Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 196(6): 2602-13, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26873987

RESUMO

Currently, there is little consensus regarding the most appropriate animal model to study acute infection and the virus-specific CD8(+) T cell (CTL) responses in neonates. TCRß high-throughput sequencing in naive CTL of differently aged neonatal mice was performed, which demonstrated differential Vß family gene usage. Using an acute influenza infection model, we examined the TCR repertoire of the CTL response in neonatal and adult mice infected with influenza type A virus. Three-day-old mice mounted a greatly reduced primary NP(366-374)-specific CTL response when compared with 7-d-old and adult mice, whereas secondary CTL responses were normal. Analysis of NP(366-374)-specific CTL TCR repertoire revealed different Vß gene usage and greatly reduced public clonotypes in 3-d-old neonates. This could underlie the impaired CTL response in these neonates. To directly test this, we examined whether controlling the TCR would restore neonatal CTL responses. We performed adoptive transfers of both nontransgenic and TCR-transgenic OVA(257-264)-specific (OT-I) CD8(+) T cells into influenza-infected hosts, which revealed that naive neonatal and adult OT-I cells expand equally well in neonatal and adult hosts. In contrast, nontransgenic neonatal CD8(+) T cells when transferred into adults failed to expand. We further demonstrate that differences in TCR avidity may contribute to decreased expansion of the endogenous neonatal CTL. These studies highlight the rapid evolution of the neonatal TCR repertoire during the first week of life and show that impaired neonatal CTL immunity results from an immature TCR repertoire, rather than intrinsic signaling defects or a suppressive environment.


Assuntos
Animais Recém-Nascidos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfopoese/imunologia , Infecções por Orthomyxoviridae/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Transferência Adotiva , Animais , Separação Celular , Modelos Animais de Doenças , Citometria de Fluxo , Sequenciamento de Nucleotídeos em Larga Escala , Vírus da Influenza A , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
2.
Gigascience ; 7(7)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29961849

RESUMO

Background: In vitro scratch assays have been widely used to study the influence of bioactive substances on the processes of cell migration and proliferation that are involved in re-epithelialization. The development of high-throughput microscopy and image analysis has enabled scratch assays to become compatible with high-throughput research. However, effective processing and in-depth analysis of such high-throughput image datasets are far from trivial and require integration of multiple image processing and data extraction software tools. Findings: We developed and implemented a kinetic re-epithelialization analysis pipeline (KREAP) in Galaxy. The KREAP toolbox incorporates freely available image analysis tools and automatically performs image segmentation and feature extraction of each image series, followed by automatic quantification of cells inside and outside the scratched area over time. The enumeration of infiltrating cells over time is modeled to extract three biologically relevant parameters that describe re-epithelialization kinetics. The output of the tools is organized, displayed, and saved in the Galaxy environment for future reference. Conclusions: The KREAP toolbox in Galaxy provides an open-source, easy-to-use, web-based platform for reproducible image processing and data analysis of high-throughput scratch assays. The KREAP toolbox could assist a broad scientific community in the discovery of compounds that are able to modulate re-epithelialization kinetics.


Assuntos
Biologia Computacional/métodos , Reepitelização , Software , Algoritmos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Humanos , Processamento de Imagem Assistida por Computador/métodos , Cinética , Aprendizado de Máquina , Reconhecimento Automatizado de Padrão , Linguagens de Programação , Reprodutibilidade dos Testes , Cicatrização
3.
Front Immunol ; 8: 1859, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312340

RESUMO

Respiratory support improvements have aided survival of premature neonates, but infection susceptibility remains a predominant problem. We previously reported that neonatal mice have a rapidly evolving T-cell receptor (TCR) repertoire that impairs CD8+ T cell immunity. To understand the impact of prematurity on the human CD8+ TCR repertoire, we performed next-generation sequencing of the complementarity-determining region 3 (CDR3) from the rearranged TCR variable beta (Vß) in sorted, naïve CD8+ T cells from extremely preterm neonates (23-27 weeks gestation), term neonates (37-41 weeks gestation), children (16-56 months), and adults (25-50 years old). Strikingly, preterm neonates had an increased frequency of public clonotypes shared between unrelated individuals. Public clonotypes identified in preterm infants were encoded by germline gene sequences, and some of these clonotypes persisted into adulthood. The preterm neonatal naïve CD8+ TCR repertoire exhibited convergent recombination, characterized by different nucleotide sequences encoding the same amino acid CDR3 sequence. As determined by Pielou's evenness and iChao1 metrics, extremely preterm neonates have less clonality, and a much lower bound for the number of unique TCR within an individual preterm neonate, which indicates a less rich and diverse repertoire, as compared to term neonates, children, and adults. This suggests that T cell selection in the preterm neonate may be less stringent or different. Our analysis is the first to compare the TCR repertoire of naïve CD8+ T cells between viable preterm neonates and term neonates. We find preterm neonates have a repertoire immaturity which potentially contributes to their increased infection susceptibility. A developmentally regulated, evenly distributed repertoire in preterm neonates may lead to the inclusion of public TCR CDR3ß sequences that overlap between unrelated individuals in the preterm repertoire.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA