Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 279: 116485, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38788564

RESUMO

OBJECTIVE: To investigate the effects of excessive light exposure during gestation on intrauterine development and early growth of neonates in rats. METHODS: Pregnant rats were randomly allocated to three groups: the constant light exposure group, non-light exposure group and control group. Blood samples were collected from the tail vein to analyze melatonin and cortisol levels. Weight, daily food and water consumption were recorded. Uterine weight, placental weight and placental diameter were measured on gestational day 19. Natural birth and neonate growth were also monitored. The expression of NR1D1(nuclear receptor subfamily 1 group D member 1) in offspring's SCN (suprachiasmatic nuclei), liver and adipose tissue was measured. Expression of NR1D1, MT1(melatonin 1 A receptor) and 11ß-HSD2 (placental 11ß-hydroxysteroid dehydrogenase type 2) in placenta was also measured. Finally, the expression of MT1 and 11ß-HSD2 in NR1D1 siRNA transfected JEG-3 cells was evaluated. RESULTS: There were no significant differences in maternal weight gain, pregnancy duration, uterine weight, placental body weight, placental diameter, fetal number among three groups. There were no significant differences in weights or lengths of offspring at birth. Compared to other two groups, constant light exposure group showed significantly more rapid growth of offspring in 21st day post-birth. The expression of NR1D1 in SCN, liver and adipose tissues of offspring was not significantly different among three groups. The maternal serum melatonin and cortisol levels of the constant light exposure group were lower and higher than other two groups, respectively. The expressions of NR1D1, MT1 and 11ß-HSD2 were all decreased in placenta of the constant light exposure group. The expression of MT1 and 11ß-HSD2 in JEG-3 cells were decreased after NR1D1 siRNA transfection. CONCLUSION: Excessive light exposure during pregnancy results in elevated cortisol and reduced melatonin exposure to fetuses in uterus, potentially contributing to an accelerated early growth of offspring in rats.


Assuntos
Luz , Melatonina , Placenta , Animais , Feminino , Gravidez , Ratos , Placenta/efeitos da radiação , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2 , Desenvolvimento Fetal/efeitos da radiação , Ratos Sprague-Dawley , Hidrocortisona/sangue , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Efeitos Tardios da Exposição Pré-Natal , Receptor MT1 de Melatonina/metabolismo , Animais Recém-Nascidos , Exposição Materna , Masculino
2.
Artigo em Inglês | MEDLINE | ID: mdl-36754112

RESUMO

Glucocorticoids (GCs) are an essential mediator hormone that can regulate animal growth, behavior, the phenotype of offspring, and so on, while GCs in poultry are predominantly corticosterones. The biological activity of GCs is mainly regulated by the intracellular metabolic enzymes, including 11ß-hydroxysteroid dehydrogenases 1 (11ß-HSD1), 11ß-hydroxysteroid dehydrogenases 2 (11ß-HSD2), and 20-hydroxysteroid dehydrogenase (20-HSD). To investigate the embryonic mechanisms of phenotypic differences between breeds, we compared the expression of corticosterone metabolic enzyme genes in the yolk-sac membrane and chorioallantoic membrane (CAM). We described the tissue distribution and ontogenic patterns of corticosterone metabolic enzymes during embryonic incubation between Tibetan and broiler chickens. Forty fertilized eggs from Tibetan and broiler chickens were incubated under hypoxic and normoxic conditions, respectively. Real-time fluorescence quantitative PCR was used to examine the expression of 11ß-HSD1/2, and 20-HSD mRNA in embryonic tissues. The results showed that the expression levels of yolk-sac membrane mRNA of 11ß-HSD2 and 20-HSD in Tibetan chickens on E14 (embryonic day of 14) were significantly lower than those of broiler chickens (P < 0.05), and these genes expression of CAM in Tibetan chickens were higher than those of broiler chickens (P < 0.05). In addition, the three genes in the yolk-sac membrane and CAM were followed by a down-regulation on E18 (embryonic day of 18). The 11ß-HSD1 and 11ß-HSD2 genes followed a similar tissue-specific pattern: the expression level was more abundantly in the liver, kidney, and intestine, with relatively lower abundance in the hypothalamus and muscle, and the expression level of 20-HSD genes in all tissues tested was higher. In the liver, 20-HSD of both Tibetan and broiler chickens showed different ontogeny development patterns, and hepatic mRNA expression of 20-HSD in broiler chickens was significantly higher than that of Tibetan chickens of the same age from E14 to E18 (P < 0.05). This study preliminarily revealed the expression levels of cortisol metabolic genes in different tissues during the development process of Tibetan and broiler chicken embryos. It provided essential information for in-depth research of the internal mechanism of maternal GCs programming on offspring.


Assuntos
Galinhas , Corticosterona , Animais , Embrião de Galinha , Corticosterona/metabolismo , Galinhas/genética , Galinhas/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Tibet , Glucocorticoides/metabolismo , Hidroxiesteroide Desidrogenases/genética , Hidroxiesteroide Desidrogenases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Expressão Gênica
3.
J Transl Med ; 20(1): 500, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329487

RESUMO

Apparent mineralocorticoid excess is an autosomal recessive form of monogenic disease characterized by juvenile resistant low-renin hypertension, marked hypokalemic alkalosis, low aldosterone levels, and high ratios of cortisol to cortisone metabolites. It is caused by defects in the HSD11B2 gene, encoding the enzyme 11ß-hydroxysteroid dehydrogenase type 2 (11ß-HSD2), which is primarily involved in the peripheral conversion of cortisol to cortisone. To date, over 50 deleterious HSD11B2 mutations have been identified worldwide. Multiple molecular mechanisms function in the lowering of 11ß-HSD2 activity, including damaging protein stability, lowered affinity for the substrate and cofactor, and disrupting the dimer interface. Genetic polymorphism, environmental factors as well as epigenetic modifications may also offer an implicit explanation for the molecular pathogenesis of AME. A precise diagnosis depends on genetic testing, which allows for early and specific management to avoid the morbidity and mortality from target organ damage. In this review, we provide insights into the molecular genetics of classic and non-classic apparent mineralocorticoid excess and aim to offer a comprehensive overview of this monogenic disease.


Assuntos
Cortisona , Hipertensão , Humanos , Cortisona/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , Hidrocortisona/metabolismo , Biologia Molecular , Síndrome de Excesso Aparente de Minerolocorticoides
4.
Toxicol Appl Pharmacol ; 440: 115938, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35219639

RESUMO

Cadmium (Cd) exposure during pregnancy damages the placental glucocorticoid (GC) barrier, exposes the foetus to excess corticosterone (CORT) levels, and eventually inhibits foetal development. In addition, taurine (Tau) alleviates the toxicity of Cd on liver and kidney, but limited data are available on the role of Tau against the toxicity of heavy metals on female reproduction and fetal development. The present study was conducted to investigate the specific mechanism of Cd-induced placental GC barrier damage and the protective role of Tau. Pregnant rats were administered CdCl2 (1 mg/kg/day) and Tau (100, 200, or 300 mg/kg/day) by gavage from gestational day (GD) 0 to 19. The data showed that CdCl2 increased the foetal growth restriction (FGR) rate of the offspring, and the levels of CORT in the placental, maternal and foetal serum. Treatment with Tau significantly reversed the impact of Cd on both maternal and fetal parameters. Additionally, Tau can attenuate Cd-induced inhibition of 11ß-hydroxysteroid dehydrogenase 2 (11ß-HSD2) and specificity protein 1 (Sp1) in vivo and vitro. Furthermore, Sp1-siRNA alone reduced 11ß-HSD2 levels and had a further inhibitory effect when the cells were treated with Cd simultaneously. Moreover, Cd suppressed cAMP/PKA signalling. Forskolin (adenylate cyclase agonist) pretreatment activated cAMP/PKA signalling and restored the Cd-induced downregulation of Sp1 and 11ß-HSD2. Tau alleviated the Cd-induced decrease of Sp1 via activating cAMP/PKA signalling. Therefore, the results highlight that Tau protects against Cd-induced impairments in GC barrier damage by upregulating the cAMP/PKA/Sp1 pathway in placental trophoblasts.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2 , Placenta , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Animais , Cádmio/metabolismo , Corticosterona , Feminino , Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Placenta/metabolismo , Gravidez , Ratos , Taurina/farmacologia
5.
Ecotoxicol Environ Saf ; 239: 113624, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35588619

RESUMO

Our previous study reported that prenatal caffeine exposure (PCE) could induce chondrodysplasia and increase the susceptibility to osteoarthritis in offspring rats. However, the potential mechanisms and initiating factors remain unknown. This study aims to investigate whether 11ß-HSD2, a glucocorticoid-metabolizing enzyme, is involved in the susceptibility of osteoarthritis induced by PCE and to further explore its potential mechanisms and initiating factors. Firstly, we found that PCE reduced cartilage matrix synthesis (aggrecan/Col2a1 expression) in male adult offspring rats and exhibited an osteoarthritis phenotype following chronic stress, which was associated with persistently reduced H3K9ac and H3K27ac levels at the promoter of 11ß-HSD2 as well as its expression in the cartilage from fetus to adulthood. The expression of 11ß-HSD2, aggrecan and Col2a1 were all decreased by corticosterone in the fetal chondrocytes, while overexpression of 11ß-HSD2 could partially alleviate the decrease of matrix synthesis induced by corticosterone in vitro. Furthermore, the glucocorticoid receptor (GR) activated by glucocorticoids directly bonded to the promoter region of 11ß-HSD2 to inhibit its expression. Meanwhile, the activated GR reduced the H3K9ac and H3K27ac levels of 11ß-HSD2 by recruiting HDAC4 and promoting GR-HDAC4 protein interaction to inhibit the 11ß-HSD2 expression. Moreover, caffeine could reduce the expression of 11ß-HSD2 by inhibiting the cAMP/PKA signaling pathway but without reducing the H3K9ac and H3K27ac levels of 11ß-HSD2, thereby synergistically enhancing the corticosterone effect. In conclusion, the persistently reduced H3K9ac and H3K27ac levels of 11ß-HSD2 from fetus to adulthood mediated the inhibition of cartilage matrix synthesis and the increased susceptibility to osteoarthritis. This epigenetic programming change in utero was induced by glucocorticoids with synergistic effect of caffeine.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2 , Osteoartrite , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Agrecanas , Animais , Cafeína/toxicidade , Cartilagem , Corticosterona , Feminino , Glucocorticoides/metabolismo , Masculino , Osteoartrite/induzido quimicamente , Osteoartrite/genética , Gravidez , Ratos
6.
FASEB J ; 34(11): 15379-15399, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32978833

RESUMO

Preeclampsia, a major human pregnancy-specific disorder, leads to maternal and fetal morbidity and mortality. Here we reported that 11ß-hydroxysteroid dehydrogenase type 2 (11ß-HSD2), an enzyme that degrades active glucocorticoids, is one of the key factors that contributes to preeclampsia development. In the pregnant rat model, we firstly confirmed that administration of 11ß-HSD2 inhibitor carbenoxolone (CBX) subcutaneously or by placenta-targeted delivery system could lead to a decrease in placental 11ß-HSD2 expression and activity and an increase in corticosterone level in placenta and maternal circulation. Then, we showed that subcutaneous administration and placenta-targeted delivery of CBX resulted in the hallmark of preeclampsia-like features including hypertension, proteinuria, renal damages as well as elevated circulatory soluble fms-like tyrosine kinase 1 (sFlt1) and increased sFlt1/placental growth factor (PlGF) ratio in pregnant rats. These animals displayed decreased trophoblast invasion in uterus, impaired spiral artery remodeling, and reduced placental blood flow. Preeclampsia-like features could also be induced by administration of dexamethasone in pregnant rats. In the cultured human trophoblast models, we found that cortisol only inhibited migration and invasion of the extravillous trophoblasts with 11ß-HSD2 knockdown, and promoted sFlt1 release in the cultured syncytiotrophoblasts with 11ß-HSD2 knockdown. Furthermore, we elucidated that cortisol stimulated a disintegrin and metalloprotease (ADAM)17 expression in placentas, thereby promoting sFlt1 release in placenta. Collectively, our study provided the evidence that placental 11ß-HSD2 dysfunction plays a key role in the development of preeclampsia and immediately identified innovative target to counteract preeclampsia.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Placenta/patologia , Pré-Eclâmpsia/patologia , Trofoblastos/patologia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , Animais , Movimento Celular , Células Cultivadas , Feminino , Humanos , Masculino , Placenta/enzimologia , Pré-Eclâmpsia/enzimologia , Gravidez , Ratos , Ratos Sprague-Dawley , Trofoblastos/enzimologia
7.
Gen Comp Endocrinol ; 310: 113809, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33964287

RESUMO

Urban habitats present animals with persistent disturbances and acute stressors not present in rural habitats or present at significantly lower levels. Differences in the glucocorticoid stress response could underlie colonization of these novel habitats. Despite urban habitats characterization as more stressful, previous comparisons of urban and rural birds have failed to find consistent differences in baseline and stress induced glucocorticoid levels. Another aspect of glucocorticoid regulation that could underlie an animal's ability to inhabit novel habitats, but has yet to be well examined, is more efficient termination of the glucocorticoid stress response which would allow birds in urban habitats to recover more quickly after a disturbance. The glucocorticoid stress response is terminated by negative feedback achieved primarily through their binding of receptors in the hippocampus and hypothalamus and subsequent decreased synthesis and release from the adrenals. We investigated if male song sparrows (Melospiza melodia) in urban habitats show more efficient termination of the glucocorticoid stress response than their rural counterparts using two approaches. First, we measured glucocorticoid receptor, mineralocorticoid receptor and 11ß-HSD2 (an enzyme that inactivates corticosterone) mRNA expression in negative feedback targets of the brain (the hippocampus and hypothalamus) as a proxy measure of sensitivity to negative feedback. Second, we measured plasma corticosterone levels after standardized restraint and again following a challenge with the synthetic glucocorticoid, dexamethasone, as a means of assessing how quickly birds decreased glucocorticoid synthesis and release. Though there were no differences in the hypothalamus of urban and rural song sparrows, urban birds had lower glucocorticoid receptor and 11ß-HSD2 mRNA expression in the hippocampus. Further, urban and rural birds had similar reductions in corticosterone following the dexamethasone challenge, suggesting that they do not differ in how quickly they decrease glucocorticoid synthesis and release. Thus, urban and rural song sparrows display similar termination of the glucocorticoid stress response even though urban birds have decreased hippocampal glucocorticoid receptor and 11ß-HSD2 abundance.


Assuntos
Sistema Hipófise-Suprarrenal , Pardais , Animais , Corticosterona , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Sistema Hipófise-Suprarrenal/metabolismo , Receptores de Glucocorticoides/metabolismo , Pardais/fisiologia
8.
Proc Natl Acad Sci U S A ; 113(22): 6265-70, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27185937

RESUMO

Fetoplacental glucocorticoid overexposure is a significant mechanism underlying fetal growth restriction and the programming of adverse health outcomes in the adult. Placental glucocorticoid inactivation by 11ß-hydroxysteroid dehydrogenase type 2 (11ß-HSD2) plays a key role. We previously discovered that Hsd11b2(-/-) mice, lacking 11ß-HSD2, show marked underdevelopment of the placental vasculature. We now explore the consequences for fetal cardiovascular development and whether this is reversible. We studied Hsd11b2(+/+), Hsd11b2(+/-), and Hsd11b2(-/-) littermates from heterozygous (Hsd11b(+/-)) matings at embryonic day (E)14.5 and E17.5, where all three genotypes were present to control for maternal effects. Using high-resolution ultrasound, we found that umbilical vein blood velocity in Hsd11b2(-/-) fetuses did not undergo the normal gestational increase seen in Hsd11b2(+/+) littermates. Similarly, the resistance index in the umbilical artery did not show the normal gestational decline. Surprisingly, given that 11ß-HSD2 absence is predicted to initiate early maturation, the E/A wave ratio was reduced at E17.5 in Hsd11b2(-/-) fetuses, suggesting impaired cardiac function. Pravastatin administration from E6.5, which increases placental vascular endothelial growth factor A and, thus, vascularization, increased placental fetal capillary volume, ameliorated the aberrant umbilical cord velocity, normalized fetal weight, and improved the cardiac function of Hsd11b2(-/-) fetuses. This improved cardiac function occurred despite persisting indications of increased glucocorticoid exposure in the Hsd11b2(-/-) fetal heart. Thus, the pravastatin-induced enhancement of fetal capillaries within the placenta and the resultant hemodynamic changes correspond with restored fetal cardiac function. Statins may represent a useful therapeutic approach to intrauterine growth retardation due to placental vascular hypofunction.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2/fisiologia , Retardo do Crescimento Fetal/prevenção & controle , Glucocorticoides/metabolismo , Cardiopatias/prevenção & controle , Doenças Placentárias/prevenção & controle , Pravastatina/farmacologia , Animais , Anticolesterolemiantes/farmacologia , Feminino , Retardo do Crescimento Fetal/metabolismo , Retardo do Crescimento Fetal/patologia , Cardiopatias/metabolismo , Cardiopatias/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças Placentárias/metabolismo , Doenças Placentárias/patologia , Gravidez , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Pediatr Endocrinol Rev ; 16(3): 335-358, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30888125

RESUMO

Apparent mineralocorticoid excess (AME) is a rare inherited disorder caused by pathogenic variants in the 11ß-HSD2 gene resulting in a deficiency of the 11ß-hydroxysteroid dehydrogenase type 2 (11ß-HSD2) enzyme catalyzing the conversion of cortisol to its inactive metabolite, cortisone. Impaired cortisol metabolism results in a mineralocorticoid excess-like state presenting as low renin, low aldosterone hypertension (HTN) and hypokalemia. Typically, AME is diagnosed in early childhood. Medical treatment to control HTN and hypokalemia often is only partially successful. Herein, we systematically review previously reported AME cases in the pediatric population, focusing on presentation, genetic basis, treatment and outcomes. We demonstrate a negative correlation between the ratio of urinary cortisol to cortisone metabolites, and the age of diagnosis (p=0.0051). We also report a novel causative variant of the 11ß-HSD2 gene and propose an explanation for failure of the mineralocorticoid receptor antogonist, spironolactone, to control hypertension and hypokalemia in a subgroup of patients.


Assuntos
Hipertensão , Hipopotassemia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2 , Criança , Humanos , Hidrocortisona , Mineralocorticoides
10.
J Obstet Gynaecol Res ; 41(3): 343-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25331012

RESUMO

AIMS: The aim of this study was to determine the promoter methylation status of type 2 isoform of 11ß-hydroxysteroid dehydrogenase (11ß-HSD2) and its regulatory correlation with 11ß-HSD2 gene expression in placentas of pre-eclampsia (PE) patients of Chinese Han ethnicity. MATERIAL AND METHODS: The pathological features of placental tissues were studied using hematoxylin-eosin staining and immunohistochemical staining. The 11ß-HSD2 mRNA and protein expressions were detected by real-time polymerase chain reaction and Western blotting. The methylation of the 11ß-HSD2 promoter sequence was examined by bisulfite sequencing polymerase chain reaction. RESULTS: Trophoblast hyperplasia and discontinuous syncytial layer were observed in the PE group, and the 11ß-HSD2 was distributed irregularly and its immunoreactivity was weakened distinctly. The expressions of 11ß-HSD2 mRNA and protein decreased significantly in the PE group compared with the control group. Unexpectedly, almost no 11ß-HSD2 methylation was detected in PE placental tissue (two fragments, 0.6% vs 0%) or normal placental tissue (1% vs 0.6%). No significant difference in 11ß-HSD2 promoter methylation was found between the two groups. CONCLUSIONS: The 11ß-HSD2 expression decreased in PE women of Chinese Han ethnicity, but was not interrelated with the promoter methylation status.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , Metilação de DNA , Expressão Gênica , Placenta , Pré-Eclâmpsia/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/análise , Adulto , Povo Asiático/genética , Estudos de Casos e Controles , China , Feminino , Humanos , Placenta/química , Placenta/patologia , Pré-Eclâmpsia/etnologia , Pré-Eclâmpsia/metabolismo , Gravidez , Regiões Promotoras Genéticas/genética , RNA Mensageiro/análise , Adulto Jovem
11.
Int J Mol Sci ; 16(11): 27482-96, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26593902

RESUMO

High intrauterine cortisol exposure can inhibit fetal growth and have programming effects for the child's subsequent stress reactivity. Placental 11beta-hydroxysteroid dehydrogenase (11ß-HSD2) limits the amount of maternal cortisol transferred to the fetus. However, the relationship between maternal psychopathology and 11ß-HSD2 remains poorly defined. This study examined the effect of maternal depressive disorder, antidepressant use and symptoms of depression and anxiety in pregnancy on placental 11ß-HSD2 gene (HSD11B2) expression. Drawing on data from the Mercy Pregnancy and Emotional Wellbeing Study, placental HSD11B2 expression was compared among 33 pregnant women, who were selected based on membership of three groups; depressed (untreated), taking antidepressants and controls. Furthermore, associations between placental HSD11B2 and scores on the State-Trait Anxiety Inventory (STAI) and Edinburgh Postnatal Depression Scale (EPDS) during 12-18 and 28-34 weeks gestation were examined. Findings revealed negative correlations between HSD11B2 and both the EPDS and STAI (r = -0.11 to -0.28), with associations being particularly prominent during late gestation. Depressed and antidepressant exposed groups also displayed markedly lower placental HSD11B2 expression levels than controls. These findings suggest that maternal depression and anxiety may impact on fetal programming by down-regulating HSD11B2, and antidepressant treatment alone is unlikely to protect against this effect.


Assuntos
11-beta-Hidroxiesteroide Desidrogenases/metabolismo , Exposição Materna , Saúde Mental , Placenta/metabolismo , 11-beta-Hidroxiesteroide Desidrogenases/genética , Adulto , Ansiedade/diagnóstico , Ansiedade/genética , Ansiedade/metabolismo , Depressão/diagnóstico , Depressão/genética , Depressão/metabolismo , Feminino , Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Humanos , Gravidez , Fatores de Risco
12.
J Biol Chem ; 288(31): 22527-41, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23775078

RESUMO

The treatment of advanced prostate cancer (PCa) remains a challenge. Identification of new molecular mechanisms that regulate PCa initiation and progression would provide targets for the development of new cancer treatments. The Foxm1 transcription factor is highly up-regulated in tumor cells, inflammatory cells, and cells of tumor microenvironment. However, its functions in different cell populations of PCa lesions are unknown. To determine the role of Foxm1 in tumor cells during PCa development, we generated two novel transgenic mouse models, one exhibiting Foxm1 gain-of-function and one exhibiting Foxm1 loss-of-function under control of the prostate epithelial-specific Probasin promoter. In the transgenic adenocarcinoma mouse prostate (TRAMP) model of PCa that uses SV40 large T antigen to induce PCa, loss of Foxm1 decreased tumor growth and metastasis. Decreased prostate tumorigenesis was associated with a decrease in tumor cell proliferation and the down-regulation of genes critical for cell proliferation and tumor metastasis, including Cdc25b, Cyclin B1, Plk-1, Lox, and Versican. In addition, tumor-associated angiogenesis was decreased, coinciding with reduced Vegf-A expression. The mRNA and protein levels of 11ß-Hsd2, an enzyme playing an important role in tumor cell proliferation, were down-regulated in Foxm1-deficient PCa tumors in vivo and in Foxm1-depleted TRAMP C2 cells in vitro. Foxm1 bound to, and increased transcriptional activity of, the mouse 11ß-Hsd2 promoter through the -892/-879 region, indicating that 11ß-Hsd2 was a direct transcriptional target of Foxm1. Without TRAMP, overexpression of Foxm1 either alone or in combination with inhibition of a p19(ARF) tumor suppressor caused a robust epithelial hyperplasia, but was insufficient to induce progression from hyperplasia to PCa. Foxm1 expression in prostate epithelial cells is critical for prostate carcinogenesis, suggesting that inhibition of Foxm1 is a promising therapeutic approach for prostate cancer chemotherapy.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Sequência de Bases , Transformação Celular Neoplásica , Primers do DNA , Células Epiteliais/metabolismo , Proteína Forkhead Box M1 , Humanos , Masculino , Próstata/citologia , Neoplasias da Próstata/patologia , Reação em Cadeia da Polimerase em Tempo Real
13.
Clin Exp Allergy ; 44(2): 197-211, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24447082

RESUMO

BACKGROUND: Glucocorticoids are used to treat allergic rhinitis, but the mechanisms by which they induce disease remission are unclear. 11ß-hydroxysteroid dehydrogenase (11ß-HSD) is a tissue-specific regulator of glucocorticoid responses, inducing the interconversion of inactive and active glucocorticoids. OBJECTIVE: We analysed the expression and distribution patterns of 11ß-HSD1, 11ß-HSD2, and steroidogenic enzymes in normal and allergic nasal mucosa, and cytokine-driven regulation of their expression. The production levels of cortisol in normal, allergic nasal mucosa and in cultured epithelial cells stimulated with cytokines were also determined. METHODS: The expression levels of 11ß-HSD1, 11ß-HSD2, steroidogenic enzymes (CYP11B1, CYP11A1), and cortisol in normal, mild, and moderate/severe persistent allergic nasal mucosa were assessed by real-time PCR, Western blot, immunohistochemistry, and ELISA. The expression levels of 11ß-HSD1, 11ß-HSD2, CYP11B1, CYP11A1, and cortisol were also determined in cultured nasal epithelial cell treated with IL-4, IL-5, IL-13, IL-17A, and IFN-γ. Conversion ratio of cortisone to cortisol was evaluated using siRNA technique, 11ß-HSD1 inhibitor, and the measurement of 11ß-HSD1 activity. RESULTS: The expression levels of 11ß-HSD1, CYP11B1, and cortisol were up-regulated in mild and moderate/severe persistent allergic nasal mucosa. By contrast, 11ß-HSD2 expression was decreased in allergic nasal mucosa. In cultured epithelial cells treated with IL-4, IL-5, IL-13, and IL-17A, 11ß-HSD1 expression and activity increased in parallel with the expression levels of CYP11B1 and cortisol, but the production of 11ß-HSD2 decreased. CYP11A1 expression level was not changed in allergic nasal mucosa or in response to stimulation with cytokines. SiRNA technique or the measurement of 11ß-HSD1 activity showed that nasal epithelium activates cortisone to cortisol in a 11ß-HSD-dependent manner. CONCLUSIONS AND CLINICAL RELEVANCE: These results indicate that the localized anti-inflammatory effects of glucocorticoids are regulated by inflammatory cytokines, which can modulate the expression of 11ß-HSD1, 11ß-HSD2, and CYP11B1, and by the intracellular concentrations of bioactive glucocorticoids.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/biossíntese , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/biossíntese , Citocinas/biossíntese , Mucosa Nasal/metabolismo , Rinite Alérgica Perene/metabolismo , Células Th2/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/imunologia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/imunologia , Adulto , Enzima de Clivagem da Cadeia Lateral do Colesterol/biossíntese , Enzima de Clivagem da Cadeia Lateral do Colesterol/imunologia , Citocinas/imunologia , Feminino , Glucocorticoides/administração & dosagem , Glucocorticoides/farmacocinética , Humanos , Hidrocortisona/imunologia , Hidrocortisona/metabolismo , Masculino , Pessoa de Meia-Idade , Mucosa Nasal/imunologia , Mucosa Nasal/patologia , Rinite Alérgica Perene/tratamento farmacológico , Rinite Alérgica Perene/imunologia , Rinite Alérgica Perene/patologia , Esteroide 11-beta-Hidroxilase/biossíntese , Esteroide 11-beta-Hidroxilase/imunologia , Células Th2/imunologia , Células Th2/patologia
14.
Toxicol Appl Pharmacol ; 274(3): 383-92, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24321341

RESUMO

Our previous studies have demonstrated that prenatal caffeine ingestion induces an increased susceptibility to metabolic syndrome with alterations of glucose and lipid metabolic phenotypes in adult first generation (F1) of intrauterine growth retardation (IUGR) rats, and the underlying mechanism is originated from a hypothalamic-pituitary-adrenal (HPA) axis-associated neuroendocrine metabolic programming alteration in utero. This study aims to investigate the transgenerational effects of this programming alteration in adult second generation (F2). Pregnant Wistar rats were administered with caffeine (120mg/kg·d) from gestational day 11 until delivery. Four groups in F2 were set according to the cross-mating between control and caffeine-induced IUGR rats. F2 were subjected to a fortnight ice water swimming stimulus on postnatal month 4, and blood samples were collected before and after stress. Results showed that the majority of the activities of HPA axis and phenotypes of glucose and lipid metabolism were altered in F2. Particularly, comparing with the control group, caffeine groups had an enhanced corticosterone levels after chronic stress. Compared with before stress, the serum glucose levels were increased in some groups whereas the triglyceride levels were decreased. Furthermore, total cholesterol gain rates were enhanced but the high-density lipoprotein-cholesterol gain rates were decreased in most caffeine groups after stress. These transgenerational effects were characterized partially with gender and parental differences. Taken together, these results indicate that the reproductive and developmental toxicities and the neuroendocrine metabolic programming mechanism by prenatal caffeine ingestion have transgenerational effects in rats, which may help to explain the susceptibility to metabolic syndrome and associated diseases in F2.


Assuntos
Cafeína/efeitos adversos , Sistema Hipotálamo-Hipofisário/fisiopatologia , Sistemas Neurossecretores/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Cafeína/administração & dosagem , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Corticosterona/sangue , Relação Dose-Resposta a Droga , Feminino , Retardo do Crescimento Fetal/patologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Sistemas Neurossecretores/metabolismo , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Gravidez , Ratos , Ratos Wistar , Reprodução/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Triglicerídeos/sangue
15.
Dev Psychobiol ; 56(4): 734-47, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23775363

RESUMO

The underlying biological mechanism of prenatal stress in humans is poorly understood, but maternal cortisol (F) excess seems to play an important role. In pregnant rats, acute stress causes an up-regulation of placental 11ß-hydroxysteroid dehydrogenase type 2 (11ß-HSD2), an enzyme present throughout the body (e.g., placenta, salivary glands) that inactivates F to cortisone (E), thereby protecting the fetus from maternal F overexposure. Whether acute stress influences human 11ß-HSD2 is unclear. We aimed to explore the association between the maternal stress reactivity and amniotic fluid F, E, and the E/(E + F) ratio as a marker of fetoplacental 11ß-HSD2. The predictive value of all markers for birth outcome was investigated. We examined 34 healthy pregnant women undergoing amniocentesis, which served as a standardized, real-life stressor. F, E, and E/(E + F) were determined from a single aliquot of amniotic fluid, and from saliva samples collected repeatedly. Subjects filled out state questionnaires repeatedly and were re-examined in a control condition after notification of a normal amniocentesis result. During amniocentesis, psychological stress, salivary F (SalF), and salivary E (SalE) increased significantly, whereas SalE/(E + F) decreased. The SalF reactivity was positively associated with amniotic E, while SalE/(E + F) was inversely associated with amniotic E/(E + F). SalF and SalE predicted lower and SalE/(E + F) higher birth weight. Psychological and amniotic fluid variables were unrelated to birth outcome. Findings indicate that maternal F is inactivated to E in the human fetoplacental unit during acute stress. Increased 11ß-HSD2 activity within the maternal salivary glands following acute stress may mirror further stress protective mechanisms worthwhile investigating.


Assuntos
Líquido Amniótico/química , Glucocorticoides/análise , Resultado da Gravidez , Estresse Psicológico/fisiopatologia , Adulto , Feminino , Humanos , Sistema Hipotálamo-Hipofisário/fisiopatologia , Sistema Hipófise-Suprarrenal/fisiopatologia , Gravidez , Segundo Trimestre da Gravidez
16.
Arthritis Res Ther ; 25(1): 140, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542341

RESUMO

BACKGROUND: Disruption of glucocorticoid (GC) signaling in osteoblasts results in a marked attenuation of acute antibody-induced arthritis. The role of endogenous GCs in chronic inflammatory arthritis is however not fully understood. Here, we investigated the impact of endogenous GC signaling in osteoblasts on inflammation and bone integrity under chronic inflammatory arthritis by inactivating osteoblastic GC signaling in a long-term K/BxN serum transfer-induced induced arthritis (STIA) model. METHODS: Intracellular GC signaling in osteoblasts was disrupted by transgenic (tg) overexpression of 11beta-hydroxysteroid dehydrogenase type 2 (11ß-HSD2). Inflammatory arthritis was induced in 5-week-old male tg mice and their wild type (WT) littermates by intraperitoneal (i.p.) injection of K/BxN serum while controls (CTRLs) received phosphate-buffered saline (PBS). In a first cohort, K/BxN STIA was allowed to abate until  the endpoint of 42 days (STIA). To mimic rheumatic flares, a second cohort was additionally injected on days 14 and 28 with K/BxN serum (STIA boost). Arthritis severity was assessed daily by clinical scoring and ankle size measurements. Ankle joints were assessed histopathologically. Systemic effects of inflammation on long bone metabolism were analyzed in proximal tibiae by micro-computed tomography (µCT) and histomorphometry. RESULTS: Acute arthritis developed in both tg and WT mice (STIA and STIA boost) and peaked around day 8. While WT STIA and tg STIA mice showed a steady decline of inflammation until day 42, WT STIA boost and tg STIA boost mice exhibited an arthritic phenotype over a period of 42 days. Clinical arthritis severity did not differ significantly between WT and tg mice, neither in the STIA nor in the STIA boost cohorts. Correspondingly, histological indices of inflammation, cartilage damage, and bone erosion showed no significant difference between WT and tg mice on day 42. Histomorphometry revealed an increased bone turnover in tg CTRL and tg STIA boost compared to WT CTRL and WT STIA boost animals, respectively. CONCLUSIONS: In contrast to the previously reported modulating effects of endogenous GC signaling in osteoblasts during acute K/BxN STIA, this effect seems to perish during the chronic inflammatory and resolution phase. These findings indicate that endogenous GC signaling in osteoblasts may mainly be relevant during acute and subacute inflammatory processes.


Assuntos
Artrite Experimental , Artrite , Camundongos , Masculino , Animais , Glucocorticoides , Microtomografia por Raio-X , Artrite/metabolismo , Osteoblastos/metabolismo , Camundongos Transgênicos , Inflamação/patologia , Artrite Experimental/metabolismo
17.
Food Chem Toxicol ; 175: 113739, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36958388

RESUMO

Some halogenated bisphenol A (BPA) derivatives (tetrabromobisphenol A, TBBPA, and tetrachlorobisphenol A, TCBPA) are produced in a high volume and exist in PM2.5 after waste burning. 11ß-Hydroxysteroid dehydrogenase 2 (11ß-HSD2) is a critical enzyme for placental function. However, whether halogenated bisphenols inhibit 11ß-HSD2 and the mode of action remains unclear. The objective of this study was to investigate BPA derivatives on human and rat placental 11ß-HSD2. The inhibitory strength on human 11ß-HSD2 was TBBPA (IC50, 0.665 µM)>TCBPA (2.22 µM)>trichloro BPA (TrCBPA, 19.87 µM)>tetrabromobisphenol S (TBBPS, 36.76 µM)>monochloro BPA (MCBPA, 104.0 µM)>BPA (144.9 µM)>bisphenol S. All chemicals are mixed and competitive inhibitors. Rat 11ß-HSD2 was less sensitive to BPA derivatives, with TBBPA (IC50, 96.63 µM)>TCBPA (99.69 µM)>TrCBPA (104.1 µM)>BPA (117.1 µM)>others. Docking analysis showed that BPA derivatives bind steroid active sites. Structure-activity relationship revealed that halogen atoms and LogP were inversely correlated with inhibitory strength on human 11ß-HSD2, while LogS and polar desolvation energy were positively correlated with the inhibitory strength. In conclusion, halogenated BPA derivatives are mostly potent inhibitors on human 11ß-HSD2 and there is structure-dependent inhibition.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2 , Placenta , Humanos , Ratos , Feminino , Gravidez , Animais , 11-beta-Hidroxiesteroide Desidrogenases , Placenta/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Compostos Benzidrílicos/toxicidade
18.
Front Pharmacol ; 12: 629818, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33833680

RESUMO

Myocardial fibrosis (MF) is one of the leading causes of end-stage heart disease. Many studies have confirmed that inflammation caused by aldosterone may play an important role in the process of MF. A selective 11ß-hydroxysteroid dehydrogenase type 2 (11ß-HSD2) enzyme inhibitor can reduce the inactivation of cortisol, allowing cortisol to compete for mineralocorticoid receptors. This study investigated the protective effect of a novel selective 11ßHSD2 inhibitor (WZ51) on MF and described its underlying mechanism. The administration of WZ51 in rats with MF significantly alleviated myocardial injury, accompanied by a decrease in lactate dehydrogenase and the creatine kinase myocardial band. Furthermore, WZ51 significantly inhibited the development of MF and increased the protein level of 11ß-HSD2. The results of this study demonstrate that 11ß-HSD2 plays an important pathological role in MF. Thus, WZ51 may be a potential therapeutic agent for the treatment of this condition.

19.
Psychoneuroendocrinology ; 127: 105197, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33743501

RESUMO

Placental 11ß-HSD2 has been a focus of research for understanding potential fetal programming associated with maternal emotional disorders. This study examined the pathway from antenatal mental health via placental 11ß-HSD2 mRNA to cortisol regulation in the infant offspring. This study reports on data obtained from 236 participants in the Mercy Pregnancy and Emotional Wellbeing Study (MPEWS). At term, placental tissue was collected within 30 min of birth from 52 participants meeting current criteria for a depressive disorder, and 184 control participants. Depressive disorders were diagnosed using the SCID-IV. In addition, antidepressant use, depressive and anxiety symptoms were measured in early and late pregnancy. Placental 11ß-HSD2 mRNA expression was measured using qRT-PCR. Infant salivary cortisol samples were taken at 12 months of age. Women on antidepressant medication and with higher trait anxiety had higher placental 11ß-HSD2 expression compared to women not taking medication. Furthermore, the offspring of women taking an antidepressant and who also had a current depressive disorder and high trait anxiety had high cortisol reactivity at 12 months of age and this was mediated through 11ß-HSD2 mRNA expression. In contrast, offspring of women not taking antidepressant medication with depressive disorder and high anxiety there was low cortisol reactivity observed. Our findings suggest that the relationship between maternal antenatal depression and anxiety and infant cortisol reactivity is mediated through placental 11ß-HSD2 mRNA expression. Furthermore, the direction differed for women taking antidepressants, where infant cortisol reactivity was high whereas when compared to those with unmedicated depression and anxiety, where infant cortisol reactivity was low.


Assuntos
Ansiedade , Depressão , Desenvolvimento Fetal , Hidrocortisona , Saúde Materna , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , Antidepressivos/uso terapêutico , Ansiedade/tratamento farmacológico , Depressão/tratamento farmacológico , Feminino , Desenvolvimento Fetal/fisiologia , Humanos , Hidrocortisona/fisiologia , Placenta/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal , RNA Mensageiro/metabolismo
20.
Chemosphere ; 254: 126785, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32334250

RESUMO

Fetal overexposure to active glucocorticoid (GC) is the major cause for fetal growth restriction (FGR). This study investigated the influences of cadmium (Cd) exposure on active GC and its mechanism in placental trophoblasts. Pregnant mice were exposed to CdCl2 (4.5 mg/kg, i.p.). Human JEG-3 cells were treated with CdCl2 (0-20 µM). Prenatal Cd exposure significantly increased active GC level in amniotic fluid and placenta. Similarly, Cd treatment also elevated active GC level in medium. Expectedly, the expression of 11ß-HSD2 protein was markedly downregulated in Cd-exposed placental trophoblasts. We further found that Cd activated the PERK/p-eIF2α signaling pathway in placental trophoblasts. Mechanistically, PERK siRNA pretreatment completely blocked PERK/p-eIF2α signaling, and thereby restoring Cd-downregulated 11ß-HSD2 protein expression in human placental trophoblasts. We further found that N-acetylcysteine, a well-known antioxidant, obviously reversed Cd-downregulated 11ß-HSD2 protein expression by inhibiting p-PERK/p-eIF2α signaling in placental trophoblasts. Overall, our data suggest that Cd activates the PERK/p-eIF2α signaling, down-regulates the protein expression of 11ß-HSD2, and thereby elevating active GC level in placental trophoblast.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Cádmio/toxicidade , Poluentes Ambientais/toxicidade , Animais , Cádmio/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Fator de Iniciação 2 em Eucariotos/metabolismo , Feminino , Retardo do Crescimento Fetal , Glucocorticoides/metabolismo , Humanos , Camundongos , Placenta/metabolismo , Gravidez , Trofoblastos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA