
Eur J Hum Genet ; 26(2): 210-219, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29348693

RESUMO

Blepharocheilodontic syndrome (BCDS) consists of lagophthalmia, ectropion of the lower eyelids, distichiasis, euryblepharon, cleft lip/palate and dental anomalies and has autosomal dominant inheritance with variable expression. We identified heterozygous variants in two genes of the cadherin-catenin complex, CDH1, encoding E-cadherin, and CTNND1, encoding p120 catenin delta1 in 15 of 17 BCDS index patients, as was recently described in a different publication. CDH1 plays an essential role in epithelial cell adherence; CTNND1 binds to CDH1 and controls the stability of the complex. Functional experiments in zebrafish and human cells showed that the CDH1 variants impair the cell adhesion function of the cadherin-catenin complex in a dominant-negative manner. Variants in CDH1 have been linked to familial hereditary diffuse gastric cancer and invasive lobular breast cancer; however, no cases of gastric or breast cancer have been reported in our BCDS cases. Functional experiments reported here indicated the BCDS variants comprise a distinct class of CDH1 variants. Altogether, we identified the genetic cause of BCDS enabling DNA diagnostics and counseling, in addition we describe a novel class of dominant negative CDH1 variants.


Assuntos
Antígenos CD/genética , Caderinas/genética , Cateninas/genética , Fenda Labial/genética , Fissura Palatina/genética , Ectrópio/genética , Mutação , Anormalidades Dentárias/genética , Adolescente , Adulto , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Cateninas/metabolismo , Adesão Celular , Criança , Pré-Escolar , Fenda Labial/patologia , Fissura Palatina/patologia , Ectrópio/patologia , Feminino , Humanos , Células MCF-7 , Masculino , Ligação Proteica , Anormalidades Dentárias/patologia , Peixe-Zebra , delta Catenina
14.
Oncogene ; 24(34): 5325-32, 2005 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-16007222

RESUMO

De novo epigenetic changes at histone and DNA level that affect gene transcription in cancer may be less random than we originally thought. Leukemia fusion proteins associated with specific chromosome translocations could mechanistically determine the epigenetic fate of specific target genes critical for normal hematopoiesis. This seems to be the case with AML1-MTG16, a fusion protein resulting from the t(16;21) translocation, a hallmark of therapy-related leukemia and myelodysplastic syndrome. Here we show that AML1-MTG16 blocks both myeloid differentiation and proliferation in the 32D/WT1-mouse myeloid cell line. These biological effects can be traced to the AML1 and MTG16 moieties of the fusion protein, respectively. Further, we show that AML1-MTG16 can induce epigenetic repressive changes at the histone and DNA level of the AML1 target gene Csf1r (c-fms), encoding the macrophage colony stimulating factor receptor. We observed that, concomitant with Csf1r downregulation, 32D/WT1 cells lost the ability to undergo myeloid differentiation in response to the granulocyte macrophage colony-stimulating factor (GM-CSF). Thus, there seems to be an association between AML1-MTG16-induced myeloid maturation block and epigenetic changes of a myeloid master gene.


Assuntos
Proteínas de Fusão Oncogênica/fisiologia , Receptor de Fator Estimulador de Colônias de Macrófagos/biossíntese , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Fatores de Transcrição/fisiologia , Animais , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Subunidade alfa 2 de Fator de Ligação ao Core , Regulação para Baixo , Epigênese Genética , Fator Estimulador de Colônias de Granulócitos/fisiologia , Células Precursoras de Granulócitos/fisiologia , Histonas/metabolismo , Humanos , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica , Transfecção
15.
J Exp Med ; 213(7): 1163-74, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27325888

RESUMO

Pseudo-TORCH syndrome (PTS) is characterized by microcephaly, enlarged ventricles, cerebral calcification, and, occasionally, by systemic features at birth resembling the sequelae of congenital infection but in the absence of an infectious agent. Genetic defects resulting in activation of type 1 interferon (IFN) responses have been documented to cause Aicardi-Goutières syndrome, which is a cause of PTS. Ubiquitin-specific peptidase 18 (USP18) is a key negative regulator of type I IFN signaling. In this study, we identified loss-of-function recessive mutations of USP18 in five PTS patients from two unrelated families. Ex vivo brain autopsy material demonstrated innate immune inflammation with calcification and polymicrogyria. In vitro, patient fibroblasts displayed severely enhanced IFN-induced inflammation, which was completely rescued by lentiviral transduction of USP18. These findings add USP18 deficiency to the list of genetic disorders collectively termed type I interferonopathies. Moreover, USP18 deficiency represents the first genetic disorder of PTS caused by dysregulation of the response to type I IFNs. Therapeutically, this places USP18 as a promising target not only for genetic but also acquired IFN-mediated CNS disorders.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Encéfalo/imunologia , Calcinose , Endopeptidases/deficiência , Imunidade Inata , Interferon Tipo I/imunologia , Microglia/imunologia , Malformações do Sistema Nervoso , Transdução de Sinais , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/imunologia , Doenças Autoimunes do Sistema Nervoso/patologia , Encéfalo/patologia , Calcinose/genética , Calcinose/imunologia , Calcinose/patologia , Endopeptidases/imunologia , Feminino , Humanos , Interferon Tipo I/genética , Masculino , Microglia/patologia , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/imunologia , Malformações do Sistema Nervoso/patologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Ubiquitina Tiolesterase
16.
Oncogene ; 21(43): 6703-12, 2002 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-12242670

RESUMO

The MTG (Myeloid Translocation Gene) proteins are a family of novel transcriptional corepressors. We report that MTG16a, a protein isoform encoded by the MTG16 gene deranged by the t (16; 21) in myeloid malignancies, is targeted to the nucleolus. The amino acid sequence necessary for nucleolar localization was mapped to the MTG16a N-terminal region. MTG16a, like MTG8, the nuclear corepressor deranged by the t (8; 21), is capable to interact with specific histone deacetylases (HDACs) suggesting that the protein may mediate silencing of nucleolar gene transcription. In addition, MTG16a is capable to form oligomers with other MTG proteins. As a consequence of the t (16; 21) the AML1 DNA-binding domain replaces the MTG16a N-terminal region. The AML1-MTG16 fusion protein is targeted to the nucleoplasm where it is capable to oligomerize with MTG16a and interact with HDAC1 and HDAC3. The deficiency of HDAC-containing complexes at nucleolar sites and the accumulation of HDAC-containing complexes at AML1-sites may be critical in the pathogenesis of t (16; 21) myeloid malignancies.


Assuntos
Nucléolo Celular/metabolismo , Cromossomos Humanos Par 16 , Cromossomos Humanos Par 21 , Leucemia Mieloide/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Proto-Oncogênicas , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Translocação Genética/genética , Sequência de Aminoácidos , Animais , Células COS , Subunidade alfa 2 de Fator de Ligação ao Core , Citoplasma/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/química , Dimerização , Histona Desacetilase 1 , Histona Desacetilases/química , Humanos , Dados de Sequência Molecular , Proteínas de Fusão Oncogênica/análise , Proteínas de Fusão Oncogênica/química , Fosfoproteínas/análise , Fosfoproteínas/química , Proteína 1 Parceira de Translocação de RUNX1 , Proteínas Repressoras/análise , Proteínas Repressoras/química , Fatores de Transcrição/análise , Fatores de Transcrição/química
17.
FASEB J ; 18(15): 1964-6, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15377638

RESUMO

Fragile X syndrome is associated with a trinucleotide (CGG) repeat expansion in the 5'-untranslated region of the FMR1 gene and hypermethylation of the FMR1 promoter. Rare cases of clinically normal males (HFM) have been identified with an expanded CGG repeat; however, here, the FMR1 promoter is not methylated. Using classical complementation (cell fusion) studies, we analyzed if possible differences in the genetic background between HFM and cells from individuals with fragile X syndrome (FX cells) could have an influence on the methylation status of the FMR1 promoter. We observed that demethylation of the hypermethylated FMR1 promoter can occur when FX cells are complemented (by cell fusion) with cells from HFM as well as with cells from control individuals. The observed demethylation is specific and can happen without DNA replication. In contrast, demethylation was not observed when cells from unrelated individuals with fragile X syndrome were fused, indicating that FX cells have lost the necessary factor(s) to demethylate the aberrantly methylated FMR1 promoter.


Assuntos
Metilação de DNA , Síndrome do Cromossomo X Frágil/genética , Proteínas do Tecido Nervoso/genética , Proteínas de Ligação a RNA/genética , Sequência de Bases , Fusão Celular , Reparo do DNA , Replicação do DNA , Fibroblastos/metabolismo , Proteína do X Frágil da Deficiência Intelectual , Humanos , Masculino , Dados de Sequência Molecular , Regiões Promotoras Genéticas
18.
J Mol Histol ; 35(4): 389-95, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15503812

RESUMO

Fragile X syndrome is due to the absence of the fragile X mental retardation protein (FMRP). Patients are mentally retarded and show physical as well as behavioural abnormalities. Loss of protein in the neurons results in changes of dendrite architecture, and impairment of the pruning process has been indicated. Apart from some minor differences, no severe morphological changes have been observed in the brain. Until now, no therapy is available for fragile X patients. Recently it has been reported, that a protein transduction domain (TAT) is able to deliver macromolecules into cells and even into the brain when fused to the protein in question. Upon production of a TAT-FMRP fusion protein in a baculovirus-expression system, we used immunohistochemistry to verify TAT-mediated uptake of FMRP in fibroblasts. However, uptake efficiency and velocity was lower than expected. Neuronal uptake was highly inefficient and the fusion protein demonstrated toxicity.


Assuntos
Fibroblastos/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Produtos do Gene tat/farmacologia , Proteínas do Tecido Nervoso/farmacologia , Neurônios/metabolismo , Proteínas de Ligação a RNA/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Animais , Células COS , Cricetinae , Fibroblastos/patologia , Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/patologia , Produtos do Gene tat/genética , Produtos do Gene tat/toxicidade , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Neurônios/patologia , Estrutura Terciária de Proteína/genética , Transporte Proteico/fisiologia , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes de Fusão/genética
19.
Hum Mol Genet ; 12(9): 949-59, 2003 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-12700164

RESUMO

Recent studies have reported that alleles in the premutation range in the FMR1 gene in males result in increased FMR1 mRNA levels and at the same time mildly reduced FMR1 protein levels. Some elderly males with premutations exhibit an unique neurodegenerative syndrome characterized by progressive intention tremor and ataxia. We describe neurohistological, biochemical and molecular studies of the brains of mice with an expanded CGG repeat and report elevated Fmr1 mRNA levels and intranuclear inclusions with ubiquitin, Hsp40 and the 20S catalytic core complex of the proteasome as constituents. An increase was observed of both the number and the size of the inclusions during the course of life, which correlates with the progressive character of the cerebellar tremor/ataxia syndrome in humans. The observations in expanded-repeat mice support a direct role of the Fmr1 gene, by either CGG expansion per se or by mRNA level, in the formation of the inclusions and suggest a correlation between the presence of intranuclear inclusions in distinct regions of the brain and the clinical features in symptomatic premutation carriers. This mouse model will facilitate the possibilities to perform studies at the molecular level from onset of symptoms until the final stage of the disease.


Assuntos
Núcleo Celular/metabolismo , Ataxia Cerebelar/genética , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Proteínas de Ligação a RNA , Expansão das Repetições de Trinucleotídeos , Ubiquitina/metabolismo , Animais , Núcleo Celular/patologia , Proteína do X Frágil da Deficiência Intelectual , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Neurônios/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA