Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 410
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 174(5): 1293-1308.e36, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-29961579

RESUMO

Knowledge of immune cell phenotypes in the tumor microenvironment is essential for understanding mechanisms of cancer progression and immunotherapy response. We profiled 45,000 immune cells from eight breast carcinomas, as well as matched normal breast tissue, blood, and lymph nodes, using single-cell RNA-seq. We developed a preprocessing pipeline, SEQC, and a Bayesian clustering and normalization method, Biscuit, to address computational challenges inherent to single-cell data. Despite significant similarity between normal and tumor tissue-resident immune cells, we observed continuous phenotypic expansions specific to the tumor microenvironment. Analysis of paired single-cell RNA and T cell receptor (TCR) sequencing data from 27,000 additional T cells revealed the combinatorial impact of TCR utilization on phenotypic diversity. Our results support a model of continuous activation in T cells and do not comport with the macrophage polarization model in cancer. Our results have important implications for characterizing tumor-infiltrating immune cells.


Assuntos
Neoplasias da Mama/imunologia , Regulação Neoplásica da Expressão Gênica , Receptores de Antígenos de Linfócitos T/metabolismo , Análise de Sequência de RNA , Análise de Célula Única , Microambiente Tumoral/imunologia , Teorema de Bayes , Neoplasias da Mama/patologia , Análise por Conglomerados , Biologia Computacional , Feminino , Perfilação da Expressão Gênica , Humanos , Sistema Imunitário , Imunoterapia/métodos , Linfonodos , Linfócitos do Interstício Tumoral , Macrófagos/metabolismo , Fenótipo , Transcriptoma
2.
Proc Natl Acad Sci U S A ; 121(28): e2302924121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38950368

RESUMO

The human colonization of the Canary Islands represents the sole known expansion of Berber communities into the Atlantic Ocean and is an example of marine dispersal carried out by an African population. While this island colonization shows similarities to the populating of other islands across the world, several questions still need to be answered before this case can be included in wider debates regarding patterns of initial colonization and human settlement, human-environment interactions, and the emergence of island identities. Specifically, the chronology of the first human settlement of the Canary Islands remains disputed due to differing estimates of the timing of its first colonization. This absence of a consensus has resulted in divergent hypotheses regarding the motivations that led early settlers to migrate to the islands, e.g., ecological or demographic. Distinct motivations would imply differences in the strategies and dynamics of colonization; thus, identifying them is crucial to understanding how these populations developed in such environments. In response, the current study assembles a comprehensive dataset of the most reliable radiocarbon dates, which were used for building Bayesian models of colonization. The findings suggest that i) the Romans most likely discovered the islands around the 1st century BCE; ii) Berber groups from western North Africa first set foot on one of the islands closest to the African mainland sometime between the 1st and 3rd centuries CE; iii) Roman and Berber societies did not live simultaneously in the Canary Islands; and iv) the Berber people rapidly spread throughout the archipelago.


Assuntos
Migração Humana , Humanos , Espanha , Migração Humana/história , Teorema de Bayes , História Antiga , Datação Radiométrica
3.
Proc Natl Acad Sci U S A ; 120(19): e2218443120, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126724

RESUMO

Globalizing economies and long-distance trade rely on individuals from different cultural groups to negotiate agreement on what to give and take. In such settings, individuals often lack insight into what interaction partners deem fair and appropriate, potentially seeding misunderstandings, frustration, and conflict. Here, we examine how individuals decipher distinct rules of engagement and adapt their behavior to reach agreements with partners from other cultural groups. Modeling individuals as Bayesian learners with inequality aversion reveals that individuals, in repeated ultimatum bargaining with responders sampled from different groups, can be more generous than needed. While this allows them to reach agreements, it also gives rise to biased beliefs about what is required to reach agreement with members from distinct groups. Preregistered behavioral (N = 420) and neuroimaging experiments (N = 49) support model predictions: Seeking equitable agreements can lead to overly generous behavior toward partners from different groups alongside incorrect beliefs about prevailing norms of what is appropriate in groups and cultures other than one's own.


Assuntos
Aprendizagem , Negociação , Humanos , Teorema de Bayes , Frustração
4.
Proc Natl Acad Sci U S A ; 120(22): e2215015120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216526

RESUMO

Teaching enables humans to impart vast stores of culturally specific knowledge and skills. However, little is known about the neural computations that guide teachers' decisions about what information to communicate. Participants (N = 28) played the role of teachers while being scanned using fMRI; their task was to select examples that would teach learners how to answer abstract multiple-choice questions. Participants' examples were best described by a model that selects evidence that maximizes the learner's belief in the correct answer. Consistent with this idea, participants' predictions about how well learners would do closely tracked the performance of an independent sample of learners (N = 140) who were tested on the examples they had provided. In addition, regions that play specialized roles in processing social information, namely the bilateral temporoparietal junction and middle and dorsal medial prefrontal cortex, tracked learners' posterior belief in the correct answer. Our results shed light on the computational and neural architectures that support our extraordinary abilities as teachers.


Assuntos
Aprendizagem , Mentalização , Ensino , Humanos , Encéfalo/diagnóstico por imagem
5.
Proc Natl Acad Sci U S A ; 119(11): e2111547119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35275788

RESUMO

SignificanceWith the increase in artificial intelligence in real-world applications, there is interest in building hybrid systems that take both human and machine predictions into account. Previous work has shown the benefits of separately combining the predictions of diverse machine classifiers or groups of people. Using a Bayesian modeling framework, we extend these results by systematically investigating the factors that influence the performance of hybrid combinations of human and machine classifiers while taking into account the unique ways human and algorithmic confidence is expressed.


Assuntos
Inteligência Artificial , Teorema de Bayes , Humanos
6.
Proc Natl Acad Sci U S A ; 119(23): e2119266119, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35639701

RESUMO

The effectiveness of mask wearing at controlling severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission has been unclear. While masks are known to substantially reduce disease transmission in healthcare settings [D. K. Chu et al., Lancet 395, 1973­1987 (2020); J. Howard et al., Proc. Natl. Acad. Sci. U.S.A. 118, e2014564118 (2021); Y. Cheng et al., Science eabg6296 (2021)], studies in community settings report inconsistent results [H. M. Ollila et al., medRxiv (2020); J. Brainard et al., Eurosurveillance 25, 2000725 (2020); T. Jefferson et al., Cochrane Database Syst. Rev. 11, CD006207 (2020)]. Most such studies focus on how masks impact transmission, by analyzing how effective government mask mandates are. However, we find that widespread voluntary mask wearing, and other data limitations, make mandate effectiveness a poor proxy for mask-wearing effectiveness. We directly analyze the effect of mask wearing on SARS-CoV-2 transmission, drawing on several datasets covering 92 regions on six continents, including the largest survey of wearing behavior (n= 20 million) [F. Kreuter et al., https://gisumd.github.io/COVID-19-API-Documentation (2020)]. Using a Bayesian hierarchical model, we estimate the effect of mask wearing on transmission, by linking reported wearing levels to reported cases in each region, while adjusting for mobility and nonpharmaceutical interventions (NPIs), such as bans on large gatherings. Our estimates imply that the mean observed level of mask wearing corresponds to a 19% decrease in the reproduction number R. We also assess the robustness of our results in 60 tests spanning 20 sensitivity analyses. In light of these results, policy makers can effectively reduce transmission by intervening to increase mask wearing.


Assuntos
COVID-19 , Máscaras , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , Política Pública , Inquéritos e Questionários
7.
Am J Epidemiol ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38932578

RESUMO

The United States continues to suffer a drug overdose crisis that has resulted in over 100,000 deaths annually since 2021. Despite decades of attention, estimates of the prevalence of drug use at the spatiotemporal resolutions necessary for resource allocation and intervention evaluation are lacking. Current approaches to measure prevalence of drug use, such as population surveys, capture-recapture, and multiplier methods, have significant limitations. Santaella-Tenorio et al. (Am J Epidemiol. XXXX;XXX(XX):XXXX-XXXX)) use a novel joint Bayesian spatiotemporal modeling approach to estimate county-level opioid misuse prevalence in New York state from 2007 to 2018 and identify significant intra-state variation. By leveraging five data sources and simultaneously modeling different opioid-related outcomes - such as deaths, emergency department visits, and treatment visits - they obtain policy-relevant insights into the prevalence of opioid misuse and opioid-related outcomes at high spatiotemporal resolutions. This study provides future researchers with a sophisticated modeling approach that allows them to incorporate multiple data sources in a rigorous statistical framework. The limitations of the study reflect the constraints of the broader field and underscores the importance of enhancing current surveillance with better, newer, and more timely data that is both standardized and easily accessible to inform public health policies and interventions.

8.
Am J Transplant ; 24(9): 1690-1697, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38460787

RESUMO

Although severe acute respiratory syndrome coronavirus 2 messenger ribonucleic acid (SARS-CoV-2 mRNA) vaccines are effective in kidney transplant recipients (KTRs), their immune response to vaccination is blunted by immunosuppression. Other tools enhancing vaccination response are therefore needed. Interestingly, aligning vaccine administration with circadian rhythms (chronovaccination) has been shown to boost immune response. However, its applicability in KTRs, whose circadian rhythms are likely disrupted by immunosuppressants, remains unclear. To assess the impact of vaccination timing on seroconversion in the KTRs population, we analyzed data from 553 virus-naïve KTRs who received 2 doses of messenger ribonucleic acid (mRNA) vaccine. Bayesian logistic regression was employed, adjusting for previously identified predictors of seroconversion, including allograft function, maintenance immunosuppressants, or time since transplantation. SARS-CoV-2 immunoglobulin G (IgG) levels were measured with a median of 47 days after the second dose. The results did not reveal a reliable effect of timing of the first dose but did indicate that earlier timing for the second dose brings a notable benefit-every 1-hour delay in the application was associated with a 16% reduction in the odds of seroconversion (OR 0.84, 95% CI 0.71, 0.998). Similar results were obtained from quantile regression modeling IgG levels. In conclusion, morning vaccination is emerging as a promising and easily implementable strategy to enhance vaccine response in KTRs.


Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Imunidade Humoral , Transplante de Rim , SARS-CoV-2 , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Vacinação , Adulto , Transplantados , Ritmo Circadiano/imunologia , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Idoso , Imunossupressores/administração & dosagem , Imunossupressores/uso terapêutico , Falência Renal Crônica/cirurgia , Falência Renal Crônica/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia
9.
Brief Bioinform ; 23(4)2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35649341

RESUMO

Cell-free DNA (cfDNA) provides a convenient diagnosis avenue for noninvasive cancer detection. The current methods are focused on identifying circulating tumor DNA (ctDNA)s genomic aberrations, e.g. mutations, copy number aberrations (CNAs) or methylation changes. In this study, we report a new computational method that unifies two orthogonal pieces of information, namely methylation and CNAs, derived from whole-genome bisulfite sequencing (WGBS) data to quantify low tumor content in cfDNA. It implements a Bayes model to enrich ctDNA from WGBS data based on hypomethylation haplotypes, and subsequently, models CNAs for cancer detection. We generated WGBS data in a total of 262 samples, including high-depth (>20×, deduped high mapping quality reads) data in 76 samples with matched triplets (tumor, adjacent normal and cfDNA) and low-depth (~2.5×, deduped high mapping quality reads) data in 186 samples. We identified a total of 54 Mb regions of hypomethylation haplotypes for model building, a vast majority of which are not covered in the HumanMethylation450 arrays. We showed that our model is able to substantially enrich ctDNA reads (tens of folds), with clearly elevated CNAs that faithfully match the CNAs in the paired tumor samples. In the 19 hepatocellular carcinoma cfDNA samples, the estimated enrichment is as high as 16 fold, and in the simulation data, it can achieve over 30-fold enrichment for a ctDNA level of 0.5% with a sequencing depth of 600×. We also found that these hypomethylation regions are also shared among many cancer types, thus demonstrating the potential of our framework for pancancer early detection.


Assuntos
Ácidos Nucleicos Livres , DNA Tumoral Circulante , Neoplasias , Teorema de Bayes , Biomarcadores Tumorais/genética , Ácidos Nucleicos Livres/genética , DNA Tumoral Circulante/genética , Variações do Número de Cópias de DNA , Metilação de DNA , Humanos , Neoplasias/diagnóstico , Neoplasias/genética
10.
Brief Bioinform ; 23(3)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35368055

RESUMO

The rapid development of single-cell DNA sequencing (scDNA-seq) technology has greatly enhanced the resolution of tumor cell profiling, providing an unprecedented perspective in characterizing intra-tumoral heterogeneity and understanding tumor progression and metastasis. However, prominent algorithms for constructing tumor phylogeny based on scDNA-seq data usually only take single nucleotide variations (SNVs) as markers, failing to consider the effect caused by copy number alterations (CNAs). Here, we propose BiTSC$^2$, Bayesian inference of Tumor clonal Tree by joint analysis of Single-Cell SNV and CNA data. BiTSC$^2$ takes raw reads from scDNA-seq as input, accounts for the overlapping of CNA and SNV, models allelic dropout rate, sequencing errors and missing rate, as well as assigns single cells into subclones. By applying Markov Chain Monte Carlo sampling, BiTSC$^2$ can simultaneously estimate the subclonal scCNA and scSNV genotype matrices, subclonal assignments and tumor subclonal evolutionary tree. In comparison with existing methods on synthetic and real tumor data, BiTSC$^2$ shows high accuracy in genotype recovery, subclonal assignment and tree reconstruction. BiTSC$^2$ also performs robustly in dealing with scDNA-seq data with low sequencing depth and variant missing rate. BiTSC$^2$ software is available at https://github.com/ucasdp/BiTSC2.


Assuntos
Neoplasias , Algoritmos , Teorema de Bayes , Variações do Número de Cópias de DNA , Humanos , Neoplasias/genética , Análise de Sequência de DNA , Software
11.
Glob Chang Biol ; 30(6): e17366, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38847450

RESUMO

Changes in body size have been documented across taxa in response to human activities and climate change. Body size influences many aspects of an individual's physiology, behavior, and ecology, ultimately affecting life history performance and resilience to stressors. In this study, we developed an analytical approach to model individual growth patterns using aerial imagery collected via drones, which can be used to investigate shifts in body size in a population and the associated drivers. We applied the method to a large morphological dataset of gray whales (Eschrichtius robustus) using a distinct foraging ground along the NE Pacific coast, and found that the asymptotic length of these whales has declined since around the year 2000 at an average rate of 0.05-0.12 m/y. The decline has been stronger in females, which are estimated to be now comparable in size to males, minimizing sexual dimorphism. We show that the decline in asymptotic length is correlated with two oceanographic metrics acting as proxies of habitat quality at different scales: the mean Pacific Decadal Oscillation index, and the mean ratio between upwelling intensity in a season and the number of relaxation events. These results suggest that the decline in gray whale body size may represent a plastic response to changing environmental conditions. Decreasing body size could have cascading effects on the population's demography, ability to adjust to environmental changes, and ecological influence on the structure of their community. This finding adds to the mounting evidence that body size is shrinking in several marine populations in association with climate change and other anthropogenic stressors. Our modeling approach is broadly applicable across multiple systems where morphological data on megafauna are collected using drones.


Assuntos
Tamanho Corporal , Mudança Climática , Baleias , Animais , Feminino , Masculino , Baleias/fisiologia , Ecossistema , Modelos Biológicos , Oceano Pacífico
12.
Biometrics ; 80(1)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38483283

RESUMO

It is difficult to characterize complex variations of biological processes, often longitudinally measured using biomarkers that yield noisy data. While joint modeling with a longitudinal submodel for the biomarker measurements and a survival submodel for assessing the hazard of events can alleviate measurement error issues, the continuous longitudinal submodel often uses random intercepts and slopes to estimate both between- and within-patient heterogeneity in biomarker trajectories. To overcome longitudinal submodel challenges, we replace random slopes with scaled integrated fractional Brownian motion (IFBM). As a more generalized version of integrated Brownian motion, IFBM reasonably depicts noisily measured biological processes. From this longitudinal IFBM model, we derive novel target functions to monitor the risk of rapid disease progression as real-time predictive probabilities. Predicted biomarker values from the IFBM submodel are used as inputs in a Cox submodel to estimate event hazard. This two-stage approach to fit the submodels is performed via Bayesian posterior computation and inference. We use the proposed approach to predict dynamic lung disease progression and mortality in women with a rare disease called lymphangioleiomyomatosis who were followed in a national patient registry. We compare our approach to those using integrated Ornstein-Uhlenbeck or conventional random intercepts-and-slopes terms for the longitudinal submodel. In the comparative analysis, the IFBM model consistently demonstrated superior predictive performance.


Assuntos
Nonoxinol , Humanos , Feminino , Teorema de Bayes , Probabilidade , Biomarcadores , Progressão da Doença
13.
Stat Med ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189680

RESUMO

Understanding the underlying causes of maternal death across all regions of the world is essential to inform policies and resource allocation to reduce the mortality burden. However, in many countries there exists very little data on the causes of maternal death, and data that do exist do not capture the entire population at risk. In this article, we present a Bayesian hierarchical multinomial model to estimate maternal cause of death distributions globally, regionally, and for all countries worldwide. The framework combines data from various sources to inform estimates, including data from civil registration and vital systems, smaller-scale surveys and studies, and high-quality data from confidential enquiries and surveillance systems. The framework accounts for varying data quality and coverage, and allows for situations where one or more causes of death are missing. We illustrate the results of the model on three case-study countries that have different data availability situations.

14.
Stat Med ; 43(18): 3539-3561, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38853380

RESUMO

Ordinal longitudinal outcomes are becoming common in clinical research, particularly in the context of COVID-19 clinical trials. These outcomes are information-rich and can increase the statistical efficiency of a study when analyzed in a principled manner. We present Bayesian ordinal transition models as a flexible modeling framework to analyze ordinal longitudinal outcomes. We develop the theory from first principles and provide an application using data from the Adaptive COVID-19 Treatment Trial (ACTT-1) with code examples in R. We advocate that researchers use ordinal transition models to analyze ordinal longitudinal outcomes when appropriate alongside standard methods such as time-to-event modeling.


Assuntos
Teorema de Bayes , COVID-19 , Modelos Estatísticos , Humanos , Estudos Longitudinais , Tratamento Farmacológico da COVID-19 , SARS-CoV-2
15.
Regul Toxicol Pharmacol ; 148: 105596, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38447894

RESUMO

To fulfil the promise of reducing reliance on mammalian in vivo laboratory animal studies, new approach methods (NAMs) need to provide a confident basis for regulatory decision-making. However, previous attempts to develop in vitro NAMs-based points of departure (PODs) have yielded mixed results, with PODs from U.S. EPA's ToxCast, for instance, appearing more conservative (protective) but poorly correlated with traditional in vivo studies. Here, we aimed to address this discordance by reducing the heterogeneity of in vivo PODs, accounting for species differences, and enhancing the biological relevance of in vitro PODs. However, we only found improved in vitro-to-in vivo concordance when combining the use of Bayesian model averaging-based benchmark dose modeling for in vivo PODs, allometric scaling for interspecies adjustments, and human-relevant in vitro assays with multiple induced pluripotent stem cell-derived models. Moreover, the available sample size was only 15 chemicals, and the resulting level of concordance was only fair, with correlation coefficients <0.5 and prediction intervals spanning several orders of magnitude. Overall, while this study suggests several ways to enhance concordance and thereby increase scientific confidence in vitro NAMs-based PODs, it also highlights challenges in their predictive accuracy and precision for use in regulatory decision making.


Assuntos
Mamíferos , Animais , Humanos , Teorema de Bayes , Medição de Risco/métodos
16.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34162708

RESUMO

In response to the novel coronavirus disease (COVID-19), governments have introduced severe policy measures with substantial effects on human behavior. Here, we perform a large-scale, spatiotemporal analysis of human mobility during the COVID-19 epidemic. We derive human mobility from anonymized, aggregated telecommunication data in a nationwide setting (Switzerland; 10 February to 26 April 2020), consisting of ∼1.5 billion trips. In comparison to the same time period from 2019, human movement in Switzerland dropped by 49.1%. The strongest reduction is linked to bans on gatherings of more than five people, which are estimated to have decreased mobility by 24.9%, followed by venue closures (stores, restaurants, and bars) and school closures. As such, human mobility at a given day predicts reported cases 7 to 13 d ahead. A 1% reduction in human mobility predicts a 0.88 to 1.11% reduction in daily reported COVID-19 cases. When managing epidemics, monitoring human mobility via telecommunication data can support public decision makers in two ways. First, it helps in assessing policy impact; second, it provides a scalable tool for near real-time epidemic surveillance, thereby enabling evidence-based policies.


Assuntos
COVID-19/epidemiologia , SARS-CoV-2 , Telecomunicações/estatística & dados numéricos , Política de Saúde/tendências , Humanos , Vigilância da População , Saúde Pública , Suíça/epidemiologia , Viagem/estatística & dados numéricos
17.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34697237

RESUMO

Snow is highly sensitive to atmospheric warming. However, because of the lack of sufficiently long snow avalanche time series and statistical techniques capable of accounting for the numerous biases inherent to sparse and incomplete avalanche records, the evolution of process activity in a warming climate remains little known. Filling this gap requires innovative approaches that put avalanche activity into a long-term context. Here, we combine extensive historical records and Bayesian techniques to construct a 240-y chronicle of snow avalanching in the Vosges Mountains (France). We show evidence that the transition from the late Little Ice Age to the early twentieth century (i.e., 1850 to 1920 CE) was not only characterized by local winter warming in the order of +1.35 °C but that this warming also resulted in a more than sevenfold reduction in yearly avalanche numbers, a severe shrinkage of avalanche size, and shorter avalanche seasons as well as in a reduction of the extent of avalanche-prone terrain. Using a substantial corpus of snow and climate proxy sources, we explain this abrupt shift with increasingly scarcer snow conditions with the low-to-medium elevations of the Vosges Mountains (600 to 1,200 m above sea level [a.s.l.]). As a result, avalanches migrated upslope, with only a relict activity persisting at the highest elevations (release areas >1,200 m a.s.l.). This abrupt, unambiguous response of snow avalanche activity to warming provides valuable information to anticipate likely changes in avalanche behavior in higher mountain environments under ongoing and future warming.

18.
Biom J ; 66(1): e2200350, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38285406

RESUMO

This work aims to show how prior knowledge about the structure of a heterogeneous animal population can be leveraged to improve the abundance estimation from capture-recapture survey data. We combine the Open Jolly-Seber model with finite mixtures and propose a parsimonious specification tailored to the residency patterns of the common bottlenose dolphin. We employ a Bayesian framework for our inference, discussing the appropriate choice of priors to mitigate label-switching and nonidentifiability issues, commonly associated with finite mixture models. We conduct a series of simulation experiments to illustrate the competitive advantage of our proposal over less specific alternatives. The proposed approach is applied to data collected on the common bottlenose dolphin population inhabiting the Tiber River estuary (Mediterranean Sea). Our results provide novel insights into this population's size and structure, shedding light on some of the ecological processes governing its dynamics.


Assuntos
Golfinho Nariz-de-Garrafa , Internato e Residência , Animais , Animais Selvagens , Teorema de Bayes , Simulação por Computador
19.
Biom J ; 66(1): e2200341, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38285407

RESUMO

Infectious disease models can serve as critical tools to predict the development of cases and associated healthcare demand and to determine the set of nonpharmaceutical interventions (NPIs) that is most effective in slowing the spread of an infectious agent. Current approaches to estimate NPI effects typically focus on relatively short time periods and either on the number of reported cases, deaths, intensive care occupancy, or hospital occupancy as a single indicator of disease transmission. In this work, we propose a Bayesian hierarchical model that integrates multiple outcomes and complementary sources of information in the estimation of the true and unknown number of infections while accounting for time-varying underreporting and weekday-specific delays in reported cases and deaths, allowing us to estimate the number of infections on a daily basis rather than having to smooth the data. To address dynamic changes occurring over long periods of time, we account for the spread of new variants, seasonality, and time-varying differences in host susceptibility. We implement a Markov chain Monte Carlo algorithm to conduct Bayesian inference and illustrate the proposed approach with data on COVID-19 from 20 European countries. The approach shows good performance on simulated data and produces posterior predictions that show a good fit to reported cases, deaths, hospital, and intensive care occupancy.


Assuntos
COVID-19 , Doenças Transmissíveis , Humanos , Incerteza , COVID-19/epidemiologia , Teorema de Bayes , Algoritmos
20.
Behav Res Methods ; 56(7): 8080-8090, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39073755

RESUMO

Mixed-format tests, which typically include dichotomous items and polytomously scored tasks, are employed to assess a wider range of knowledge and skills. Recent behavioral and educational studies have highlighted their practical importance and methodological developments, particularly within the context of multivariate generalizability theory. However, the diverse response types and complex designs of these tests pose significant analytical challenges when modeling data simultaneously. Current methods often struggle to yield reliable results, either due to the inappropriate treatment of different types of response data separately or the imposition of identical covariates across various response types. Moreover, there are few software packages or programs that offer customized solutions for modeling mixed-format tests, addressing these limitations. This tutorial provides a detailed example of using a Bayesian approach to model data collected from a mixed-format test, comprising multiple-choice questions and free-response tasks. The modeling was conducted using the Stan software within the R programming system, with Stan codes tailored to the structure of the test design, following the principles of multivariate generalizability theory. By further examining the effects of prior distributions in this example, this study demonstrates how the adaptability of Bayesian models to diverse test formats, coupled with their potential for nuanced analysis, can significantly advance the field of psychometric modeling.


Assuntos
Teorema de Bayes , Humanos , Psicometria/métodos , Software , Modelos Estatísticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA