Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 288
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 708: 149763, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38503169

RESUMO

Plant derived saponins or other glycosides are widely used for their anti-inflammatory, antioxidant, and anti-viral properties in therapeutic medicine. In this study, we focus on understanding the function of the less known steroidal saponin from the roots of Liriope muscari L. H. Bailey - saponin C (also known as DT-13) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages in comparison to the well-known saponin ginsenoside Rk1 and anti-inflammatory drug dexamethasone. We proved that DT-13 reduces LPS-induced inflammation by inhibiting nitric oxide (NO) production, interleukin-6 (IL-6) release, cycloxygenase-2 (COX-2), tumour necrosis factor-alpha (TNF-α) gene expression, and nuclear factor kappa-B (NFκB) translocation into the nucleus. It also inhibits the inflammasome component NOD-like receptor family pyrin domain containing protein 3 (NLRP3) regulating the inflammasome activation. This was supported by the significant inhibition of caspase-1 and interleukin-1 beta (IL-1ß) expression and release. This study demonstrates the anti-inflammatory effect of saponins on LPS-stimulated macrophages. For the first time, an in vitro study shows the attenuating effect of DT-13 on NLRP3-inflammasome activation. In comparison to the existing anti-inflammatory drug, dexamethasone, and triterpenoid saponin Rk1, DT-13 more efficiently inhibits inflammation in the applied cell culture model. Therefore, DT-13 may serve as a lead compound for the development of new more effective anti-inflammatory drugs with minimised side effects.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Inflamação/patologia , Anti-Inflamatórios/uso terapêutico , NF-kappa B/metabolismo , Dexametasona/farmacologia , Dexametasona/metabolismo
2.
Cardiovasc Diabetol ; 23(1): 199, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867314

RESUMO

BACKGROUND: Metformin and sodium-glucose-cotransporter-2 inhibitors (SGLT2i) are cornerstone therapies for managing hyperglycemia in diabetes. However, their detailed impacts on metabolic processes, particularly within the citric acid (TCA) cycle and its anaplerotic pathways, remain unclear. This study investigates the tissue-specific metabolic effects of metformin, both as a monotherapy and in combination with SGLT2i, on the TCA cycle and associated anaplerotic reactions in both mice and humans. METHODS: Metformin-specific metabolic changes were initially identified by comparing metformin-treated diabetic mice (MET) with vehicle-treated db/db mice (VG). These findings were then assessed in two human cohorts (KORA and QBB) and a longitudinal KORA study of metformin-naïve patients with Type 2 Diabetes (T2D). We also compared MET with db/db mice on combination therapy (SGLT2i + MET). Metabolic profiling analyzed 716 metabolites from plasma, liver, and kidney tissues post-treatment, using linear regression and Bonferroni correction for statistical analysis, complemented by pathway analyses to explore the pathophysiological implications. RESULTS: Metformin monotherapy significantly upregulated TCA cycle intermediates such as malate, fumarate, and α-ketoglutarate (α-KG) in plasma, and anaplerotic substrates including hepatic glutamate and renal 2-hydroxyglutarate (2-HG) in diabetic mice. Downregulated hepatic taurine was also observed. The addition of SGLT2i, however, reversed these effects, such as downregulating circulating malate and α-KG, and hepatic glutamate and renal 2-HG, but upregulated hepatic taurine. In human T2D patients on metformin therapy, significant systemic alterations in metabolites were observed, including increased malate but decreased citrulline. The bidirectional modulation of TCA cycle intermediates in mice influenced key anaplerotic pathways linked to glutaminolysis, tumorigenesis, immune regulation, and antioxidative responses. CONCLUSION: This study elucidates the specific metabolic consequences of metformin and SGLT2i on the TCA cycle, reflecting potential impacts on the immune system. Metformin shows promise for its anti-inflammatory properties, while the addition of SGLT2i may provide liver protection in conditions like metabolic dysfunction-associated steatotic liver disease (MASLD). These observations underscore the importance of personalized treatment strategies.


Assuntos
Ciclo do Ácido Cítrico , Diabetes Mellitus Tipo 2 , Hipoglicemiantes , Rim , Fígado , Metformina , Inibidores do Transportador 2 de Sódio-Glicose , Metformina/farmacologia , Animais , Ciclo do Ácido Cítrico/efeitos dos fármacos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Humanos , Hipoglicemiantes/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/sangue , Masculino , Fígado/metabolismo , Fígado/efeitos dos fármacos , Rim/metabolismo , Rim/efeitos dos fármacos , Feminino , Quimioterapia Combinada , Camundongos Endogâmicos C57BL , Metabolômica , Biomarcadores/sangue , Pessoa de Meia-Idade , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Estudos Longitudinais , Camundongos , Idoso , Resultado do Tratamento
3.
Pharmacol Res ; 200: 107058, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218355

RESUMO

Cardiovascular disease (CVD) remains the leading cause of death and disability worldwide. While many factors can contribute to CVD, atherosclerosis is the cardinal underlying pathology, and its development is associated with several metabolic risk factors including dyslipidemia and obesity. Recent studies have definitively demonstrated a link between low-grade systemic inflammation and two relevant metabolic abnormalities: hypercholesterolemia and obesity. Interestingly, both metabolic disorders are also associated with endothelial dysfunction/activation, a proinflammatory and prothrombotic phenotype of the endothelium that involves leukocyte infiltration into the arterial wall, one of the earliest stages of atherogenesis. This article reviews the current literature on the intricate relationship between hypercholesterolemia and obesity and the associated systemic inflammation and endothelial dysfunction, and discusses the effectiveness of present, emerging and in-development pharmacological therapies used to treat these metabolic disorders with a focus on their effects on the associated systemic inflammatory state and cardiovascular risk.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Hipercolesterolemia , Hiperlipidemias , Humanos , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Doenças Cardiovasculares/etiologia , Hipercolesterolemia/complicações , Inflamação/complicações , Obesidade/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Aterosclerose/complicações
4.
J Am Acad Dermatol ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38309304

RESUMO

Photobiomodulation (PBM), previously known as low-level laser light therapy, represents a non-invasive form of phototherapy that utilizes wavelengths in the red light (RL, 620-700 nm) portion of the visible light (VL, 400-700 nm) spectrum and the near-infrared (NIR, 700-1440 nm) spectrum. PBM is a promising and increasingly used therapy for the treatment of various dermatologic and non-dermatologic conditions. Photons from RL and NIR are absorbed by endogenous photoreceptors including mitochondrial cytochrome C oxidase (COX). Activation of COX leads to the following changes: modulation of mitochondrial adenosine triphosphate (ATP), generation of reactive oxygen species (ROS), and alterations in intracellular calcium levels. The associated modulation of ATP, ROS and calcium levels promotes the activation of various signaling pathways (e.g., insulin-like growth factors, phosphoinositide 3-kinase pathways), which contribute to downstream effects on cellular proliferation, migration and differentiation. Effective PBM therapy is dependent on treatment parameters (e.g., fluence, treatment duration and output power). PBM is generally well-tolerated and safe with erythema being the most common and self-limiting adverse cutaneous effect.

5.
J Nanobiotechnology ; 22(1): 275, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778401

RESUMO

BACKGROUND: Acute gouty is caused by the excessive accumulation of Monosodium Urate (MSU) crystals within various parts of the body, which leads to a deterioration of the local microenvironment. This degradation is marked by elevated levels of uric acid (UA), increased reactive oxygen species (ROS) production, hypoxic conditions, an upsurge in pro-inflammatory mediators, and mitochondrial dysfunction. RESULTS: In this study, we developed a multifunctional nanoparticle of polydopamine-platinum (PDA@Pt) to combat acute gout by leveraging mild hyperthermia to synergistically enhance UA degradation and anti-inflammatory effect. Herein, PDA acts as a foundational template that facilitates the growth of a Pt shell on the surface of its nanospheres, leading to the formation of the PDA@Pt nanomedicine. Within this therapeutic agent, the Pt nanoparticle catalyzes the decomposition of UA and actively breaks down endogenous hydrogen peroxide (H2O2) to produce O2, which helps to alleviate hypoxic conditions. Concurrently, the PDA component possesses exceptional capacity for ROS scavenging. Most significantly, Both PDA and Pt shell exhibit absorption in the Near-Infrared-II (NIR-II) region, which not only endow PDA@Pt with superior photothermal conversion efficiency for effective photothermal therapy (PTT) but also substantially enhances the nanomedicine's capacity for UA degradation, O2 production and ROS scavenging enzymatic activities. This photothermally-enhanced approach effectively facilitates the repair of mitochondrial damage and downregulates the NF-κB signaling pathway to inhibit the expression of pro-inflammatory cytokines. CONCLUSIONS: The multifunctional nanomedicine PDA@Pt exhibits exceptional efficacy in UA reduction and anti-inflammatory effects, presenting a promising potential therapeutic strategy for the management of acute gout.


Assuntos
Gota , Indóis , Polímeros , Espécies Reativas de Oxigênio , Ácido Úrico , Gota/tratamento farmacológico , Gota/metabolismo , Gota/terapia , Espécies Reativas de Oxigênio/metabolismo , Animais , Camundongos , Polímeros/química , Indóis/química , Indóis/farmacologia , Nanopartículas/química , Platina/química , Platina/farmacologia , Platina/uso terapêutico , Humanos , Peróxido de Hidrogênio/metabolismo , Hipertermia Induzida/métodos , Células RAW 264.7 , Terapia Fototérmica/métodos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Masculino
6.
J Nanobiotechnology ; 22(1): 157, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589904

RESUMO

Osteoarthritis (OA) is a common degenerative joint disease that can cause severe pain, motor dysfunction, and even disability. A growing body of research indicates that gut microbiota and their associated metabolites are key players in maintaining bone health and in the progression of OA. Short-chain fatty acids (SCFAs) are a series of active metabolites that widely participate in bone homeostasis. Gold nanoparticles (GNPs) with outstanding anti-bacterial and anti-inflammatory properties, have been demonstrated to ameliorate excessive bone loss during the progression of osteoporosis (OP) and rheumatoid arthritis (RA). However, the protective effects of GNPs on OA progression are not clear. Here, we observed that GNPs significantly alleviated anterior cruciate ligament transection (ACLT)-induced OA in a gut microbiota-dependent manner. 16S rDNA gene sequencing showed that GNPs changed gut microbial diversity and structure, which manifested as an increase in the abundance of Akkermansia and Lactobacillus. Additionally, GNPs increased levels of SCFAs (such as butyric acid), which could have improved bone destruction by reducing the inflammatory response. Notably, GNPs modulated the dynamic balance of M1/M2 macrophages, and increased the serum levels of anti-inflammatory cytokines such as IL-10. To sum up, our study indicated that GNPs exhibited anti-osteoarthritis effects via modulating the interaction of "microbiota-gut-joint" axis, which might provide promising therapeutic strategies for OA.


Assuntos
Microbioma Gastrointestinal , Nanopartículas Metálicas , Ouro/farmacologia , Nanopartículas Metálicas/uso terapêutico , Ácidos Graxos Voláteis , Anti-Inflamatórios/farmacologia
7.
Int J Mol Sci ; 25(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674061

RESUMO

Chronic inflammation is a significant contributor to the development of cancer, cardiovascular disease, diabetes, obesity, autoimmune disease, inflammatory bowel disease, and other illnesses. In the academic field, there is a constant demand for effective methods to alleviate inflammation. Astragalin (AST), a type of flavonoid glycoside that is the primary component in several widely used traditional Chinese anti-inflammatory medications in clinical practice, has garnered attention from numerous experts and scholars. This article focuses on the anti-inflammatory effects of AST and conducts research on relevant literature from 2003 to 2023. The findings indicate that AST demonstrates promising anti-inflammatory potential in various models of inflammatory diseases. Specifically, AST is believed to possess inhibitory effects on inflammation-related factors and protein levels in various in vitro cell models, such as macrophages, microglia, and epithelial cells. In vivo studies have shown that AST effectively alleviates neuroinflammation and brain damage while also exhibiting potential for treating moderate diseases such as depression and stroke; it also demonstrates significant anti-inflammatory effects on both large and small intestinal epithelial cells. Animal experiments have further demonstrated that AST exerts therapeutic effects on colitis mice. Molecular biology studies have revealed that AST regulates complex signaling networks, including NF-κB, MAPK, JAK/STAT pathways, etc. In conclusion, this review will provide insights and references for the development of AST as an anti-inflammatory agent as well as for related drug development.


Assuntos
Anti-Inflamatórios , Quempferóis , Humanos , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Quempferóis/farmacologia , Quempferóis/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Transdução de Sinais/efeitos dos fármacos
8.
Inflammopharmacology ; 32(4): 2177-2184, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38814416

RESUMO

Osteoarthritis (OA) is one of the leading causes of joint dysfunction and disability in the elderly, posing serious social problems and a huge socio-economic burden. Existing pharmacological treatments have significant drawbacks, and searching for an effective pharmacological intervention is an urgent priority. Recent studies have demonstrated the chondroprotective, anabolic, and anti-catabolic properties of avocado-soybean unsaponifiable (ASU), a natural plant extract made from avocado and soybean oils, consisting of the remainder of the saponified portion of the product that cannot be made into soap. The main components of ASU are phytosterols, beta-sitosterol, canola stanols, and soya stanols, which are rapidly incorporated into cells. Studies have confirmed the anti-inflammatory, antioxidant, and analgesic properties of phytosterols. ASU slows down the progression of OA primarily by inhibiting pathways involved in the development of OA disease. ASU prevents cartilage degradation by inhibiting the release and activity of matrix metalloproteinases and by increasing the tissue inhibition of these catabolic enzymes; ASU is also involved in the inhibition of the activation of nuclear factor κB (NF-κB) which is a transcriptional inhibitor that regulates the inflammatory response of chondrocytes. NF-κB is a transcription factor that regulates the inflammatory response of chondrocytes, and inhibition of the transfer of the transcription factor NF-κB from the cytoplasm to the nucleus regulates the transcription of many pro-inflammatory factors. By appealing to the mechanism of action and thus achieving anti-inflammatory, anti-catabolic, and pro-synthetic effects on cartilage tissues, AUS is clinically responsive to the reduction of acute pain and OA symptom progression. This paper aims to summarize the studies on the use of avocado-soybean unsaponifiable in the pharmacological treatment of osteoarticular.


Assuntos
Glycine max , Osteoartrite , Persea , Extratos Vegetais , Persea/química , Osteoartrite/tratamento farmacológico , Humanos , Animais , Extratos Vegetais/farmacologia , Anti-Inflamatórios/farmacologia , Fitosteróis/farmacologia , Fitosteróis/uso terapêutico , NF-kappa B/metabolismo , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo
9.
Strahlenther Onkol ; 199(9): 847-856, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37000224

RESUMO

PURPOSE: To assess the efficacy of lung low-dose radiotherapy (LD-RT) in the treatment of patients with COVID-19 pneumonia. MATERIALS AND METHODS: Ambispective study with two cohorts to compare treatment with standard of care (SoC) plus a single dose of 0.5 Gy to the whole thorax (experimental prospective cohort) with SoC alone (control retrospective cohort) for patients with COVID-19 pneumonia not candidates for admission to the intensive care unit (ICU) for mechanical ventilation. RESULTS: Fifty patients treated with LD-RT were compared with 50 matched controls. Mean age was 85 years in both groups. An increase in arterial oxygen partial pressure (PaO2)/fraction of inspired oxygen (PAFI) in the experimental LD-RT-treated group compared to the control group could not be found at 48 h after LD-RT, which was the primary endpoint of the study. However, PAFI values significantly improved after 1 month (473 vs. 302 mm Hg; p < 0.0001). Pulse oxymetric saturation/fraction of inspired oxygen (SAFI) values were also significantly higher in LD-RT-treated patients than in control patients at 1 week (405 vs. 334 mm Hg; p = 0.0157) and 1 month after LD-RT (462 vs. 326 mm Hg; p < 0.0001). All other timepoint measurements of the respiratory parameters were similar across groups. Patients in the experimental group were discharged from the hospital significantly earlier (23 vs. 31 days; p = 0.047). Fifteen and 26 patients died due to COVID-19 pneumonia in the experimental and control cohorts, respectively (30% vs. 48%; p = 0.1). LD-RT was associated with a decreased odds ratio (OR) for 1­month COVID-19 mortality (OR = 0.302 [0.106-0.859]; p = 0.025) when adjusted for potentially confounding factors. Overall survival was significantly prolonged in the LD-RT group compared to the control group (log-rank p = 0.027). No adverse events related to radiation treatment were observed. CONCLUSION: Treatment of frail patients with COVID-19 pneumonia with SoC plus single-dose LD-RT of 0.5 Gy improved respiratory parameters, reduced the period of hospitalization, decreased the rate of 1­month mortality, and prolonged actuarial overall survival compared to SoC alone.


Assuntos
COVID-19 , Idoso , Idoso de 80 Anos ou mais , Humanos , COVID-19/radioterapia , Idoso Fragilizado , Estudos Prospectivos , Estudos Retrospectivos , SARS-CoV-2 , Padrão de Cuidado , Resultado do Tratamento
10.
Pharmacol Res ; 187: 106638, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36586645

RESUMO

BACKGROUND AND PURPOSE: Selective peroxisome proliferator-activated receptors (PPARs) are widely used to treat metabolic complications; however, the limited effect of PPARα agonists on glucose metabolism and the adverse effects associated with selective PPARγ activators have stimulated the development of novel pan-PPAR agonists to treat metabolic disorders. Here, we synthesized a new prenylated benzopyran (BP-2) and evaluated its PPAR-activating properties, anti-inflammatory effects and impact on metabolic derangements. EXPERIMENTAL APPROACH: BP-2 was used in transactivation assays to evaluate its agonism to PPARα, PPARß/δ and PPARγ. A parallel-plate flow chamber was employed to investigate its effect on TNFα-induced leukocyte-endothelium interactions. Flow cytometry and immunofluorescence were used to determine its effects on the expression of endothelial cell adhesion molecules (CAMs) and chemokines and p38-MAPK/NF-κB activation. PPARs/RXRα interactions were determined using a gene silencing approach. Analysis of its impact on metabolic abnormalities and inflammation was performed in ob/ob mice. KEY RESULTS: BP-2 displayed strong PPARα activity, with moderate and weak activity against PPARß/δ and PPARγ, respectively. In vitro, BP-2 reduced TNFα-induced endothelial ICAM-1, VCAM-1 and fractalkine/CX3CL1 expression, suppressed mononuclear cell arrest via PPARß/δ-RXRα interactions and decreased p38-MAPK/NF-κB activation. In vivo, BP-2 improved the circulating levels of glucose and triglycerides in ob/ob mice, suppressed T-lymphocyte/macrophage infiltration and proinflammatory markers in the liver and white adipose tissue, but increased the expression of the M2-like macrophage marker CD206. CONCLUSION AND IMPLICATIONS: BP-2 emerges as a novel pan-PPAR lead candidate to normalize glycemia/triglyceridemia and minimize inflammation in metabolic disorders, likely preventing the development of further cardiovascular complications.


Assuntos
Doenças Metabólicas , PPAR delta , PPAR beta , Camundongos , Animais , PPAR gama/metabolismo , PPAR alfa/metabolismo , PPAR beta/metabolismo , Fator de Necrose Tumoral alfa , Benzopiranos , NF-kappa B , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico
11.
Mar Drugs ; 21(4)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37103370

RESUMO

In the present investigation, 24-methylcholesta-5(6), 22-diene-3ß-ol (MCDO), a major phytosterol was isolated from the cultured marine diatom, Phaeodactylum tricornutum Bohlin, and in vitro and in vivo anti-inflammatory effects were determined. MCDO demonstrated very potent dose-dependent inhibitory effects on the production of nitric oxide (NO) and prostaglandin E2 (PGE2) against lipopolysaccharide (LPS)-induced RAW 264.7 cells with minimal cytotoxic effects. MCDO also demonstrated a strong and significant suppression of pro-inflammatory cytokines of interleukin-1ß (IL-1ß) production, but no substantial inhibitory effects were observed on the production of cytokines, including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) at the tested concentrations against LPS treatment on RAW macrophages. Western blot assay confirmed the suppression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expressions against LPS-stimulated RAW 264.7 cells. In addition, MCDO was assessed for in vivo anti-inflammatory effects using the zebrafish model. MCDO acted as a potent inhibitor for reactive oxygen species (ROS) and NO levels with a protective effect against the oxidative stress induced by LPS in inflammatory zebrafish embryos. Collectively, MCDO isolated from the cultured marine diatom P. tricornutum exhibited profound anti-inflammatory effects both in vitro and in vivo, suggesting that this major sterol might be a potential treatment for inflammatory diseases.


Assuntos
Diatomáceas , Animais , Diatomáceas/metabolismo , Peixe-Zebra/metabolismo , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios/farmacologia , Transdução de Sinais , Citocinas/metabolismo , Interleucina-6/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ciclo-Oxigenase 2/metabolismo
12.
Chem Biodivers ; 20(8): e202300547, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37306942

RESUMO

Artemisia annua L. (Asteraceae Family) is an important plant in Asia that has been used for treating different diseases, including fever due to malaria, wounds, tubercolisis, scabues, pain, convulsions, diabetes, and inflammation. In this study we aimed to evaluate the effects of different polarity extracts (hexane, dichloromethane, ethyl acetate, ethanol, ethanol/water (70 %) and water) from A. annua against the burden of inflammation and oxidative stress occurring in colon tissue exposed to LPS. In parallel, chemical composition, antiradical, and enzyme inhibition effects against α-amylase, α-glucosidase, tyrosinase, and cholinesterases were evaluated. The water extract contained the highest content of the total phenolic with 34.59 mg gallic acid equivalent (GAE)/g extract, while the hexane had the highest content of the total flavonoid (20.06 mg rutin equivalent (RE)/g extract). In antioxidant assays, the polar extracts (ethanol, ethanol/water and water) exhibited stronger radical scavenging and reducing power abilities when compared to non-polar extracts. The hexane extract showed the best AChE, tyrosinase and glucosidase inhibitory effects. All extracts revealed effective anti-inflammatory agents, as demonstrated by the blunting effects on COX-2 and TNFα gene expression. These effects seemed to be not related to the only phenolic content. However, it is worthy of interest to highlight how the higher potency against LPS-induced gene expression was shown by the water extract ; thus suggesting a potential phytotherapy application in the management of clinical symptoms related to inflammatory colon diseases, although future in vivo studies are needed to confirm such in vitro and ex vivo observations.


Assuntos
Antioxidantes , Artemisia annua , Antioxidantes/química , Hexanos , Extratos Vegetais/química , Monofenol Mono-Oxigenase , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios/farmacologia , Fenóis/farmacologia , Inflamação/tratamento farmacológico , Água , Etanol
13.
Drug Chem Toxicol ; 46(4): 677-691, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35637614

RESUMO

The search for therapeutic agents that improve kidney function against doxorubicin-induced renal toxicity is important. Herein, the potential nephroprotective activity by Asparagus falcatus L. (AF, Asparagaceae) leaf extracts against doxorubicin-induced renal toxicity (5 mg/kg, ip) in Wistar rats (n = 6/group) after oral administration of hexane (55 mg/kg), ethyl acetate (35 mg/kg), butanol (75 mg/kg), and aqueous (200 mg/kg) extracts of AF for 28 consecutive days was investigated. It was noticed that the treatment with the selected extracts of AF significantly attenuated doxorubicin-induced elevations of serum creatinine, urea nitrogen, ß2-microglobulin, cystatin C, and proteinuria in experimental rats. The histology showed attenuation of the features of acute tubular injury. Treatment regimens significantly reversed the doxorubicin-induced reduction in total antioxidant status, glutathione peroxidase, and glutathione reductase activity in renal tissue homogenates. A suppression in lipid peroxidation was noted with hexane, ethyl acetate, and butanol extracts of AF. Moreover, a reduction in the concentration of the pro-inflammatory mediator TNF-α (p < 0.05), and immunohistochemical expression of COX-2 were observed. The immunohistochemical expression of pro-apoptotic Bax protein was decreased and the anti-apoptotic BCL-2 was increased in renal tissues following the treatments. In conclusion, it was revealed that, hexane, ethyl acetate, butanol, and aqueous extracts of AF attenuate doxorubicin-induced renal toxicity in Wistar rats through antioxidant, anti-inflammatory, and anti-apoptotic pathways. The plant, AF could be recommended as a promising therapeutic agent to minimize renal toxicity induced by doxorubicin in cancer patients, however, subsequent clinical trials are warranted.


Assuntos
Antioxidantes , Asparagaceae , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Ratos Wistar , Hexanos/metabolismo , Hexanos/farmacologia , Rim/patologia , Asparagaceae/metabolismo , Estresse Oxidativo , Doxorrubicina/toxicidade , Anti-Inflamatórios/farmacologia , Butanóis , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo
14.
Molecules ; 28(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37630303

RESUMO

Four new xanthones, cratocochinones A-D (1-4), together with eight known analogues (5-12), were isolated from the stems and leaves of Cratoxylum cochinchinense. The chemical structures of cratocochinones A-D (1-4) were elucidated by comprehensive spectroscopic analyses and the known compounds were identified by comparisons with the spectral data reported in the literature. All isolated compounds 1-12 were evaluated for their anti-inflammatory activities and anti-HIV-1 activities. Compounds 1-12 showed remarkable inhibitory activities on nitric oxide (NO) production induced by lipopolysaccharide in mouse macrophage RAW 264.7 cells in vitro, with IC50 values in the range of 0.86 ± 0.05 to 18.36 ± 0.21 µM. Meanwhile, compounds 1-12 exhibited significant anti-HIV-1 activities with EC50 which ranged from 0.22 to 11.23 µM. These findings indicate that the discoveries of these xanthones, isolated from the stems and leaves of C. cochinchinense, showing significant anti-inflammatory and anti-HIV-1 effects could be of great importance to the research and development of new natural anti-inflammatory and anti-HIV agents.


Assuntos
Fármacos Anti-HIV , Clusiaceae , HIV-1 , Xantonas , Animais , Camundongos , Folhas de Planta , Fármacos Anti-HIV/farmacologia , Anti-Inflamatórios/farmacologia , Xantonas/farmacologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-37743524

RESUMO

BACKGROUND: Recent advances have been achieved in the genetic diagnosis and therapies against malignancies due to a better understanding of the molecular mechanisms underlying carcinogenesis. Since active preventive methods are currently insufficient, the further development of appropriate preventive strategies is desired. METHODS: We searched for drinks that reactivate the functions of tumor-suppressor retinoblastoma gene (RB) products and exert anti-inflammatory and antioxidant effects. We also examined whether lactic acid bacteria increased the production of the cancer-specific anti-tumor cytokine, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), in human, and examined whether the RB-reactivating drinks with lactic acid bacteria decreased azoxymethane-induced rat colon aberrant crypt foci (ACF) and aberrant crypts (ACs) in vivo. RESULTS: Kakadu plum juice and pomegranate juice reactivated RB functions, which inhibited the growth of human colon cancer LIM1215 cells by G1 phase arrest. These juices also exerted anti-inflammatory and antioxidant effects. Lactiplantibacillus (L.) pentosus S-PT84 was administered to human volunteers and increased the production of TRAIL. In an in vivo study, Kakadu plum juice with or without pomegranate juice and S-PT84 significantly decreased azoxymethane-induced rat colon ACF and ACs. CONCLUSIONS: RB is one of the most important molecules suppressing carcinogenesis, and to the best of our knowledge, this is the first study to demonstrate that natural drinks reactivated the functions of RB. As expected, Kakadu plum juice and pomegranate juice suppressed the growth of LIM1215 cells by reactivating the functions of RB, and Kakadu plum juice with or without pomegranate juice and S-PT84 inhibited rat colon ACF and ACs. Therefore, this mixed juice has potential as a novel candidate for cancer prevention.


Assuntos
Antioxidantes , Neoplasias , Animais , Ratos , Humanos , Carcinogênese , Apoptose , Azoximetano/toxicidade
16.
Mol Cell Biochem ; 477(5): 1381-1392, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35147901

RESUMO

Prolactin (PRL) is a peptide hormone secreted from anterior pituitary involved in milk production in the females and regulation of sex drive in both sexes. PRL has pro-inflammatory and anti-inflammatory functions. High PRL serum level or hyperprolactinemia is associated with different viral infections. In coronavirus disease 2019 (Covid-19), which caused by positive-sense single-strand RNA virus known as severe acute respiratory distress syndrome coronavirus type 2 (SARS-CoV-2), PRL serum level is increased. PRL in Covid-19 may exacerbate the underlying inflammatory status by induction release of pro-inflammatory cytokines. However, PRL through its anti-inflammatory effects may reduce the hyperinflammatory status in Covid-19. The underlying mechanism of increasing PRL in Covid-19 is poorly understood. Therefore, in this review we try to find the potential anti-inflammatory or pro-inflammatory role of PRL in Covid-19. As well, this review was aimed to discuss the underlying causes and mechanisms for Covid-19-induced hyperprolactinemia.


Assuntos
COVID-19 , Hiperprolactinemia , Citocinas , Feminino , Humanos , Masculino , Prolactina/farmacologia , Prolactina/fisiologia , SARS-CoV-2
17.
Pharmacol Res ; 182: 106335, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35781059

RESUMO

Non-vitamin K antagonist oral anticoagulants (NOACs) should be the preferred anticoagulant strategy for preventing ischemic stroke in patients with atrial fibrillation (AF) at increased thromboembolic risk and for treating deep venous thromboembolism (DVT) in the general population. Beyond their inhibiting action on the activated factor X (FXa) or thrombin (FIIa), NOACs showed some pleiotropic anti-inflammatory effects. The present review aimed to describe the role of FXa and FIIa in the inflammation pathway and the potential anti-inflammatory effects of NOACs.


Assuntos
Fibrilação Atrial , Acidente Vascular Cerebral , Tromboembolia , Administração Oral , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anticoagulantes/efeitos adversos , Fibrilação Atrial/tratamento farmacológico , Humanos , Acidente Vascular Cerebral/tratamento farmacológico , Tromboembolia/induzido quimicamente
18.
Crit Rev Food Sci Nutr ; : 1-19, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36099317

RESUMO

Natural products possess pleiotropic cardiovascular protective effects owing to their anti-oxidation, anti-inflammation and anti-thrombotic properties. Kaempferol, (3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one), is a kind of naturally occurring flavonoid existing in many common fruits and vegetables (e.g., onions, broccoli, strawberries and grapes) and particularly in traditional Chinese medicine as exemplified by Ginkgo biloba. Epidemiological, preclinical and clinical studies have revealed an inverse association between the consumption of kaempferol-containing foods and medicines and the risk of developing cardiovascular diseases. Numerous translational studies in experimental animal models and cultured cells have demonstrated a wide range of pharmacological activities of kaempferol. In this article, we reviewed the antioxidant, anti-inflammatory and cardio-protective activities of kaempferol and elucidated the potential molecular basis of the therapeutic capacity of kaempferol by focusing on its anti-atherosclerotic effects. Overall, the review presents the health benefits of kaempferol-containing plants and medicines and reflects on the potential of kaempferol as a possible drug candidate to prevent and treat atherosclerosis, the underlying pathology of most cardiovascular diseases.

19.
Vet Res ; 53(1): 98, 2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36435808

RESUMO

Dairy cows often develop different degrees of endometritis after calving and this is attributed to pathogenic bacterial infections such as by Escherichia coli and Staphylococcus aureus. Infection of the bovine endometrium causes tissue damage and increases the expression of prostaglandin D2 (PGD2), which exerts anti-inflammatory effects on lung inflammation. However, the roles of PGD2 and its DP1 receptor in endometritis in cows remain unclear. Here, we examined the anti-inflammatory roles of the lipocalin-type prostaglandin D2 synthase (L-PGDS)/PGD2 and DP1 receptor regulatory pathways in bovine endometritis. We evaluated the regulatory effects of PGD2 on inflammation and tissue damage in E. coli- and S. aureus-infected bovine endometrial cells cultured in vitro. We found that the secretion of pro-inflammatory cytokines interleukin (IL)-6, IL-1ß, and tumour necrosis factor (TNF)-α as well as expression of matrix metalloproteinase (MMP)-2, platelet-activating factor receptor (PAFR), and high mobility group box (HMGB)-1 were suppressed after DP1 receptor agonist treatment. In contrast, IL-6, IL-1ß, and TNF-α release and MMP-2, PAFR, and HMGB-1 expression levels were increased after treatment of bovine endometrial tissue with DP1 receptor antagonists. DP1-induced anti-inflammatory effects were dependent on cellular signal transduction. The L-PGDS/PGD2 pathway and DP1 receptor induced anti-inflammatory effects in bovine endometrium infected with S. aureus and E. coli by inhibiting the mitogen-activated protein kinase and nuclear factor-κB signalling pathways, thereby reducing tissue damage. Overall, our findings provide important insights into the pathophysiological roles of PGD2 in bovine endometritis and establish a theoretical basis for applying prostaglandins or non-steroidal anti-inflammatory drugs for treating endometrial inflammatory infertility in bovines.


Assuntos
Doenças dos Bovinos , Endometrite , Feminino , Bovinos , Animais , Endometrite/veterinária , Escherichia coli/metabolismo , Staphylococcus aureus/metabolismo , Lipocalinas/genética , Lipocalinas/metabolismo , Prostaglandinas , Doenças dos Bovinos/tratamento farmacológico , Doenças dos Bovinos/metabolismo
20.
Bioorg Med Chem ; 54: 116589, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34971877

RESUMO

Recently, we demonstrated potential anti-inflammatory effects of sorbicillinoids isolated from marine fungi. Here, we report the synthesis of a series of new sorbicillinoid analogues and assessed their anti-inflammatory activities. Our results reveal that side chain substitution with (E)-2-butenoyl, (E)-3-(4-fluorophenyl)-2-propenoyl, and (E)-3-(3,4,5-trimethoxyphenyl)-2-propenoyl significantly enhanced the inhibitory effects of the derivatives on nitric oxide (NO) production and inducible NO synthesis (iNOS) expression stimulated by lipopolysaccharides (LPS) in mouse macrophage. Further chemical derivatization shows that the monomethylresorcinol skeleton worked better than the dimethylresorcinol skeleton in inhibiting LPS-induced inflammatory response in cultured cells. Among the 29 synthesized sorbicillinoid analogues, compounds 4b and 12b exhibited the strongest anti-inflammatory activities, holding the promise of being developed into lead compounds that can be explored as potent anti-inflammation agents.


Assuntos
Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Animais , Anti-Inflamatórios não Esteroides , Produtos Biológicos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cicloexanonas , Relação Dose-Resposta a Droga , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Estrutura Molecular , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA