Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Microbiol ; 20(1): 37, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32070276

RESUMO

BACKGROUND: The virulence of the plant pathogen Xanthomonas campestris pv. campestris (Xcc) involves the coordinate expression of many virulence factors, including surface appendages flagellum and type IV pili, which are required for pathogenesis and the colonization of host tissues. Despite many insights gained on the structure and functions played by flagellum and pili in motility, biofilm formation, surface attachment and interactions with bacteriophages, we know little about how these appendages are regulated in Xcc. RESULTS: Here we present evidence demonstrating the role of two single domain response regulators PilG and PilH in the antagonistic control of flagellum-dependent (swimming) and pili-dependent (swarming) motility. Using informative mutagenesis, we reveal PilG positively regulates swimming motility while and negatively regulating swarming motility. Conversely, PilH negatively regulates swimming behaviour while and positively regulating swarming motility. By transcriptome analyses (RNA-seq and RT-PCR) we confirm these observations as PilG is shown to upregulate many genes involved chemotaxis and flagellar biosynthesis but these similar genes were downregulated by PilH. Co-immunoprecipitation, bacterial two-hybrid and pull-down analyses showed that PilH and PilG were able to interact with district subsets of proteins that potentially account for their regulatory impact. Additionally, we present evidence, using mutagenesis that PilG and PilH are involved in other cellular processes, including chemotaxis and virulence. CONCLUSIONS: Taken together, we demonstrate that for the conditions tested PilG and PilH have inverse regulatory effects on flagellum-dependent and pili-dependent motility in Xcc and that this regulatory impact depends on these proteins influences on genes/proteins involved in flagellar biosynthesis and pilus assembly.


Assuntos
Proteínas de Fímbrias/genética , Fímbrias Bacterianas/genética , Flagelos/genética , Xanthomonas campestris/fisiologia , Quimiotaxia , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Flagelos/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Mutagênese , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Xanthomonas campestris/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA