Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Neurobiol Dis ; 164: 105628, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35033660

RESUMO

Loss of vision due to progressive retinal degeneration is a hallmark of neuronal ceroid lipofuscinoses (NCL), a group of fatal neurodegenerative lysosomal storage diseases. Enzyme substitution therapies represent promising treatment options for NCLs caused by dysfunctions of soluble lysosomal enzymes. Here, we compared the efficacy of a cell-based enzyme substitution strategy and a gene therapy approach to attenuate the retinal pathology in cathepsin D- (CTSD) deficient mice, an animal model of CLN10 disease. Levels of enzymatically active CTSD in mutant retinas were significantly higher after an adeno-associated virus vector-mediated CTSD transfer to retinal glial cells and retinal pigment epithelial cells than after intravitreal transplantations of a CTSD overexpressing clonal neural stem cell line. In line with this finding, the gene therapy treatment restored the disrupted autophagy-lysosomal pathway more effectively than the cell-based approach, as indicated by a complete clearance of storage, significant attenuation of lysosomal hypertrophy, and normalized levels of the autophagy marker sequestosome 1/p62 and microtubule-associated protein 1 light chain 3-II. While the cell-based treatment did not prevent the rapidly progressing loss of various retinal cell types, the gene therapy approach markedly attenuated retinal degeneration as demonstrated by a pronounced rescue of photoreceptor cells and rod bipolar cells.


Assuntos
Autofagia/fisiologia , Catepsina D/genética , Terapia Genética , Lisossomos/fisiologia , Degeneração Retiniana/terapia , Animais , Catepsina D/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Degeneração Retiniana/genética
2.
Mol Genet Genomic Med ; 9(10): e1777, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34331747

RESUMO

BACKGROUND: Cathepsin D is a lysosomal aspartic protease encoded by the CTSD gene. It plays important roles in many biological processes. Biallelic loss-of-function mutation of CTSD is considered a cause of CLN10 disease. CLN10 is a rare autosomal recessive disorder that is one of 14 types of neuronal ceroid lipofuscinoses (NCLs). To date, only a few cases of CLN10 and 12 disease-causing mutations have been reported worldwide. METHODS: Exome sequencing was performed on a 15-year-old girl with pervasive brain developmental disorder. The effects of the identified variants were investigated through multiple functional experiments. RESULTS: There were no differences in mRNA and protein expression, intracellular localization, maturation, and proteolytic activity between the cells with the mutant CTSD gene and those with the wild-type CTSD gene. CONCLUSION: These results suggest that the c.863A>G (p.Glu288Gly) homozygous variant is not a pathogenic variation, but a benign variant.


Assuntos
Alelos , Substituição de Aminoácidos , Catepsina D/genética , Predisposição Genética para Doença , Mutação , Lipofuscinoses Ceroides Neuronais/diagnóstico , Lipofuscinoses Ceroides Neuronais/etiologia , Adolescente , Catepsina D/metabolismo , Análise Mutacional de DNA , Feminino , Imunofluorescência , Técnicas de Silenciamento de Genes , Estudos de Associação Genética , Homozigoto , Humanos , Imageamento por Ressonância Magnética , Fenótipo , Transporte Proteico , Sequenciamento do Exoma
3.
Birth Defects Res ; 113(18): 1324-1332, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34491000

RESUMO

BACKGROUND: Neuronal ceroid lipofuscinoses (NCLs) form a clinically and genetically heterogeneous group of inherited neurodegenerative disorders that share common neuropathological features. Although they are the first cause of neurodegenerative disorders in children, their congenital forms are rarely documented. They are classically due to mutations in the CTSD gene (the CLN10 disease). Affected newborns usually present severe microcephaly, seizures and respiratory failure leading to death within the first postnatal days or weeks. CASES: We report on two siblings, in which exome sequencing identified a novel homozygous CTSD variant. The first sib presented at birth with seizures, rapidly progressive postnatal microcephaly and visual deficiency related to retinal dysfunction. Progressive neurological deterioration leads to death at the age of 24 months. Cathepsin D activity was reduced in the cultured fibroblasts of this patient. The second sib, a fetus of 36 weeks of gestation, was delivered after pregnancy termination for brain abnormalities (in accordance with French Legislation) suggesting a recurrence of the disease. Fetal postmortem examination disclosed neuropathological features consistent with NCL. CONCLUSIONS: Congenital NCL related to CTSD mutations is a neuronal storage disorder that produces in the developing brain diffuse neurodegeneration and white matter atrophy resulting in a progressive and rapidly lethal microcephaly.


Assuntos
Catepsina D , Microcefalia , Lipofuscinoses Ceroides Neuronais , Encéfalo/metabolismo , Catepsina D/genética , Feminino , Humanos , Recém-Nascido , Microcefalia/genética , Mutação/genética , Lipofuscinoses Ceroides Neuronais/genética , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA