Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Therm Biol ; 99: 103006, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34420636

RESUMO

Embedded in longer term warming are extreme climatic events such as heatwaves and droughts that are increasing in frequency, duration and intensity. Changes in climate attributes such as temperature are often measured over larger spatial scales, whereas environmental conditions to which many small ectothermic arthropods are exposed are largely determined by small-scale local conditions. Exposed edges of plant patches often exhibit significant short-term (daily) variation to abiotic factors due to wind exposure and sun radiation. By contrast, within plant patches, abiotic conditions are generally much more stable and thus less variable. Over an eight-week period in the summer of 2020, including an actual heatwave, we measured small-scale (1 m2) temperature variation in patches of forbs in experimental mesocosms. We found that soil surface temperatures at the edge of the mesocosms were more variable than those within mesocosms. Drought treatment two years earlier, amplified this effect but only at the edges of the mesocosms. Within a plant patch both at the soil surface and within the canopy, the temperature was always lower than the ambient air temperature. The temperature of the soil surface at the edge of a patch may exceed the ambient air temperature when ambient air temperatures rise above 23 °C. This effect progressively increased with ambient temperature. We discuss how microscale-variation in temperature may affect small ectotherms such as insects that have limited ability to thermoregulate, in particular under conditions of extreme heat.


Assuntos
Calor Extremo , Microclima , Desenvolvimento Vegetal , Estações do Ano , Animais , Insetos/fisiologia , Solo
2.
Oecologia ; 194(1-2): 237-250, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33009940

RESUMO

Climate change causes species range expansions to higher latitudes and altitudes. It is expected that, due to differences in dispersal abilities between plants and soil biota, range-expanding plant species will become associated with a partly new belowground community in their expanded range. Theory on biological invasions predicts that outside their native range, range-expanding plant species may be released from specialist natural enemies, leading to the evolution of enhanced defence against generalist enemies. Here we tested the hypothesis that expanded range populations of the range-expanding plant species Centaurea stoebe accumulate fewer root-feeding nematodes than populations from the original range. Moreover, we examined whether Centaurea stoebe accumulates fewer root-feeding nematodes in expanded range soil than in original range soil. We grew plants from three expanded range and three original range populations of C. stoebe in soil from the original and from the new range. We compared nematode communities of C. stoebe with those of C. jacea, a congeneric species native to both ranges. Our results show that expanded range populations of C. stoebe did not accumulate fewer root-feeding nematodes than populations from the original range, but that C. stoebe, unlike C. jacea, accumulated fewest root-feeding nematodes in expanded range soil. Moreover, when we examined other nematode feeding groups, we found intra-specific plant population effects on all these groups. We conclude that range-expanding plant populations from the expanded range were not better defended against root-feeding nematodes than populations from the original range, but that C. stoebe might experience partial belowground enemy release.


Assuntos
Nematoides , Rizosfera , Animais , Biota , Plantas , Solo
3.
Mol Ecol ; 24(17): 4406-18, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26206253

RESUMO

Epigenetic modifications, such as DNA methylation variation, can generate heritable phenotypic variation independent of the underlying genetic code. However, epigenetic variation in natural plant populations is poorly documented and little understood. Here, we test whether northward range expansion of obligate apomicts of the common dandelion (Taraxacum officinale) is associated with DNA methylation variation. We characterized and compared patterns of genetic and DNA methylation variation in greenhouse-reared offspring of T. officinale that were collected along a latitudinal transect of northward range expansion in Europe. Genetic AFLP and epigenetic MS-AFLP markers revealed high levels of local diversity and modest but significant heritable differentiation between sampling locations and between the southern, central and northern regions of the transect. Patterns of genetic and epigenetic variation were significantly correlated, reflecting the genetic control over epigenetic variation and/or the accumulation of lineage-specific spontaneous epimutations, which may be selectively neutral. In addition, we identified a small component of DNA methylation differentiation along the transect that is independent of genetic variation. This epigenetic differentiation might reflect environment-specific induction or, in case the DNA methylation variation affects relevant traits and fitness, selection of heritable DNA methylation variants. Such generated epigenetic variants might contribute to the adaptive capacity of individual asexual lineages under changing environments. Our results highlight the potential of heritable DNA methylation variation to contribute to population differentiation along ecological gradients. Further studies are needed using higher resolution methods to understand the functional significance of such natural occurring epigenetic differentiation.


Assuntos
Metilação de DNA , Epigênese Genética , Variação Genética , Taraxacum/genética , Adaptação Fisiológica/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , DNA de Plantas/genética , Europa (Continente) , Genética Populacional , Análise de Sequência de DNA
4.
Ecology ; 91(10): 3027-36, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21058562

RESUMO

Soils are extremely rich in biodiversity, and soil organisms play pivotal roles in supporting terrestrial life, but the role that individual plants and plant communities play in influencing the diversity and functioning of soil food webs remains highly debated. Plants, as primary producers and providers of resources to the soil food web, are of vital importance for the composition, structure, and functioning of soil communities. However, whether natural soil food webs that are completely open to immigration and emigration differ underneath individual plants remains unknown. In a biodiversity restoration experiment we first compared the soil nematode communities of 228 individual plants belonging to eight herbaceous species. We included grass, leguminous, and non-leguminous species. Each individual plant grew intermingled with other species, but all plant species had a different nematode community. Moreover, nematode communities were more similar when plant individuals were growing in the same as compared to different plant communities, and these effects were most apparent for the groups of bacterivorous, carnivorous, and omnivorous nematodes. Subsequently, we analyzed the composition, structure, and functioning of the complete soil food webs of 58 individual plants, belonging to two of the plant species, Lotus corniculatus (Fabaceae) and Plantago lanceolata (Plantaginaceae). We isolated and identified more than 150 taxa/groups of soil organisms. The soil community composition and structure of the entire food webs were influenced both by the species identity of the plant individual and the surrounding plant community. Unexpectedly, plant identity had the strongest effects on decomposing soil organisms, widely believed to be generalist feeders. In contrast, quantitative food web modeling showed that the composition of the plant community influenced nitrogen mineralization under individual plants, but that plant species identity did not affect nitrogen or carbon mineralization or food web stability. Hence, the composition and structure of entire soil food webs vary at the scale of individual plants and are strongly influenced by the species identity of the plant. However, the ecosystem functions these food webs provide are determined by the identity of the entire plant community.


Assuntos
Cadeia Alimentar , Invertebrados/fisiologia , Plantas/classificação , Microbiologia do Solo , Solo , Animais , Especificidade da Espécie
5.
Oecologia ; 160(3): 433-42, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19271240

RESUMO

Allelochemicals defend plants against herbivore and pathogen attack aboveground and belowground. Whether such plant defenses incur ecological costs by reducing benefits from plant mutualistic symbionts is largely unknown. We explored a potential trade-off between inherent plant chemical defense and belowground mutualism with arbuscular mycorrhizal fungi (AMF) in Plantago lanceolata L., using plant genotypes from lines selected for low and high constitutive levels of the iridoid glycosides (IG) aucubin and catalpol. As selection was based on IG concentrations in leaves, we first examined whether IG concentrations covaried in roots. Root and leaf IG concentrations were strongly positively correlated among genotypes, indicating genetic interdependence of leaf and root defense. We then found that root AMF arbuscule colonization was negatively correlated with root aucubin concentration. This negative correlation was observed both in plants grown with monocultures of Glomus intraradices and in plants colonized from whole-field soil inoculum. Overall, AMF did not affect total biomass of plants; an enhancement of initial shoot biomass was offset by a lower root biomass and reduced regrowth after defoliation. Although the precise effects of AMF on plant biomass varied among genotypes, plants with high IG levels and low AMF arbuscule colonization in roots did not produce less biomass than plants with low IG and high AMF arbuscule colonization. Therefore, although an apparent trade-off was observed between high root chemical defense and AMF arbuscule colonization, this did not negatively affect the growth responses of the plants to AMF. Interestingly, AMF induced an increase in root aucubin concentration in the high root IG genotype of P. lanceolata. We conclude that AMF does not necessarily stimulate plant growth, that direct plant defense by secondary metabolites does not necessarily reduce potential benefits from AMF, and that AMF can enhance concentrations of root chemical defenses, but that these responses are plant genotype-dependent.


Assuntos
Iridoides/análise , Micorrizas/fisiologia , Folhas de Planta/química , Raízes de Plantas/química , Plantago/crescimento & desenvolvimento , Plantago/microbiologia , Simbiose , Análise de Variância , Plantago/genética , Solo/análise
6.
Nat Commun ; 9(1): 3684, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30206214

RESUMO

Increasing evidence suggests that community-level responses to human-induced biodiversity loss start with a decrease of interactions among communities and between them and their abiotic environment. The structural and functional consequences of such interaction losses are poorly understood and have rarely been tested in real-world systems. Here, we analysed how 5 years of progressive, size-selective exclusion of large, medium, and small vertebrates and invertebrates-a realistic scenario of human-induced defaunation-impacts the strength of relationships between above- and belowground communities and their abiotic environment (hereafter ecosystem coupling) and how this relates to ecosystem functionality in grasslands. Exclusion of all vertebrates results in the greatest level of ecosystem coupling, while the additional loss of invertebrates leads to poorly coupled ecosystems. Consumer-driven changes in ecosystem functionality are positively related to changes in ecosystem coupling. Our results highlight the importance of invertebrate communities for maintaining ecological coupling and functioning in an increasingly defaunated world.


Assuntos
Tamanho Corporal , Pradaria , Animais , Conservação dos Recursos Naturais , Invertebrados/fisiologia , Suíça , Vertebrados/fisiologia
7.
Ecology ; 88(4): 978-88, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17536713

RESUMO

Enemy release of exotic plants from soil pathogens has been tested by examining plant-soil feedback effects in repetitive growth cycles. However, positive soil feedback may also be due to enhanced benefit from the local arbuscular mycorrhizal fungi (AMF). Few studies actually have tested pathogen effects, and none of them did so in arid savannas. In the Kalahari savanna in Botswana, we compared the soil feedback of the exotic grass Cenchrus biflorus with that of two dominant native grasses, Eragrostis lehmanniana and Aristida meridionalis. The exotic grass had neutral to positive soil feedback, whereas both native grasses showed neutral to negative feedback effects. Isolation and testing of root-inhabiting fungi of E. lehmanniana yielded two host-specific pathogens that did not influence the exotic C. biflorus or the other native grass, A. meridionalis. None of the grasses was affected by the fungi that were isolated from the roots of the exotic C. biflorus. We isolated and compared the AMF community of the native and exotic grasses by polymerase chain reaction-denaturing gradient gel elecrophoresis (PCR-DGGE), targeting AMF 18S rRNA. We used roots from monospecific field stands and from plants grown in pots with mixtures of soils from the monospecific field stands. Three-quarters of the root samples of the exotic grass had two nearly identical sequences, showing 99% similarity with Glomus versiforme. The two native grasses were also associated with distinct bands, but each of these bands occurred in only a fraction of the root samples. The native grasses contained a higher diversity of AMF bands than the exotic grass. Canonical correspondence analyses of the AMF band patterns revealed almost as much difference between the native and exotic grasses as between the native grasses. In conclusion, our results support the hypothesis that release from soil-borne enemies may facilitate local abundance of exotic plants, and we provide the first evidence that these processes may occur in arid savanna ecosystems. Pathogenicity tests implicated the involvement of soil pathogens in the soil feedback responses, and further studies should reveal the functional consequences of the observed high infection with a low diversity of AMF in the roots of exotic plants.


Assuntos
Ecossistema , Micorrizas/crescimento & desenvolvimento , Poaceae/crescimento & desenvolvimento , Poaceae/microbiologia , Microbiologia do Solo , Biodiversidade , Botsuana , DNA Fúngico/análise , DNA Ribossômico/análise , Eletroforese em Gel de Ágar/métodos , Micorrizas/classificação , Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Reação em Cadeia da Polimerase/métodos , Especificidade da Espécie
8.
New Phytol ; 157(2): 281-290, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33873645

RESUMO

• Community ecologists often assume a hierarchy of environmental sieves to predict the impact of multiple stresses on species distribution. We tested whether this assumption corresponds to physiological responses using impact of water level and shade in wetland vegetation as a model. • Seedlings of four wetland species were grown under full light and simulated canopy shade, both in drained and waterlogged soils. When subject to both stresses simultaneously, waterlogging and shade independently affected growth of the two waterlogging tolerant species. For the intolerant species, however, waterlogging had the largest impact and the additional effect of shade was smaller than the effect of shade in drained soil. Soil flooding decreased specific leaf area but only if plants were in full light. Waterlogging did also not constrain a higher investment in stems of shaded plants. • These results demonstrate that light limitation in flooded habitats only plays a role if species can tolerate waterlogging and therefore correspond with the notion that water level determines the potential species pool and that standing crop consequently determines which species can actually persist.

9.
Oecologia ; 76(2): 313-320, 1988 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28312214

RESUMO

To study the origin of replant disease of Ammophila arenaria (L.) Link the growth and development in sand originating from the rhizosphere of a natural Ammophila vegetation was compared with the growth in sand from the sea-floor. In a greenhouse experiment, the growth of Ammophila seedlings in rhizosphere sand, when compared with that in sea sand, was significantly reduced. As sterilization by means of gamma-irradiation increased the biomass production of Ammophila seedlings significantly, it was concluded that the rhizosphere sand contained biotic factors that were harmful to Ammophila. In rhizosphere sand the roots of Ammophila were brown and poorly developed, and the specific uptake rates of N, P and K were reduced. The shoot weight proportion of the total plant dry matter was hardly influenced. In an outdoor experiment with Ammophila seedlings and cuttings, using both sands, the mortality was high and the plants were feeble in rhizosphere sand whereas plants in sea sand grew vigorously. It seems plausible that the plants in rhizophere sand were dessicated because the root system was shallow and badly developed. In the greenhouse experiments, Ammophila cuttings were less sensitive to the inhibiting factors in the rhizosphere than seedlings. This was confirmed in the outdoor experiment. Calammophila baltica (Fluegge ex Schrader) Brand, however, was hardly affected by the harmful biotic factors in the greenhouse. These results are discussed with reference to the ecology of Ammophila. It is assumed that the catching of fresh windblown sand provides Ammophila with a way to escape from harmful biotic soil factors, and it was concluded that degeneration of Ammophila is caused mainly by self-intolerance due to these biotic soil factors.

10.
Oecologia ; 125(1): 45-54, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28308221

RESUMO

We analyzed the dynamics of dominant plant species in a grazed grassland over 17 years, and investigated whether local shifts in these dominant species, leading to vegetation mosaics, could be attributed to interactions between plants and soil-borne pathogens. We found that Festuca rubra and Carex arenaria locally alternated in abundance, with different sites close together behaving out of phase, resulting in a shifting mosaic. The net effect of killing all soil biota on the growth of these two species was investigated in a greenhouse experiment using gamma radiation, controlling for possible effects of sterilization on soil chemistry. Both plant species showed a strong net positive response to soil sterilization, indicating that pathogens (e.g., nematodes, pathogenic fungi) outweighed the effect of mutualists (e.g., mycorrhizae). This positive growth response towards soil sterilization appeared not be due to effects of sterilization on soil chemistry. Growth of Carex was strongly reduced by soil-borne pathogens (86% reduction relative to its growth on sterilized soil) on soil from a site where this species decreased during the last decade (and Festuca increased), while it was reduced much less (50%) on soil from a nearby site where it increased in abundance during the last decade. Similarly, Festuca was reduced more (67%) on soil from the site where it decreased (and Carex increased) than on soil from the site where it increased (55%, the site where Carex decreased). Plant-feeding nematodes showed high small-scale variation in densities, and we related this variation to the observed growth reductions in both plant species. Carex growth on unsterilized soil was significantly more reduced at higher densities of plant-feeding nematodes, while the growth reduction in Festuca was independent of plant-feeding nematode densities. At high plant-feeding nematode densities, growth of Carex was reduced more than Festuca, while at low nematode densities the opposite was found. Each plant species thus seems to be affected by different (groups of) soil-borne pathogens. The resulting interaction web of plants and soil-borne pathogens is discussed. We hypothesize that soil disturbances by digging ants and rabbits may explain the small-scale variation in nematode densities, by locally providing "fresh" sand. We conclude that soil-borne pathogens may contribute to plant diversity and spatial mosaics of plants in grasslands.

11.
Oecologia ; 115(3): 359-365, 1998 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28308427

RESUMO

The impact of elevated ethylene concentrations and darkness on the growth and development of shoot organs of Ammophila breviligulata was investigated under experimental conditions in a complete two-way design. The results were compared with data of partially sand buried plants. Enhanced ethylene concentrations and sand burial stimulated the formation of new stem nodes, a prerequisite for burial-induced shoot elongation. However, internode elongation itself could not be promoted by the phytohormone ethylene, by darkness, or by their interaction. Sand burial inhibited the formation of rhizomes and tillers and the investment in root and rhizome biomass. Darkness mimicked this effect for the number of rhizomes and the biomass allocated to roots and rhizomes, indicating that the change in light regime upon sand burial may play an important role in the signal transduction chain that leads to a different allocation pattern in A. breviligulata. The results are discussed within the context of alternative signals that might initiate the internode elongation response in sand-buried A. breviligulata plants.

12.
Oecologia ; 124(1): 91-99, 2000 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28308417

RESUMO

Succession is one of the most studied processes in ecology and succession theory provides strong predictability. However, few attempts have been made to influence the course of succession thereby testing the hypothesis that passing through one stage is essential before entering the next one. At each stage of succession ecosystem processes may be affected by the diversity of species present, but there is little empirical evidence showing that plant species diversity may affect succession. On ex-arable land, a major constraint of vegetation succession is the dominance of perennial early-successional (arable weed) species. Our aim was to change the initial vegetation succession by the direct sowing of later-successional plant species. The hypothesis was tested that a diverse plant species mixture would be more successful in weed suppression than species-poor mixtures. In order to provide a robust test including a wide range of environmental conditions and plant species, experiments were carried out at five sites across Europe. At each site, an identical experiment was set up, albeit that the plant species composition of the sown mixtures differed from site to site. Results of the 2-year study showed that diverse plant species mixtures were more effective at reducing the number of natural colonisers (mainly weeds from the seed bank) than the average low-diversity treatment. However, the effect of the low-diversity treatment depended on the composition of the species mixture. Thus, the effect of enhanced species diversity strongly depended on the species composition of the low-diversity treatments used for comparison. The effects of high-diversity plant species mixtures on weed suppression differed between sites. Low-productivity sites gave the weakest response to the diversity treatments. These differences among sites did not change the general pattern. The present results have implications for understanding biological invasions. It has been hypothesised that alien species are more likely to invade species-poor communities than communities with high diversity. However, our results show that the identity of the local species matters. This may explain, at least partly, controversial results of studies on the relation between local diversity and the probability of being invaded by aliens.

13.
Plant Biol (Stuttg) ; 6(2): 231-8, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15045676

RESUMO

The capacity of local communities to control introduced plants is called biotic resistance. Biotic resistance has been almost exclusively tested for plant competition and above ground herbivores and pathogens, while neglecting root herbivores and soil pathogens. Here, we present biotic resistance by above- and below ground herbivores in concert, and relate the abundance of the plant enemies to the species diversity of the local plant communities. The study was carried out in a 7-year-old biodiversity field experiment. We used creeping thistle (Cirsium arvense) as a model, and quantified sap-sucking herbivores: above ground aphids, their antagonists, and root-feeding nematodes. As plant diversity treatments, we used field plots sown with high (15 plant species, HSD) or low (4 plant species, LSD) diverse seed mixtures in 1996 and that were not weeded. Creeping thistle became established spontaneously at the start of the experiment. In 2002, in HSD plots, 90 % of the plant community was made up by 11 species, compared to seven species in LSD plots. No differences were found for C. arvense abundance or biomass. Above ground, three aphid species were found on C. arvense-Uroleucon cirsii, Aphis fabae, and Macrosiphum euphorbiae, but the latter was found only in low densities. Significantly more aphid species were found on individual plants in HSD plots. Moreover, in HSD plots, on average 10 % of aphids were parasitized, while no parasitism was observed in LSD plots. In the root zone of C. arvense, significantly more nematodes were found in HSD than in LSD plots, and a significantly higher proportion of those nematodes were plant parasites. The dominant plant parasitic nematode in both treatments was Paratylenchus. We conclude that biotic resistance by natural enemies may be enhanced by plant species diversity, but that above- and below ground sap-sucking herbivores do not necessarily have to respond similarly to the diversity of the surrounding plant community.


Assuntos
Cirsium/fisiologia , Animais , Biodiversidade , Cirsium/parasitologia , Fabaceae/fisiologia , Variação Genética , Gravitropismo/fisiologia , Nematoides/patogenicidade , Países Baixos , Fototropismo/fisiologia , Doenças das Plantas/parasitologia , Raízes de Plantas/fisiologia , Poaceae/fisiologia
14.
Mol Ecol ; 9(9): 1223-32, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10972762

RESUMO

Cyst and root-knot nematodes show high levels of gross morphological similarity. This presents difficulties for the study of their ecology in natural ecosystems. In this study, cyst and root-knot nematode species, as well as some ectoparasitic nematode species, were identified using the second internal transcribed spacer (ITS2) sequence variation detected by polymerase chain reaction-single-strand conformational polymorphism (PCR-SSCP). The ITS2 region was sufficiently variable within the taxa investigated to allow species to be separated on the basis of minor sequence variation. The PCR primers used in this study were effective for 12 species with three genera within the Heteroderinae (Globodera pallida, G. rostochiensis, Heterodera arenaria/avenae, H. ciceri, H. daverti, H. hordecalis, H. mani, H. schachtii, H. trifolii, Meloidogyne ardenensis, M. duytsi and M. maritima). However, pathotypes of Globodera pallida and G. rostochiensis could not be distinguished. The method was tested at two coastal dune locations in The Netherlands (one in the lime-poor dunes of the north and one in calcareous dunes of the south) to determine the population structure of cyst nematodes. At each site, cyst nematodes were associated with three plant species: two plant species on the foredune (Elymus farctus and Ammophila arenaria) and one plant species occurring further inland (Calamagrostis epigejos). Two species of cyst nematodes, H. arenaria and H. hordecalis, were found. H. arenaria associated with vigorous A. arenaria and H. hordecalis in association with degenerating A. arenaria and C. epigejos. The field survey demonstrated that in coastal dunes abiotic factors may be the important affecting the distribution of cyst nematodes.


Assuntos
Tylenchoidea/genética , Animais , Sequência de Bases , Primers do DNA/genética , DNA de Helmintos/genética , Ecossistema , Variação Genética , Filogenia , Plantas/parasitologia , Reação em Cadeia da Polimerase , Polimorfismo Conformacional de Fita Simples , Tylenchoidea/classificação , Tylenchoidea/isolamento & purificação
15.
J Chem Ecol ; 30(1): 53-67, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15074657

RESUMO

Studies on induced defenses have predominantly focused on foliar induction by above-ground herbivores and pathogens. However, roots are attacked by as many if not more phytophages than shoots, so in reality plants are exposed to above- and below-ground attack. Here, we report effects of foliar and/or root damage on terpenoid aldehyde accumulation in cotton (Gossypium herbaceum). Using HPLC, we analyzed concentrations of individual terpenoid aldehydes in foliage and root tissue. In undamaged plants, terpenoid aldehydes were concentrated in young immature main leaves. Concentrations in side leaves, branching from the main leaves, did not differ among leaf position. Above-ground feeding by Spodopterta exigua larvae on a mature leaf enhanced terpenoid concentrations in immature leaves but not in the damaged leaf. In particular, concentrations of hemigossypolone and the heliocides 1 and 4 were enhanced following herbivory. Root herbivory by wireworms (Agriotes lineatus) also resulted in an increase in terpenoid levels in the foliage. In contrast with foliar herbivory, both immature and mature leaves were induced. However, the level of induction after root herbivory was much lower compared to foliar herbivory. Plants exposed to root herbivory also had significantly higher levels of terpenoid aldehydes in root tissue, while no such effect was found following foliar herbivory. Plants exposed to both root and foliar herbivory appeared to induce primarily above-ground at the cost of below-ground defense. The implications for above- and below-ground Mutitrophic interactions are discussed.


Assuntos
Aldeídos/análise , Gossypium/química , Plantas Comestíveis , Terpenos/análise , Animais , Cromatografia Líquida de Alta Pressão , Comportamento Alimentar , Larva , Mariposas , Folhas de Planta/química , Raízes de Plantas/química
17.
Trends Ecol Evol ; 12(5): 169-70, 1997 May.
Artigo em Inglês | MEDLINE | ID: mdl-21238023
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA