Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Breast Cancer Res Treat ; 192(1): 43-52, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35031902

RESUMO

PURPOSE: Breast cancer (BC) is considered a heterogeneous disease composed of distinct subtypes with diverse clinical outcomes. Luminal subtype tumors have the best prognosis, and patients benefit from endocrine therapy. However, resistance to endocrine therapies in BC is an obstacle to successful treatment, and novel biomarkers are needed to understand and overcome this mechanism. The RET, BCAR1, and BCAR3 genes may be associated with BC progression and endocrine resistance. METHODS: Aiming to evaluate the expression profile and prognostic value of RET, BCAR1, and BCAR3, we performed immunohistochemistry on tissue microarrays (TMAs) containing a cohort of 361 Luminal subtype BC. RESULTS: Low expression levels of these three proteins were predominantly observed. BCAR1 expression was correlated with nuclear grade (p = 0.057), and BCAR3 expression was correlated with lymph node status (p = 0.011) and response to hormonal therapy (p = 0.021). Further, low expression of either BCAR1 or BCAR3 was significantly associated with poor prognosis (p = 0.005; p = 0.042). Pairwise analysis showed that patients with tumors with low BCAR1/low BCAR3 expression had a poorer overall survival (p = 0.013), and the low BCAR3 expression had the worst prognosis with RET high expression stratifying these patients into two different groups. Regarding the response to hormonal therapy, non-responder patients presented lower expression of RET in comparison to the responder group (p = 0.035). Additionally, the low BCAR1 expression patients had poorer outcomes than BCAR1 high (p = 0.015). CONCLUSION: Our findings suggest RET, BCAR1, and BCAR3 as potential candidate markers for endocrine therapy resistance in Luminal BC.


Assuntos
Neoplasias da Mama , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Biomarcadores Tumorais/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Proteína Substrato Associada a Crk , Feminino , Fatores de Troca do Nucleotídeo Guanina , Humanos , Imuno-Histoquímica , Prognóstico , Proteínas Proto-Oncogênicas c-ret
2.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830244

RESUMO

p130 Crk-associated substrate (p130Cas) is associated with poor prognosis and treatment resistance in breast and lung cancers. To elucidate p130Cas functional and clinical role in colorectal cancer (CRC) progression/therapy resistance, we performed cell culture experiments and bioinformatic/statistical analyses of clinical data sets. p130Cas expression was associated with poor survival in the cancer genome atlas (TCGA) data set. Knockdown/reconstitution experiments showed that p130Cas drives migration but, unexpectedly, inhibits proliferation in CRC cells. TCGA data analyses identified the growth factor epiregulin (EREG) as inversely correlated with p130Cas. p130Cas knockdown and simultaneous EREG treatment further enhanced proliferation. RNA interference and EREG treatment experiments suggested that p130Cas/EREG limit each other's expression/activity. Inverse p130Cas/EREG Spearman correlations were prominent in right-sided and earlier stage CRC. p130Cas was inducible by 5-fluorouracil (5-FU) and FOLFIRI (folinic acid, 5-FU, irinotecan), and p130Cas and EREG were upregulated in distant metastases (GSE121418). Positive p130Cas/EREG correlations were observed in metastases, preferentially in post-treatment samples (especially pulmonary metastases). p130Cas knockdown sensitized CRC cells to FOLFIRI independent of EREG treatment. RNA sequencing and gene ontology analyses revealed that p130Cas is involved in cytochrome P450 drug metabolism and epithelial-mesenchymal transition. p130Cas expression was associated with poor survival in right-sided, stage I/II, MSS (microsatellite stable), or BRAF-mutated CRC. In summary, p130Cas represents a prognostic factor and potential therapeutic target in CRC.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias Colorretais/diagnóstico , Proteína Substrato Associada a Crk/genética , Epirregulina/genética , Transição Epitelial-Mesenquimal/genética , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Atlas como Assunto , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Camptotecina/análogos & derivados , Camptotecina/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/mortalidade , Proteína Substrato Associada a Crk/antagonistas & inibidores , Proteína Substrato Associada a Crk/metabolismo , Epirregulina/metabolismo , Feminino , Fluoruracila/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Humanos , Leucovorina/uso terapêutico , Masculino , Pessoa de Meia-Idade , Anotação de Sequência Molecular , Mutação , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Análise de Sobrevida
3.
J Biol Chem ; 292(44): 18281-18289, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-28860193

RESUMO

The Cas family scaffolding protein p130Cas is a Src substrate localized in focal adhesions (FAs) and functions in integrin signaling to promote cell motility, invasion, proliferation, and survival. p130Cas targeting to FAs is essential for its tyrosine phosphorylation and downstream signaling. Although the N-terminal SH3 domain is important for p130Cas localization, it has also been reported that the C-terminal region is involved in p130Cas FA targeting. The C-terminal region of p130Cas or Cas family homology domain (CCHD) has been reported to adopt a structure similar to that of the focal adhesion kinase C-terminal focal adhesion-targeting domain. The mechanism by which the CCHD promotes FA targeting of p130Cas, however, remains unclear. In this study, using a calorimetry approach, we identified the first LD motif (LD1) of the FA-associated protein paxillin as the binding partner of the p130Cas CCHD (in a 1:1 stoichiometry with a Kd ∼4.2 µm) and elucidated the structure of the p130Cas CCHD in complex with the paxillin LD1 motif by X-ray crystallography. Of note, a comparison of the CCHD/LD1 complex with a previously solved structure of CCHD in complex with the SH2-containing protein NSP3 revealed that LD1 had almost identical positioning of key hydrophobic and acidic residues relative to NSP3. Because paxillin is one of the key scaffold molecules in FAs, we propose that the interaction between the p130Cas CCHD and the LD1 motif of paxillin plays an important role in p130Cas FA targeting.


Assuntos
Proteínas Aviárias/metabolismo , Proteína Substrato Associada a Crk/metabolismo , Modelos Moleculares , Paxilina/metabolismo , Motivos de Aminoácidos , Substituição de Aminoácidos , Animais , Proteínas Aviárias/química , Sítios de Ligação , Galinhas , Proteína Substrato Associada a Crk/química , Proteína Substrato Associada a Crk/genética , Cristalografia por Raios X , Interações Hidrofóbicas e Hidrofílicas , Cinética , Leucina , Camundongos , Mutação , Paxilina/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína
4.
Int J Cancer ; 143(3): 679-685, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29464683

RESUMO

Aberrant activation of cancer-derived mutants of the epidermal growth factor receptor (EGFR) is closely associated with cancer pathogenesis and is thought to be mediated through multiple tyrosine phosphorylations within the C-terminal domain. Here, we examined the consequences of the loss of these C-terminal phosphorylation sites on cellular transformation in the context of lung-cancer-derived L858R, exon 19 deletion and exon 20 insertion mutant EGFR. Oncogenic EGFR mutants with substitution of the 10 potential C-terminal tyrosine autophosphorylation sites for phenylalanine (CYF10) were still able to promote anchorage-independent growth in soft agar at levels comparable to the parental L858R or exon19 deletion or exon 20 insertion mutants with intact autophosphorylation sites. Furthermore, these CYF10 mutants retained the ability to transform Ba/F3 cells in the absence of IL-3. Bead-based phosphorylation and immunoprecipitation analyses demonstrated that key EGFR-associated proteins-including Grb2 and PLC-γ-are neither phosphorylated nor bound to CYF10 mutants in transformed cells. Taken together, we conclude that tyrosine phosphorylation is not required for oncogenic activity of lung-cancer-derived mutant EGFR, suggesting these mutants can lead to cellular transformation by an alternative mechanism independent of EGFR phosphorylation.


Assuntos
Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Domínios Proteicos , Animais , Biomarcadores , Linhagem Celular , Receptores ErbB/química , Receptores ErbB/genética , Receptores ErbB/metabolismo , Proteína Adaptadora GRB2/genética , Proteína Adaptadora GRB2/metabolismo , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Fosforilação
5.
BMC Cancer ; 18(1): 37, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29304771

RESUMO

BACKGROUND: Breast cancer anti-estrogen resistance 1 (BCAR1/p130cas) is a hub for diverse oncogenic signaling cascades and promotes tumor development and progression. METHODS: To understand the effect of BCAR1 in prostate cancer, we analyzed its expression on more than 11,000 prostate cancer samples. BCAR1 expression levels were compared with clinical characteristics, PSA recurrence, molecular subtype defined by ERG status and 3p, 5q, 6q and PTEN deletion. RESULTS: BCAR1 staining was barely detectable in normal prostate glands but seen in 77.6% of 9472 interpretable cancers, including strong expression in 38.5%, moderate in 23.2% and weak in 15.9% of cases. BCAR1 up regulation was associated with positive ERG status (p < 0.0001), high Gleason score (p < 0.0001), advanced pathological tumor stage (p = 0.0082), lower preoperative PSA level (p < 0.0001), increased cell proliferation (p < 0.0001), early PSA recurrence (p = 0.0008), and predicted prognosis independently from clinico-pathological parameters available at the time of the initial biopsy. However, subset analyses revealed that the prognostic impact of BCAR1 expression was limited to ERG-negative cancer. That BCAR1 up regulation was linked to almost all analyzed deletions (p < 0.0001 each for PTEN, 5q, 6q deletion) may suggest a functional link to genomic instability. CONCLUSION: The results of our study identify BCAR1 as a prognostic biomarker with potential clinical value for risk stratification of ERG-negative prostate cancer.


Assuntos
Biomarcadores Tumorais/genética , Carcinogênese/genética , Proteína Substrato Associada a Crk/genética , Neoplasias da Próstata/genética , Progressão da Doença , Estrogênios/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia
6.
J Cell Sci ; 127(Pt 7): 1394-405, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24481817

RESUMO

Tyrosine phosphorylation of the substrate domain of Cas (CasSD) correlates with increased cell migration in healthy and diseased cells. Here, we address the mechanism leading to the phosphorylation of CasSD in the context of fibronectin-induced early spreading of fibroblasts. We have previously demonstrated that mechanical stretching of CasSD exposes phosphorylation sites for Src family kinases (SFKs). Surprisingly, phosphorylation of CasSD was independent of myosin contractile activity but dependent on actin polymerization. Furthermore, we found that CasSD phosphorylation in the early stages of cell spreading required: (1) integrin anchorage and integrin-mediated activation of SFKs, (2) association of Cas with focal adhesion kinase (FAK), and (3) N-WASP-driven actin-assembly activity. These findings, and analyses of the interactions of the Cas domains, indicate that the N-terminus of Cas associates with the FAK-N-WASP complex at the protrusive edge of the cell and that the C-terminus of Cas associates with the immobilized integrin-SFK cluster. Thus, extension of the leading edge mediated by actin polymerization could stretch Cas during early cell spreading, priming it for phosphorylation.


Assuntos
Actinas/metabolismo , Proteína Substrato Associada a Crk/metabolismo , Pseudópodes/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Adesão Celular/fisiologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Camundongos , Fosforilação , Polimerização , Estrutura Terciária de Proteína , Transdução de Sinais
7.
Am Heart J Plus ; 44: 100416, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39036012

RESUMO

Breast cancer anti-estrogen resistance-1 (p130Cas/BCAR1) is an adaptor protein of the cas(Cas) family. This protein regulates multiple complex pathways in different organs including bones, pancreas, and immune and cardiovascular systems. Although previous research well demonstrated the role of p130Cas/BCAR1 in different diseases especially cancers, a precise review study on the various effects of p130Cas/BCAR1 on cardiovascular diseases is missing. In this study, we reviewed mechanisms of action for p130Cas/BCAR1 impact, on cardiac embryonic development defects, hypertrophy and remodeling, pulmonary artery hypertension (PAH), and atherosclerosis. Also, we suggest feature direction for research and potential therapeutic implications. This study showed that p130Cas/BCAR1 can affect cardiovascular diseases in various mechanisms including actin stress fiber formation, attachment to focal adhesion kinase (FAK) and angiotensin II (Ang II), generation of reactive oxygen species (ROS), and growth factor signaling through amplifying receptor tyrosine kinase (RTKs).

8.
Dis Esophagus ; 26(5): 528-37, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22816673

RESUMO

The purpose of this study was to clarify the role of breast cancer anti-estrogen resistance 1 (BCAR1) expression in relation to vascular endothelial growth factor (VEGF), p53, and proliferation in esophageal squamous cell cancer (ESCC). Expression of BCAR1, VEGF, p53, and the ki-67 proliferative index were examined by tissue microarray and immunohistochemistry in 106 specimens with ESCC and matched adjacent normal tissues. Among them, 40 cases were simultaneously examined by Western blot. Both Western blot and immunohistochemistry showed that BCAR1 expression was substantially higher in ESCC than in adjacent normal tissues (P < 0.001). BCAR1 expression was significantly connected with degree of tumor differentiation, with poorly differentiated tumors showing higher BCAR1 expression (P < 0.001). BCAR1 expression was significantly and positively correlated with VEGF and p53 expression levels (r= 0.541, P < 0.001; r= 0.374; P < 0.001) but not proliferative index (r= 0.44; P= 0.066). Additionally, a significant relationship was also observed between VEGF and p53 (r= 0.321; P= 0.001). Kaplan-Meier survival analysis revealed that patients with high BCAR1 expression had significantly shorter survival times than those with low BCAR1 expression levels (median survival 40 months vs. 27 months, P= 0.09). Multivariate analysis also revealed that levels of BCAR1 expression (hazard ratio 2.250, P= 0.015) was a significant and independent prognostic indicator. High expression of BCAR1 is associated with elevated VEGF and p53 expression levels, as well as poor prognosis in ESCC. Therefore, BCAR1 may be a potential candidate for predicting prognosis and a new therapy target for ESCC.


Assuntos
Carcinoma de Células Escamosas/química , Proteína Substrato Associada a Crk/análise , Neoplasias Esofágicas/química , Carcinoma de Células Escamosas/patologia , Neoplasias Esofágicas/patologia , Esôfago/química , Feminino , Humanos , Imunoquímica , Estimativa de Kaplan-Meier , Antígeno Ki-67/análise , Masculino , Pessoa de Meia-Idade , Índice Mitótico , Prognóstico , Taxa de Sobrevida , Análise Serial de Tecidos , Proteína Supressora de Tumor p53/análise , Fator A de Crescimento do Endotélio Vascular/análise
9.
Int J Biol Sci ; 19(16): 5104-5119, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928269

RESUMO

Flotillin-1 (FLOT1) is a member of the flotillin family and serves as a hallmark of lipid rafts involved in the process of signaling transduction and vesicular trafficking. Here, we find FLOT1 promotes gastric cancer cell progression and metastasis by interacting with BCAR1, through ERK signaling. FLOT1 regulates BCAR1 phosphorylation and translocation. Overexpression of FLOT1 increases, while knockdown of FLOT1 decreases gastric cancer cell proliferation, migration and invasion. BCAR1 knockdown could block FLOT1 induced gastric cancer cell proliferation, migration and invasion. Re-expression of wildtype rather than mutant BCAR1 (Y410F) could partially restore FLOT1 knockdown induced gastric cancer cell migration and invasion, while the restore could be inhibited by ERK inhibitor. Furthermore, FLOT1 and BCAR1 expression is closely related to gastric cancer patients' poor outcome. Thus, our findings confirm that BCAR1 mediates FLOT1 induced gastric cancer progression and metastasis through ERK signaling, which may provide a novel pathway for gastric cancer treatment.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Linhagem Celular Tumoral , Transdução de Sinais/genética , Proteínas de Membrana/metabolismo , Proteína Substrato Associada a Crk/metabolismo
10.
Ann Transl Med ; 10(4): 237, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35280415

RESUMO

Background: Lung cancer is the most prevalent malignancy worldwide. Most cases are sporadic and carry somatic mutations in hotspot genes. However, accumulating studies have identified several germline mutations that predispose patients to lung cancer at present. Case Description: In this report, 2 siblings diagnosed with lung squamous cell carcinoma and lung adenocarcinoma were sequenced by whole exome sequencing (WES) and Sanger sequencing. In this context, we reported a novel frameshift germline mutation of breast cancer anti-estrogen resistance protein 1 (BCAR1) in exon 4 (NM_001170717: c.942delinsAATGCCAGGGC), causing a frameshift and introducing a premature stop codon, which was detected in both siblings. Screening across other family members revealed their presence in 2 affected individuals. The BCAR1 gene was previously demonstrated to be associated with lung cancer. The variant detected in this report would impair the regulation and functions of BCAR1 in some extent, thus may promote the tumorigenesis of lung cancer. Conclusions: In conclusion, our findings suggest that BCAR1 is a possible susceptibility gene for lung cancer, and its functional analyses in lung cancer need further investigation. In this study, we first reported a novel causative mechanism of lung cancer: an insertion of 11 bp in BCAR1 gene, which can be helpful in the genetic diagnosis of this disease.

11.
Cardiovasc Res ; 118(8): 1993-2005, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34270692

RESUMO

AIMS: The adapter protein p130Cas, encoded by the Bcar1 gene, is a key regulator of cell movement, adhesion, and cell cycle control in diverse cell types. Bcar1 constitutive knockout mice are embryonic lethal by embryonic days (E) 11.5-12.5, but the role of Bcar1 in embryonic development remains unclear. Here, we investigated the role of Bcar1 specifically in cardiovascular development and defined the cellular and molecular mechanisms disrupted following targeted Bcar1 deletions. METHODS AND RESULTS: We crossed Bcar1 floxed mice with Cre transgenic lines allowing for cell-specific knockout either in smooth muscle and early cardiac tissues (SM22-Cre), mature smooth muscle cells (smMHC-Cre), endothelial cells (Tie2-Cre), second heart field cells (Mef2c-Cre), or neural crest cells (NCC) (Pax3-Cre) and characterized these conditional knock outs using a combination of histological and molecular biology techniques. Conditional knockout of Bcar1 in SM22-expressing smooth muscle cells and cardiac tissues (Bcar1SM22KO) was embryonically lethal from E14.5-15.5 due to severe cardiovascular defects, including abnormal ventricular development and failure of outflow tract (OFT) septation leading to a single outflow vessel reminiscent of persistent truncus arteriosus. SM22-restricted loss of Bcar1 was associated with failure of OFT cushion cells to undergo differentiation to septal mesenchymal cells positive for SMC-specific α-actin, and disrupted expression of proteins and transcription factors involved in epithelial-to-mesenchymal transformation (EMT). Furthermore, knockout of Bcar1 specifically in NCC (Bcar1PAX3KO) recapitulated part of the OFT septation and aortic sac defects seen in the Bcar1SM22KO mutants, indicating a cell-specific requirement for Bcar1 in NCC essential for OFT septation. In contrast, conditional knockouts of Bcar1 in differentiated smooth muscle, endothelial cells, and second heart field cells survived to term and were phenotypically normal at birth and postnatally. CONCLUSION: Our work reveals a cell-specific requirement for Bcar1 in NCC, early myogenic and cardiac cells, essential for OFT septation, myocardialization and EMT/cell cycle regulation and differentiation to myogenic lineages.


Assuntos
Proteína Substrato Associada a Crk , Cardiopatias Congênitas , Crista Neural , Animais , Proteína Substrato Associada a Crk/genética , Células Endoteliais/patologia , Coração , Cardiopatias Congênitas/patologia , Camundongos , Camundongos Knockout , Crista Neural/patologia , Fatores de Transcrição
12.
Cell Rep ; 35(13): 109291, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34192548

RESUMO

To identify therapeutic targets for KRAS mutant pancreatic cancer, we conduct a druggable genome small interfering RNA (siRNA) screen and determine that suppression of BCAR1 sensitizes pancreatic cancer cells to ERK inhibition. Integrative analysis of genome-scale CRISPR-Cas9 screens also identify BCAR1 as a top synthetic lethal interactor with mutant KRAS. BCAR1 encodes the SRC substrate p130Cas. We determine that SRC-inhibitor-mediated suppression of p130Cas phosphorylation impairs MYC transcription through a DOCK1-RAC1-ß-catenin-dependent mechanism. Additionally, genetic suppression of TUBB3, encoding the ßIII-tubulin subunit of microtubules, or pharmacological inhibition of microtubule function decreases levels of MYC protein in a calpain-dependent manner and potently sensitizes pancreatic cancer cells to ERK inhibition. Accordingly, the combination of a dual SRC/tubulin inhibitor with an ERK inhibitor cooperates to reduce MYC protein and synergistically suppress the growth of KRAS mutant pancreatic cancer. Thus, we demonstrate that mechanistically diverse combinations with ERK inhibition suppress MYC to impair pancreatic cancer proliferation.


Assuntos
Proteína Substrato Associada a Crk/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Microtúbulos/metabolismo , Neoplasias Pancreáticas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Acetamidas/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Calpaína/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Sinergismo Farmacológico , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Meia-Vida , Humanos , Microtúbulos/efeitos dos fármacos , Morfolinas/farmacologia , Mutação/genética , Organoides/efeitos dos fármacos , Organoides/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Piridinas/farmacologia , Transcrição Gênica/efeitos dos fármacos , Tubulina (Proteína)/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo
13.
Int J Biol Sci ; 17(10): 2461-2475, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34326687

RESUMO

Background: We investigated the roles of breast cancer anti-estrogen resistance 1 (BCAR1/p130Cas) in the formation and immunoevasion of invasive circulating tumor cells (CTCs) in lung adenocarcinoma (LUAD). Methods: Biomarkers of CTCs including BCAR1 and CD274, were evaluated by the CanPatrol method. Proteomics analysis of LUAD cells and exosomes after BCAR1 overexpression (BCAR1-OE) was performed by mass spectrometry. Cell functions and relevant signaling pathways were investigated after BCAR1 knockdown (BCAR1-KO) or BCAR1-OE in LUAD cells. Lastly, in vitro and in vivo experiments were performed to confirm the roles of BCAR1 in the formation and immunoevasion of CTCs. Results: High expression of BCAR1 by CTCs correlated with CD274 expression and epithelial-to-mesenchymal transition (EMT). RAC1, together with BCAR1, was found to play an important role in the carcinogenesis of LUAD. RAC1 functioned with BCAR1 to induce EMT and to enhance cell proliferation, colony formation, cell invasion and migration, and anoikis resistance in LUAD cells. BCAR1 up-regulated CD274 expression probably by shuttling the short isoform of BRD4 (BRD4-S) into the nucleus. CTCs, as well as tumor formation, were prohibited in nude mice xenografted with BCAR1-KO cells. The co-expression of BCAR1/RAC1 and BCAR1/CD274 was confirmed in LUAD. BCAR1 expression in LUAD is an indicator of poor prognosis, and it associates with immunoevasion. Conclusion: BCAR1, as a new target for the treatment of LUAD, plays roles in the formation and immunoevasion of invasive CTCs. The mechanism includes triggering EMT via RAC1 signaling and up-regulating CD274 expression by shuttling BRD4-S into the nucleus.


Assuntos
Adenocarcinoma de Pulmão/genética , Proteína Substrato Associada a Crk/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Células Neoplásicas Circulantes/patologia , Adenocarcinoma de Pulmão/mortalidade , Adenocarcinoma de Pulmão/patologia , Animais , Antígeno B7-H1/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteína Substrato Associada a Crk/metabolismo , Humanos , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transdução de Sinais , Fatores de Transcrição/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Acta Pharm Sin B ; 11(2): 309-321, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33643814

RESUMO

Cullin-RING ligases (CRLs) recognize and interact with substrates for ubiquitination and degradation, and can be targeted for disease treatment when the abnormal expression of substrates involves pathologic processes. Phosphorylation, either of substrates or receptors of CRLs, can alter their interaction. Phosphorylation-dependent ubiquitination and proteasome degradation influence various cellular processes and can contribute to the occurrence of various diseases, most often tumorigenesis. These processes have the potential to be used for tumor intervention through the regulation of the activities of related kinases, along with the regulation of the stability of specific oncoproteins and tumor suppressors. This review describes the mechanisms and biological functions of crosstalk between phosphorylation and ubiquitination, and most importantly its influence on tumorigenesis, to provide new directions and strategies for tumor therapy.

15.
Thorac Cancer ; 11(11): 3326-3336, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33001583

RESUMO

BACKGROUND: This study was designed to investigate the effects of a novel carcinogenetic molecule, p130cas (breast cancer antiestrogen resistance protein 1 or BCAR1) on proliferation and cell growth in lung adenocarcinoma. The study also aimed to identify the possible underlying signal networks of BCAR1. METHODS: First, we evaluated proliferation, cell colony formation, apoptosis, and cell cycle after BCAR1 was knocked out (KO) using CRISPR-Cas9 technology in H1975 and H1299 human lung adenocarcinoma cells. Subsequently, BCAR1 was upregulated in 293T cells and immunoprecipitation-mass spectrometry (IP-MS) was used with bioinformatics analysis to screen for potential networks of BCAR1 interacting proteins. Ultimately, we validated the correlated expressions of BCAR1 and a selected hub gene, RNA polymerase II subunit A (POLR2A), in 54 lung adenocarcinoma tissues, as well as in H1975 and H1299 cells. RESULTS: Cell proliferation of H1975 and H1299 was significantly inhibited following BCAR1-KO. Colony formation of H1975 cells was also significantly decreased following BCAR1-KO. IP-MS demonstrated 419 potential proteins that may interact with BCAR1. Among them, 68 genes were significantly positively correlated to BCAR1 expression, as verified by TCGA. Six hub genes were revealed by PPI String. High expression of POLR2A, MAPK3, MOV10, and XAB2 predicted poor prognosis in lung adenocarcinoma, as verified by the K-M plotter database. POLR2A and MAPK3 are involved in both catalytic activity and transferase activity. POLR2A and BCAR1 were significantly increased in lung cancer tissues as compared with matched normal tissues. High expression of POLR2A was significantly positively correlated to BCAR1 overexpression and predicted poor prognosis in 54 lung cancer cases. POLR2A expression was significantly decreased following BCAR1-KO in H1975 and H1299 cells. CONCLUSIONS: BCAR1 promotes proliferation and cell growth, probably via upregulation of POLR2A and subsequent enhancement of catalytic and transferase activities. However, additional robust studies are required to elucidate the mechanisms involved.


Assuntos
Adenocarcinoma de Pulmão/genética , Proteína Substrato Associada a Crk/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transfecção , Regulação para Cima
16.
Mol Oncol ; 13(2): 264-289, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30422386

RESUMO

Protein p130Cas constitutes an adaptor protein mainly involved in integrin signaling downstream of Src kinase. Owing to its modular structure, p130Cas acts as a general regulator of cancer cell growth and invasiveness induced by different oncogenes. However, other mechanisms of p130Cas signaling leading to malignant progression are poorly understood. Here, we show a novel interaction of p130Cas with Ser/Thr kinase PKN3, which is implicated in prostate and breast cancer growth downstream of phosphoinositide 3-kinase. This direct interaction is mediated by the p130Cas SH3 domain and the centrally located PKN3 polyproline sequence. PKN3 is the first identified Ser/Thr kinase to bind and phosphorylate p130Cas and to colocalize with p130Cas in cell structures that have a pro-invasive function. Moreover, the PKN3-p130Cas interaction is important for mouse embryonic fibroblast growth and invasiveness independent of Src transformation, indicating a mechanism distinct from that previously characterized for p130Cas. Together, our results suggest that the PKN3-p130Cas complex represents an attractive therapeutic target in late-stage malignancies.


Assuntos
Proteína Substrato Associada a Crk/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Proteína Quinase C/metabolismo , Animais , Movimento Celular , Proliferação de Células , Fibroblastos/metabolismo , Humanos , Camundongos Nus , Invasividade Neoplásica , Fosforilação , Fosfotreonina/metabolismo , Podossomos/metabolismo , Ligação Proteica , Pseudópodes/metabolismo , Fibras de Estresse/metabolismo , Quinases da Família src/metabolismo
17.
Acta Biochim Pol ; 65(3): 377-382, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30188962

RESUMO

Two recent studies found that RBMS1 gene rs7593730 and BCAR1 gene rs7202877 are related to type 2 diabetes. However, the association of these loci with type 2 diabetes mellitus (T2DM) has not been examined in Chinese. We performed a replication study to investigate the association of the 2 susceptibility loci with T2DM in the Chinese population. We genotyped 1961 Chinese participants (991 with T2DM and 970 controls) for each of the 2 single nucleotide polymorphisms (SNPs) rs7593730 in RBMS1 and rs7202877 near BCAR1 using SNPscan and examined their association with T2DM using logistic regression analysis. We also analyzed the correlation of the SNP alleles and clinical phenotypes. In additive model, genotype association analysis of BCAR1 rs7202877 loci revealed that the homozygous of rs7202877 GG carriers had significantly decreased T2DM risk compared to homozygous carriers of TT (P=0.038, OR 0.44, 95% CI 0.20-0.96). In the recessive model, the GG genotype GG had significantly decreased T2DM risk compared to GT+TT (P=0.043, OR 0.67, 95% CI 0.46-0.99). Allele G was statistically significantly correlated with TC (mmol/L) (P=0.036) and LDL-C (mmol/L) (P=0.007). As for rs7593730, the carriers of CT and TT genotype had significantly decreased T2DM risk compared to the carriers of CC genotype (CT: CC P=0.038, OR 0.71, 95% CI 0.51-0.98; TT: CC P=0.010, OR 0.32, 95% CI 0.13-0.76). In a dominant model, TT+CT: CC (P=0.013, OR 0.673, 95% CI 0.49-0.92) and in a recessive model, TT: CT+CC (P=0.019, OR 0.59, 95% CI 0.39-0.92). The T allele carriers had significantly decreased T2DM risk compared to the carriers of C (P=0.002, OR 0.65, 95% CI 0.50-0.86). Allele T was statistically correlated with FINS (P=0.010). In conclusion, our study showed that RBMS1 gene rs7593730 and BCAR1 gene rs7202877 were significantly associated with type 2 diabetes in the Chinese population.


Assuntos
Povo Asiático/genética , Proteína Substrato Associada a Crk/genética , Proteínas de Ligação a DNA/genética , Diabetes Mellitus Tipo 2/etnologia , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Proteínas de Ligação a RNA/genética , Adulto , Alelos , Estudos de Casos e Controles , China , Feminino , Triagem de Portadores Genéticos , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
18.
Oncotarget ; 8(44): 76003-76014, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-29100287

RESUMO

Intermediate-risk acute myeloid leukemia (IR-AML) is the largest subgroup of AML patients and is highly heterogeneous. Whereas adverse and favourable risk patients have well-established treatment protocols, IR-AML patients have not. It is, therefore, crucial to find novel factors that stratify this subgroup to implement risk-adapted strategies. The CAS (Crk-associated substrate) adaptor protein family regulates cell proliferation, survival, migration and adhesion. Despite its association with metastatic dissemination and prognosis of different solid tumors, the role of these proteins in hematological malignancies has been scarcely evaluated. Nevertheless, previous work has established an important role for the CAS family members NEDD9 or BCAR1 in the migratory and dissemination capacities of myeloid cells. On this basis, we hypothesized that NEDD9 or BCAR1 expression levels could associate with survival in IR-AML patients and become new prognostic markers. To that purpose, we assessed BCAR1 and NEDD9 gene expression in a cohort of 73 adult AML patients validating the results in an independent cohort (n = 206). We have identified NEDD9, but not BCAR1, as a new a marker for longer overall and disease-free survival, and for lower cumulative incidence of relapse. In summary, NEDD9 gene expression is an independent prognostic factor for favourable prognosis in IR-AML patients.

19.
Oncotarget ; 7(45): 74189-74202, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27713116

RESUMO

The expression of Prostate Specific-Membrane Antigen (PSMA) increases in high-grade prostate carcinoma envisaging a role in growth and progression. We show here that clustering PSMA at LNCaP or PC3-PSMA cell membrane activates AKT and MAPK pathways thus promoting proliferation and survival. PSMA activity was dependent on the assembly of a macromolecular complex including filamin A, beta1 integrin, p130CAS, c-Src and EGFR. Within this complex beta1 integrin became activated thereby inducing a c-Src-dependent EGFR phosphorylation at Y1086 and Y1173 EGF-independent residues. Silencing or blocking experiments with drugs demonstrated that all the complex components were required for full PSMA-dependent promotion of cell growth and/or survival in 3D culture, but that p130CAS and EGFR exerted a major role. All PSMA complex components were found assembled in multiple samples of two high-grade prostate carcinomas and associated with EGFR phosphorylation at Y1086. The expression of p130CAS and pEGFRY1086 was thus analysed by tissue micro array in 16 castration-resistant prostate carcinomas selected from 309 carcinomas and stratified from GS 3+4 to GS 5+5. Patients with Gleason Score ≤5 resulted negative whereas those with GS≥5 expressed p130CAS and pEGFRY1086 in 75% and 60% of the cases, respectively.Collectively, our results demonstrate for the first time that PSMA recruits a functionally active complex which is present in high-grade patients. In addition, two components of this complex, p130CAS and the novel pEGFRY1086, correlate with progression in castration-resistant patients and could be therefore useful in therapeutic or surveillance strategies of these patients.


Assuntos
Calicreínas/metabolismo , Antígeno Prostático Específico/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias da Próstata/metabolismo , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Progressão da Doença , Receptores ErbB/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Proteína Oncogênica v-akt/metabolismo , Fosforilação , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/patologia , Serina-Treonina Quinases TOR/metabolismo , Proteína de Morte Celular Associada a bcl/metabolismo
20.
Gene Expr Patterns ; 20(1): 55-62, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26631802

RESUMO

Primitive hematopoiesis generates red blood cells that deliver oxygen to the developing embryo. Mesodermal cells commit to a primitive blood cell fate during gastrulation and, in order to do so the mesoderm must receive non-cell autonomous signals transmitted from other germ layers. In Xenopus, the transcription factor Gata2 functions in ectodermal cells to generate or transmit the non-cell autonomous signals. Here we have identified Breast Cancer Antiestrogen Resistance 3 (bcar3) as a gene that is induced in ectodermal cells downstream of Gata2. Bcar3 and its binding partner Bcar1 function to transduce integrin signaling, leading to changes in cellular morphology, motility and adhesion. We show that gata2, bcar3 and bcar1 are co-expressed in ventral ectoderm from early gastrula to early tailbud stages. At later stages of development, bcar3 and bcar1 are co-expressed in the spinal cord, notochord, fin mesenchyme and pronephros but each shows additional unique sites of expression. These co-expression and unique expression patterns suggest that Bcar3 and Bcar1 may function together but also independently during Xenopus development.


Assuntos
Fator de Transcrição GATA2/genética , Gástrula/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas de Xenopus/genética , Animais , Ectoderma/metabolismo , Fator de Transcrição GATA2/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Hematopoese , Análise em Microsséries , Ligação Proteica , Transdução de Sinais , Técnicas de Cultura de Tecidos , Proteínas de Xenopus/metabolismo , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA