Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Dis ; 146: 105118, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33031903

RESUMO

Fragile X syndrome (FXS), a neurodevelopmental disorder with autistic features, is caused by the loss of the fragile X mental retardation protein. Sex-specific differences in the clinical profile have been observed in FXS patients, but few studies have directly compared males and females in rodent models of FXS. To address this, we performed electroencephalography (EEG) recordings and a battery of autism-related behavioral tasks on juvenile and young adult Fmr1 knockout (KO) rats. EEG analysis demonstrated that compared to wild-type, male Fmr1 KO rats showed an increase in gamma frequency band power in the frontal cortex during the sleep-like immobile state, and both male and female KO rats failed to show an increase in delta frequency power in the sleep-like state, as observed in wild-type rats. Previous studies of EEG profiles in FXS subjects also reported abnormally increased gamma frequency band power, highlighting this parameter as a potential translatable biomarker. Both male and female Fmr1 KO rats displayed reduced exploratory behaviors in the center zone of the open field test, and increased distance travelled in an analysis of 24-h home cage activity, an effect that was more prominent during the nocturnal phase. Reduced wins against wild-type opponents in the tube test of social dominance was seen in both sexes. In contrast, increased repetitive behaviors in the wood chew test was observed in male but not female KO rats, while increased freezing in a fear conditioning test was observed only in the female KO rats. Our findings highlight sex differences between male and female Fmr1 KO rats, and indicate that the rat model of FXS could be a useful tool for the development of new therapeutics for treating this debilitating neurodevelopmental disorder.


Assuntos
Córtex Auditivo/fisiopatologia , Transtorno Autístico/fisiopatologia , Comportamento Animal/fisiologia , Síndrome do Cromossomo X Frágil/fisiopatologia , Estimulação Acústica/métodos , Animais , Ansiedade/fisiopatologia , Córtex Auditivo/metabolismo , Transtorno do Espectro Autista/metabolismo , Transtorno Autístico/metabolismo , Modelos Animais de Doenças , Eletroencefalografia/métodos , Comportamento Exploratório/fisiologia , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Ratos
2.
Epilepsy Behav ; 113: 107526, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33161330

RESUMO

The hippocampus plays an important role in epilepsy progression even if it is not involved in seizure generalization. We hypothesized that abnormal development of the hippocampus may underlie epileptogenesis. Here we analyzed postnatal development of the hippocampus of Krushinsky-Molodkina (KM) rats, which are the animal model of reflex audiogenic epilepsy. KM rats are genetically prone to audiogenic seizures that are expressed in age-dependent manner. The study was performed on seizure-naïve KM rats at several days of postnatal development (P15, P30, P60, P120). Wistar rats of the corresponding ages were used as a control. We showed that at early stages (P15, P30), the hippocampus of KM rats was characterized by significantly smaller cell population, but the number of proliferated cells was increased in comparison with control Wistar rats. Only at P60 proliferation and the total number of the hippocampal cells reached a level equal to Wistar rats. These data suggest delayed postnatal development of the hippocampus of KM rats. Analysis of apoptosis demonstrated significantly increased number of TUNEL-positive cells in the dentate gyrus (DG) of KM rats at P30 that was accompanied with expression of p53, Bcl-2 and cleaved caspases 3 and 9. Additionally, at all analyzed stages in the hilus of KM rats, the number of new-born glutamatergic cells was significantly increased that suggests formation of hilar ectopic granular cells. Our data suggest that in the case of hereditary epilepsy aberrant neurogenesis may be genetically determined.


Assuntos
Epilepsia Reflexa , Estimulação Acústica , Animais , Modelos Animais de Doenças , Epilepsia Reflexa/genética , Hipocampo , Ratos , Ratos Wistar , Convulsões/genética
3.
Epilepsy Behav ; 96: 87-91, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31112899

RESUMO

The expression of glial cell line-derived neurothrophic factor (GDNF) transcript forms pre-(α)pro-gdnf, pre-(ß)pro-gdnf, and their common region m-gdnf in the pons as well as the inferior (IC) and superior colliculi in Krushinsky-Molodkina (KM) rats and in the strain "0" was analyzed by quantitative real-time polymerase chain reaction (PCR) in the control (unstimulated KM and "0" rats) and 1.5, 4.5, and 8 h after auditory stimulation. Such stimulation induced audiogenic seizures (AS) in KM rats. Audiogenic seizure was not observed in "0" rats, which was obtained by selection for the absence of AS in a population of F2 hybrids between KM and Wistar rats not predisposed to AS. A significant drop in the level of all transcripts was observed 1.5 h after auditory stimulation in both KM and "0" rats. In most cases, the average expression of α and ß isoforms and m-region 4.5 h after stimulation was greater than those after 1.5 and 8 h. At the same time, the expression of pre-(ß)pro-gdnf in the IC of KM rats 4.5 h after the stimulation was significantly lower than after 1.5 or 8 h. This work presents the first demonstration of different time courses of expression of the α and ß GDNF isoforms during physiological processes in genotype-specific pathology.


Assuntos
Estimulação Acústica/métodos , Encéfalo/metabolismo , Epilepsia Reflexa/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/biossíntese , RNA Mensageiro/biossíntese , Convulsões/metabolismo , Animais , Encéfalo/patologia , Epilepsia Reflexa/genética , Epilepsia Reflexa/patologia , Expressão Gênica , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Masculino , Neuroglia/metabolismo , Neuroglia/patologia , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , RNA Mensageiro/genética , Ratos , Ratos Wistar , Convulsões/genética , Convulsões/patologia , Fatores de Tempo
4.
Epilepsy Behav ; 99: 106494, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31493733

RESUMO

Krushinsky-Molodkina (KM) rats genetically prone to audiogenic seizure are characterized by age-dependent expression of audiogenic seizures (AGS). It is known that the critical period of enhanced seizure susceptibility in rodents occurs at 2nd-3rd weeks of postnatal development. However, KM rats do not express AGS at this time-point, but start to demonstrate a stable AGS only after the age of 3 months. We hypothesized that this delay in AGS susceptibility in KM rats is genetically determined and may depend on some alterations in the development of the hippocampal glutamatergic system during the early postnatal period. We analyzed the expression and activity of seizure-related proteins, such as vesicular glutamate transporter 2 (VGLUT2), extracellular signal-regulated kinases 1 and 2 (ERK1/2), synapsin I, and NR2B subunit of the N-methyl-d-aspartate (NMDA) receptor (NR2B) in the hippocampus of KM rats during postnatal development. A significantly higher activity of ERK1/2 in KM rats was observed at 14th, 30th, and 60th days of postnatal development (P14, P30, P60) in comparison with control Wistar rats of the corresponding ages, while in adult (P120) KM rats it was at the same level with Wistar rats. Despite the increased activity of ERK1/2 at P14 and P30, the phosphorylation of synapsin I at Ser62/67 was significantly lower in the hippocampus of KM rats than in Wistar rats of the same ages; however, at P60 and P120, the phosphorylation of synapsin I was enhanced. Our data also revealed the increase of VGLUT2 and NR2B expression at P14, which dramatically decreased at the later stages. Our data indicate that a genetically determined increase in ERK1/2 kinase activity during postnatal ontogenesis in KM rats may be associated with the disturbances in synthesis and activity of the proteins, which are responsible for glutamatergic transmission in the KM rat hippocampus during the seizure susceptibility development.


Assuntos
Epilepsia Reflexa/metabolismo , Epilepsia Reflexa/fisiopatologia , Hipocampo/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Masculino , Ratos , Ratos Wistar
5.
Epilepsy Behav ; 88: 227-234, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30316149

RESUMO

It is known that audiogenic seizure (AGS) expression is based on the activation of the midbrain structures such as the inferior colliculus (IC). It was demonstrated that excessive sound exposure during the postnatal developments of the IC in rats led to AGS susceptibility in adulthood, which correlated with underdevelopment of the IC. In adult rodents, noise overstimulation induced apoptosis in the IC. The purpose of this study was to investigate postnatal development of the IC in rats genetically prone to AGS and to check if audiogenic kindling would activate apoptosis and/or proliferation in the IC. In our study, we used inbred audiogenic Krushinsky-Molodkina (KM) rats, which are characterized by age-dependent seizure expression. Analysis of postnatal development showed the increased number of proliferating cells in the IC central nucleus of KM rats on the 14th postnatal day (P14) in comparison with those of Wistar rats. Moreover, we also observed increased apoptosis level and decreased general cell population in the IC central nucleus. These data pointed towards a delayed development of the IC in KM rats. Analysis of the IC central nucleus of KM rat after audiogenic kindling for a week, with one AGS per day, demonstrated dramatically increased cell death, which was accompanied with a reduction of general cell population. Audiogenic kindling also decreased proliferation in the IC central nucleus. However, a week after the last AGS, the number of proliferating cells was increased, which supposes a certain compensatory mechanism to prevent cell loss.


Assuntos
Apoptose/fisiologia , Proliferação de Células/fisiologia , Epilepsia Reflexa/fisiopatologia , Colículos Inferiores/fisiopatologia , Estimulação Acústica/efeitos adversos , Animais , Epilepsia Reflexa/patologia , Feminino , Colículos Inferiores/crescimento & desenvolvimento , Colículos Inferiores/patologia , Excitação Neurológica/fisiologia , Masculino , Ratos , Ratos Endogâmicos , Ratos Wistar
6.
Neurobiol Dis ; 99: 66-83, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28007585

RESUMO

Heterozygous and rare homozygous mutations in PRoline-Rich Transmembrane protein 2 (PRRT2) underlie a group of paroxysmal disorders including epilepsy, kinesigenic dyskinesia episodic ataxia and migraine. Most of the mutations lead to impaired PRRT2 expression and/or function. Recently, an important role for PRTT2 in the neurotransmitter release machinery, brain development and synapse formation has been uncovered. In this work, we have characterized the phenotype of a mouse in which the PRRT2 gene has been constitutively inactivated (PRRT2 KO). ß-galactosidase staining allowed to map the regional expression of PRRT2 that was more intense in the cerebellum, hindbrain and spinal cord, while it was localized to restricted areas in the forebrain. PRRT2 KO mice are normal at birth, but display paroxysmal movements at the onset of locomotion that persist in the adulthood. In addition, adult PRRT2 KO mice present abnormal motor behaviors characterized by wild running and jumping in response to audiogenic stimuli that are ineffective in wild type mice and an increased sensitivity to the convulsive effects of pentylentetrazol. Patch-clamp electrophysiology in hippocampal and cerebellar slices revealed specific effects in the cerebellum, where PRRT2 is highly expressed, consisting in a higher excitatory strength at parallel fiber-Purkinje cell synapses during high frequency stimulation. The results show that the PRRT2 KO mouse reproduces the motor paroxysms present in the human PRRT2-linked pathology and can be proposed as an experimental model for the study of the pathogenesis of the disease as well as for testing personalized therapeutic approaches.


Assuntos
Encéfalo/fisiopatologia , Proteínas de Membrana/deficiência , Atividade Motora/fisiologia , Transtornos Motores/fisiopatologia , Convulsões/fisiopatologia , Animais , Animais Recém-Nascidos , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Cognição/fisiologia , Modelos Animais de Doenças , Feminino , Masculino , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transtornos Motores/patologia , Mutação , Proteínas do Tecido Nervoso/genética , Pentilenotetrazol , Fenótipo , Convulsões/patologia , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/patologia , Medula Espinal/fisiopatologia , Sinapses/patologia , Sinapses/fisiologia , Técnicas de Cultura de Tecidos
7.
Epilepsy Behav ; 71(Pt B): 181-192, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27072920

RESUMO

The hamster has been previously described as a paroxysmal dystonia model, but our strain is currently recognized as a model of audiogenic seizures (AGS). The original first epileptic hamster appeared spontaneously at the University of Valladolid, where it was known as the GPG:Vall line, and was transferred to the University of Salamanca where a new strain was developed, named GASH:Sal. By testing auditory brainstem responses, the GASH:Sal exhibits elevated auditory thresholds that indicate a hearing impairment. Moreover, amplified fragment length polymorphism analysis distinguished genetic differences between the susceptible GASH:Sal hamster strain and the control Syrian hamsters. The GASH:Sal constitutes an experimental model of reflex epilepsy of audiogenic origin derived from an autosomal recessive disorder. Thus, the GASH:Sal exhibits generalized tonic-clonic seizures, characterized by a short latency period after auditory stimulation, followed by wild running, a convulsive phase, and finally stupor, with origin in the brainstem. The seizure profile of the GASH:Sal is similar to those exhibited by other models of inherited AGS susceptibility, which decreases after six months of age, but the proneness across generations is maintained. The GASH:Sal can be considered a reliable model of audiogenic seizures, suitable to investigate current antiepileptic pharmaceutical treatments as well as novel therapeutic drugs. This article is part of a Special Issue entitled "Genetic and Reflex Epilepsies, Audiogenic Seizures and Strains: From Experimental Models to the Clinic".


Assuntos
Estimulação Acústica/efeitos adversos , Modelos Animais de Doenças , Epilepsia Reflexa/genética , Convulsões/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados/métodos , Animais , Tronco Encefálico/fisiopatologia , Cricetinae , Epilepsia Reflexa/fisiopatologia , Mesocricetus , Convulsões/fisiopatologia
8.
Epilepsy Behav ; 71(Pt B): 207-217, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-26876275

RESUMO

The present study aimed to investigate the behavioral and anticonvulsant effects of lamotrigine (LTG) on the genetic audiogenic seizure hamster (GASH:Sal), an animal model of audiogenic seizure that is in the validation process. To evaluate the efficiency of acute and chronic treatments with LTG, GASH:Sals were treated with LTG either acutely via intraperitoneal injection (5-20mg/kg) or chronically via oral administration (20-25mg/kg/day). Their behavior was assessed via neuroethological analysis, and the anticonvulsant effect of LTG was evaluated based on the appearance and the severity of seizures. The results showed that acute administration of LTG exerts an anticonvulsant effect at the lowest dose tested (5mg/kg) and that chronic oral LTG treatment exerts an anticonvulsant effect at a dose of 20-25mg/kg/day. Furthermore, LTG treatment induced a low rate of secondary adverse effects. This article is part of a Special Issue entitled "Genetic and Reflex Epilepsies, Audiogenic Seizures and Strains: From Experimental Models to the Clinic".


Assuntos
Anticonvulsivantes/uso terapêutico , Modelos Animais de Doenças , Epilepsia Reflexa/tratamento farmacológico , Convulsões/tratamento farmacológico , Triazinas/uso terapêutico , Animais , Anticonvulsivantes/farmacologia , Cricetinae , Relação Dose-Resposta a Droga , Epilepsia Reflexa/genética , Epilepsia Reflexa/fisiopatologia , Etologia/métodos , Lamotrigina , Masculino , Mesocricetus , Convulsões/genética , Convulsões/fisiopatologia , Resultado do Tratamento , Triazinas/farmacologia
9.
Epilepsy Behav ; 71(Pt B): 165-173, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-26254980

RESUMO

This review summarizes the current knowledge about DBA/2 mice and genetically epilepsy-prone rats (GEPRs) and discusses the contribution of such animal models on the investigation of possible new therapeutic targets and new anticonvulsant compounds for the treatment of epilepsy. Also, possible chemical or physical agents acting as proconvulsant agents are described. Abnormal activities of enzymes involved in catecholamine and serotonin synthesis and metabolism were reported in these models, and as a result of all these abnormalities, seizure susceptibility in both animals is greatly affected by pharmacological manipulations of the brain levels of monoamines and, prevalently, serotonin. In addition, both genetic epileptic models permit the evaluation of pharmacodynamic and pharmacokinetic interactions among several drugs measuring plasma and/or brain level of each compound. Audiogenic models of epilepsy have been used not only for reflex epilepsy studies, but also as animal models of epileptogenesis. The seizure predisposition (epileptiform response to sound stimulation) and substantial characterization of behavioral, cellular, and molecular alterations in both acute and chronic (kindling) protocols potentiate the usefulness of these models in elucidating ictogenesis, epileptogenesis, and their mechanisms. This article is part of a Special Issue entitled "Genetic and Reflex Epilepsies, Audiogenic Seizures and Strains: From Experimental Models to the Clinic".


Assuntos
Estimulação Acústica/efeitos adversos , Anticonvulsivantes/uso terapêutico , Modelos Animais de Doenças , Epilepsia Reflexa/tratamento farmacológico , Epilepsia Reflexa/genética , Predisposição Genética para Doença/genética , Animais , Anticonvulsivantes/farmacologia , Epilepsia Reflexa/fisiopatologia , Excitação Neurológica/efeitos dos fármacos , Excitação Neurológica/fisiologia , Camundongos , Camundongos Endogâmicos DBA , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos
10.
Epilepsy Behav ; 71(Pt B): 142-153, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-26148984

RESUMO

Human epilepsy is usually considered to result from cortical pathology, but animal studies show that the cortex may be secondarily involved in epileptogenesis, and cortical seizures may be triggered by extracortical mechanisms. In the audiogenic kindling model, recurrent subcortical (brainstem-driven) seizures induce secondary epileptic activation of the cortex. The present review focuses on behavioral and electrographic features of the subcortico-cortical epileptogenesis: (1) behavioral expressions of traditional and mild paradigms of audiogenic kindling produced by full-blown (generalized) and minimal (focal) audiogenic seizures, respectively; (2) electrographic manifestations of secondary epileptic activation of the cortex - cortical epileptic discharge and cortical spreading depression; and (3) persistent individual asymmetry of minimal audiogenic seizures and secondary cortical events produced by their repetition. The characteristics of audiogenic kindling suggest that this model represents a unique experimental approach to studying cortical epileptogenesis and network aspects of epilepsy. This article is part of a Special Issue entitled "Genetic and Reflex Epilepsies, Audiogenic Seizures and Strains: From Experimental Models to the Clinic".


Assuntos
Estimulação Acústica/efeitos adversos , Modelos Animais de Doenças , Eletroencefalografia/tendências , Epilepsia Reflexa/fisiopatologia , Excitação Neurológica/fisiologia , Atividade Motora/fisiologia , Animais , Tronco Encefálico/fisiopatologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Eletroencefalografia/métodos , Epilepsia Reflexa/genética , Humanos , Ratos , Ratos Wistar , Convulsões/genética , Convulsões/fisiopatologia
11.
Epilepsy Behav ; 71(Pt B): 160-164, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-25812940

RESUMO

In this review of neuroanatomical studies of the genetically epilepsy-prone rat (GEPR), three main topics will be covered. First, the number of GABAergic neurons and total neurons in the inferior colliculus of GEPRs will be compared to those of the nonepileptic Sprague-Dawley rat. Next, the number of small neurons in the inferior colliculus will be described in both developmental and genetic analyses of GEPRs and their backcrosses. Last, results from two types of studies on the propagation pathways for audiogenic seizures in GEPRs will be shown. Together, these studies demonstrate a unique GABAergic, small neuron defect in the inferior colliculus of GEPRs that may play a vital role in the initiation and spread of seizure activity during audiogenic seizures. This article is part of a Special Issue entitled "Genetic and Reflex Epilepsies, Audiogenic Seizures and Strains: From Experimental Models to the Clinic".


Assuntos
Estimulação Acústica/efeitos adversos , Epilepsia Reflexa/genética , Epilepsia Reflexa/patologia , Neurônios GABAérgicos/patologia , Colículos Inferiores/patologia , Animais , Epilepsia Reflexa/fisiopatologia , Colículos Inferiores/fisiopatologia , Ratos , Ratos Sprague-Dawley , Convulsões/genética , Convulsões/patologia , Convulsões/fisiopatologia
12.
Epilepsy Behav ; 71(Pt B): 154-159, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-26907925

RESUMO

Here, the genetic context for the study of audiogenic seizures is four single-gene, spontaneous mutations that occurred in the Behavior Genetics Laboratory at the University of Chicago from 1959 to 1969. Three of these increased the incidence of audiogenic seizures, and one of these decreased the incidence of audiogenic seizures. The genetics of one of these mutants is described in detail, and the effect of diet on the same mutant is also described in detail. Research on genetic and environmental effects on the cortical EEG of audiogenic seizures is reviewed; this research included two of these mutants. The cortical EEG associated with audiogenic seizures in this study was consistent with audiogenic seizures being a type of brain stem epilepsy as had been proposed by others. Also, I proposed that brain stem pathophysiology is the same regardless of the genetic or environmental pathway to audiogenic seizure susceptibility. Research is also reviewed using these mutants to determine whether or not a strain association between glutamic acid decarboxylase (GAD) activity in whole brain and susceptibility to audiogenic seizures is pleiotropic and whether or not a strain association between nucleoside triphosphatase (NTPase) activity in the granule cell layer of the dentate fascia of the hippocampus and susceptibility to audiogenic seizures is a lineal or collateral pleiotropy. Lastly, pleiotropy as an explanation for strain comorbidities in aggressive behavior and audiogenic seizures is considered. This article is part of a Special Issue entitled "Genetic and Reflex Epilepsies, Audiogenic Seizures and Strains: From Experimental Models to the Clinic".


Assuntos
Estimulação Acústica/efeitos adversos , Modelos Animais de Doenças , Epilepsia Reflexa/genética , Convulsões/genética , Animais , Tronco Encefálico/fisiopatologia , Epilepsia Reflexa/fisiopatologia , Feminino , Hipocampo/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Convulsões/fisiopatologia
13.
Epilepsy Behav ; 71(Pt B): 238-242, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27993512

RESUMO

Herpes virus technology involving manipulation of GAD65 was used to study effects on audiogenic seizures (AGS). Audiogenic seizure behaviors were examined following injections of replication-defective herpes simplex virus (HSV-1) vectors incorporating sense or antisense toward GAD65 along with 10% lac-Z into the central nucleus of inferior colliculus (CNIC) of Long-Evans rats. In seizure-sensitive animals developmentally primed by intense sound exposure, injection of GAD65 in the sense orientation increased wild running latencies and reduced incidence of clonus compared with lac-Z only, unoperated, and vehicle seizure groups. In contrast, infection of CNIC with GAD65 antisense virus resulted in 100% incidence of wild running and clonus behaviors in AGS animals. Unprimed animals not operated continued to show uniform absence of seizure activity. Administration of GAD65 antisense virus into CNIC produced novel wild running and clonus behaviors in some unprimed animals. Staining for ß-galactosidase in all vector animals revealed no differences in pattern or numbers of immunoreactive cells at injection sites. Qualitatively, typical small and medium multipolar/stellate and medium fusiform neurons appeared in the CNIC of vector animals. These results demonstrate that HSV-1 vector constructs implanted into the CNIC can predictably influence incidence and severity of AGS and suggest that viral vectors can be useful in studying GABA mechanisms with potential for therapeutic application in epilepsy. This article is part of a Special Issue entitled "Genetic and Reflex Epilepsies, Audiogenic Seizures and Strains: From Experimental Models to the Clinic".


Assuntos
Estimulação Acústica/efeitos adversos , Epilepsia Reflexa/induzido quimicamente , Glutamato Descarboxilase/toxicidade , Herpesvirus Humano 1 , Colículos Inferiores/efeitos dos fármacos , Convulsões/induzido quimicamente , Animais , Epilepsia Reflexa/patologia , Epilepsia Reflexa/fisiopatologia , Feminino , Glutamato Descarboxilase/administração & dosagem , Colículos Inferiores/patologia , Colículos Inferiores/fisiopatologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/patologia , Ratos , Ratos Long-Evans , Convulsões/fisiopatologia
14.
Alcohol Clin Exp Res ; 40(11): 2359-2367, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27716957

RESUMO

BACKGROUND: Cyclic AMP-dependent protein kinase A (PKA) signaling is a key target for the action of alcohol and may therefore play a role in the pathophysiology of alcohol withdrawal seizures (AWSs). Here, we investigated the role of PKA activity with respect to increased seizure susceptibility in rats that were subjected to alcohol withdrawal. METHODS: Adult male Sprague Dawley rats received 3 daily doses of ethanol (EtOH) (or vehicle) for 4 consecutive days. Rats were then tested for susceptibility to acoustically evoked AWSs 3, 24, and 48 hours after the last alcohol dose. In separate experiments, the inferior colliculus (IC) was collected at these same time points from rats subjected to alcohol withdrawal and control rats following alcohol withdrawal. PKA activity, catalytic Cα (PKACα ) protein, regulatory RIIα (PKARIIα ) protein, and RIIß (PKARIIß ) protein were measured in the IC. Lastly, in situ pharmacological studies were performed to evaluate whether inhibiting PKA activity in the IC suppressed AWSs. RESULTS: In the EtOH-treated group, AWSs were observed at the 24-hour time point, but not at the 3-hour or 48-hour time points. In the IC, PKA activity was significantly higher both 3 hours (i.e., before AWS susceptibility) and 24 hours after the last alcohol dose (when AWS susceptibility peaked) than in control rats. Consistent with these findings, protein levels of the PKACα subunit were significantly increased in the IC both 3 and 24 hours after the last alcohol dose. Lastly, in situ inhibition of PKA activity within the IC suppressed AWSs. CONCLUSIONS: The increase in PKA activity and PKACα protein expression in the IC preceded the occurrence of AWSs, and inhibiting PKA activity within the IC suppressed acoustically evoked AWSs. Together, these findings suggest that altered PKA activity plays a key role in the pathogenesis of AWSs.


Assuntos
Convulsões por Abstinência de Álcool/enzimologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Colículos Inferiores/enzimologia , Convulsões por Abstinência de Álcool/sangue , Intoxicação Alcoólica/psicologia , Animais , Concentração Alcoólica no Sangue , Peso Corporal , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Masculino , Distribuição Aleatória , Ratos Sprague-Dawley
15.
Epilepsy Behav ; 64(Pt A): 166-170, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27743549

RESUMO

Drugs that enhance the action of serotonin (5-hydroxytrypamine, 5-HT), including several selective serotonin reuptake inhibitors (SSRIs), reduce susceptibility to seizure-induced respiratory arrest (S-IRA) that leads to death in the DBA/1 mouse model of sudden unexpected death in epilepsy (SUDEP). However, it is not clear if specific 5-HT receptors are important in the action of these drugs and whether the brain is the major site of action of these agents in this SUDEP model. The current study examined the actions of agents that affect the 5-HT3 receptor subtype on S-IRA and whether intracerebroventricular (ICV) microinjection of an SSRI would reduce S-IRA susceptibility in DBA/1 mice. The data indicate that systemic administration of SR 57227, a 5-HT3 agonist, was effective in blocking S-IRA in doses that did not block seizures, and the S-IRA blocking effect of the SSRI, fluoxetine, was abolished by coadministration of a 5-HT3 antagonist, ondansetron. Intracerebroventricular administration of fluoxetine in the present study was also able to block S-IRA without blocking seizures. These findings suggest that 5-HT3 receptors play an important role in the block of S-IRA by serotonergic agents, such as SSRIs, which is consistent with the abnormal expression of 5-HT3 receptors in the brainstem of DBA mice observed previously. Taken together, these data indicate that systemically administered serotonergic agents act, at least, in part, in the brain, to reduce S-IRA susceptibility in DBA/1 mice and that 5-HT3 receptors may be important to this effect.


Assuntos
Morte Súbita/prevenção & controle , Receptores 5-HT3 de Serotonina/efeitos dos fármacos , Convulsões/complicações , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Agonistas do Receptor 5-HT3 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT3 de Serotonina/farmacologia , Animais , Modelos Animais de Doenças , Feminino , Fluoxetina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos DBA , Serotoninérgicos/uso terapêutico
16.
Epilepsy Behav ; 64(Pt A): 9-14, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27723498

RESUMO

Patients with epilepsy are at risk of sudden unexpected death in epilepsy (SUDEP). The most common series of events in witnessed cases of SUDEP is a generalized convulsive seizure followed by terminal apnea. Risk factors for SUDEP include prolonged postictal depression (PID), as well as alcohol abuse. The present study examined these issues in a genetic epilepsy model that exhibits generalized convulsive audiogenic seizures (AGSz) but rarely exhibits seizure-induced death, the genetically epilepsy-prone rats (GEPR-9s). We evaluated the effect of ethanol withdrawal (ETX) in GEPR-9s on respiration patterns, duration of PID, and the incidence of seizure-induced death. Audiogenic seizures were induced in GEPR-9s and in normal Sprague-Dawley rats, which were subjected to a 4-day binge ethanol protocol, 18-24h after the last ethanol dose. Following the tonic seizures, all GEPR-9s exhibited PID, characterized by loss of the righting reflex and respiratory distress (RD), which were absent during ETX seizures in the normal rats. During ETX, GEPR-9s exhibited significant increases in the duration of PID and RD, compared with vehicle-treated GEPR-9s. A significant increase in the incidence of death following seizure in GEPR-9s subjected to ETX was observed, compared with that in vehicle-treated GEPR-9s and normal rats subjected to ETX. Death in GEPR-9s was preceded by prolonged seizures because, in part, of the emergence of post-tonic generalized clonus. These results indicate that ETX induced significant increases in the duration of PID and RD, which contributed to the greater incidence of mortality in GEPR-9s compared with that in vehicle-treated GEPR-9s and normal rats. These experiments observed an elevated risk of sudden death associated with alcohol withdrawal in a genetic epilepsy model that had previously been identified as a risk factor in human SUDEP.


Assuntos
Estimulação Acústica/efeitos adversos , Morte Súbita/etiologia , Epilepsia Reflexa/complicações , Etanol/efeitos adversos , Respiração , Síndrome de Abstinência a Substâncias/complicações , Animais , Masculino , Ratos , Ratos Sprague-Dawley
17.
Molecules ; 21(9)2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27657037

RESUMO

The usage of dietary supplements and other natural products to treat neurological diseases has been growing over time, and accumulating evidence suggests that flavonoids possess anticonvulsant properties. The aim of this study was to examine the effects of a flavonoid-rich extract from orange juice (OJe) in some rodent models of epilepsy and to explore its possible mechanism of action. The genetically audiogenic seizures (AGS)-susceptible DBA/2 mouse, the pentylenetetrazole (PTZ)-induced seizures in ICR-CD1 mice and the WAG/Rij rat as a genetic model of absence epilepsy with comorbidity of depression were used. Our results demonstrate that OJe was able to exert anticonvulsant effects on AGS-sensible DBA/2 mice and to inhibit PTZ-induced tonic seizures, increasing their latency. Conversely, it did not have anti-absence effects on WAG/Rij rats. Our experimental findings suggest that the anti-convulsant effects of OJe are likely mediated by both an inhibition of NMDA receptors at the glycine-binding site and an agonistic activity on benzodiazepine-binding site at GABAA receptors. This study provides evidences for the antiepileptic activity of OJe, and its results could be used as scientific basis for further researches aimed to develop novel complementary therapy for the treatment of epilepsy in a context of a multitarget pharmacological strategy.

18.
Bull Exp Biol Med ; 161(2): 241-4, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27383177

RESUMO

Changes in the fatty acid composition of the hippocampal dentate gyrus in Krushinsky-Molodkina rats with hereditary predisposition to audiogenic seizures were studied in 1, 3, and 14 days after 1 or 5 seizures. Seizure activity changed the content of saturated and monounsaturated as well as polyunsaturated fatty acids at different terms after seizures. After seizures, the content of individual fatty acids changed in different directions. Similar shifts after 1 and 5 seizures were observed only for eicosapentaenoic acid at all observation terms. More pronounced changes in fatty acid composition were observed after 5 seizures. These results can be useful for the development of new approaches to correction of seizure activity.


Assuntos
Giro Denteado/metabolismo , Epilepsia Reflexa/metabolismo , Ácidos Graxos/metabolismo , Estimulação Acústica , Animais , Metabolismo dos Lipídeos , Masculino , Ratos Wistar
19.
Eur J Pharmacol ; 962: 176222, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38029871

RESUMO

Clinical studies documented that cenobamate (CNB) has a marked efficacy compared to other antiseizure medications (ASMs) in reducing focal seizures. To date, different aspects of CNB need to be clarified, including its efficacy against generalized seizures. Similarly, the pattern of drug-drug interactions between CNB and other ASMs also compels further investigation. This study aimed to detect the role of CNB on generalized seizures using the DBA/2 mouse model. We have also studied the effects of an adjunctive CNB treatment on the antiseizure properties of some ASMs against reflex seizures. The effects of this adjunctive treatment on motor performance, body temperature, and brain levels of ASMs were also evaluated. CNB was able to antagonize seizures in DBA/2 mice. CNB, at 5 mg/kg, enhanced the antiseizure activity of ASMs, such as diazepam, clobazam, levetiracetam, perampanel, phenobarbital, topiramate, and valproate. No synergistic effects were observed when CNB was co-administered with some Na+ channel blockers. The increase in antiseizure activity was associated with a comparable intensification in motor impairment; however, the therapeutic index of combined treatment of ASMs with CNB was more favorable than the combination with vehicle except for carbamazepine, phenytoin, and oxcarbazepine. Since CNB did not significantly influence the brain levels of the ASMs studied, we suggest that pharmacokinetic interactions seem not probable. Overall, this study shows the ability of CNB to counteract generalized reflex seizures in mice. Moreover, our data documented an evident synergistic antiseizure effect for the combination of CNB with ASMs including phenobarbital, benzodiazepines, valproate, perampanel, topiramate, and levetiracetam.


Assuntos
Anticonvulsivantes , Epilepsia Reflexa , Camundongos , Animais , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/farmacocinética , Epilepsia Reflexa/tratamento farmacológico , Ácido Valproico/farmacologia , Topiramato/uso terapêutico , Levetiracetam/farmacologia , Levetiracetam/uso terapêutico , Sinergismo Farmacológico , Camundongos Endogâmicos DBA , Convulsões/tratamento farmacológico , Fenobarbital/uso terapêutico
20.
Br J Pharmacol ; 181(12): 1886-1894, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38529699

RESUMO

BACKGROUND AND PURPOSE: GRIN-related disorders are neurodevelopmental disorders caused by mutations in N-methyl-D-aspartate receptor (NMDAR) subunit genes. A large fraction of these mutations lead to a 'gain of function' (GoF) of the NMDAR. Patients present with a range of symptoms including epilepsy, intellectual disability, behavioural and motor. Controlling seizures is a significant unmet medical need in most patients with GRIN-related disorders. Although several hundred GRIN mutations have been identified in humans, until recently none of the mouse models carrying Grin mutations/deletions showed an epileptic phenotype. The two recent exceptions both carry mutations of GluN2A. The aim of this study was to assess the efficacy of radiprodil, a selective negative allosteric modulator of GluN2B-containing NMDARs, in counteracting audiogenic seizures (AGS) in a murine model carrying the GluN2A(N615S) homozygous mutation (Grin2aS/S mice). EXPERIMENTAL APPROACH: Grin2aS/S mice were acutely treated with radiprodil at different doses before the presentation of a high-frequency acoustic stimulus commonly used for AGS induction. KEY RESULTS: Radiprodil significantly and dose-dependently reduced the onset and severity of AGS in Grin2aS/S mice. Surprisingly, the results revealed a sex-dependent difference in AGS susceptibility and in the dose-dependent protection of radiprodil in the two genders. Specifically, radiprodil was more effective in female versus male mice. CONCLUSION AND IMPLICATIONS: Overall, our data clearly show that radiprodil, a GluN2B selective negative allosteric modulator, may have the potential to control seizures in patients with GRIN2A GoF mutations. Further studies are warranted to better understand the sex-dependent effects observed in this study.


Assuntos
Mutação , Receptores de N-Metil-D-Aspartato , Animais , Receptores de N-Metil-D-Aspartato/genética , Masculino , Feminino , Camundongos , Piperidinas/farmacologia , Piperidinas/administração & dosagem , Piperidinas/uso terapêutico , Epilepsia Reflexa/genética , Epilepsia Reflexa/tratamento farmacológico , Regulação Alostérica/efeitos dos fármacos , Convulsões/tratamento farmacológico , Convulsões/genética , Camundongos Endogâmicos C57BL , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/administração & dosagem , Relação Dose-Resposta a Droga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA