Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 50(10): 8483-8495, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37639152

RESUMO

BACKGROUND: Although low-dose carbon monoxide (CO) administration has been shown to have an anti-fibrotic effect in various fibrotic diseases, its effects on peritoneal adhesion (PA), one of the postoperative complications, are not elucidated. In this study, the effect of CO-releasing tricarbonyldichlororuthenium (II) dimer (CORM-2) administration on the formation of PA and the underlying factors of its potential effect were investigated. METHODS AND RESULTS: After the induction of PA, rats were divided into four groups with 8 rats in each group. The rats received either (i) dimethyl sulfoxide:saline solution (1:10) as a vehicle, (ii) 2.5 mg/kg CORM-2, (iii) 5 mg/kg CORM-2, or (iv) inactive (i) CORM (iCORM) intragastrically every day for a duration of 7 days. PA was not induced in rats (n = 8) designated as sham controls. Gross, histological, immunohistochemical and quantitative real-time polymerase chain reaction analyses were performed to evaluate the effectiveness of CORM-2 administration. Gross analysis showed that CORM-2 administration reduced PA formation compared to rats treated with vehicle. Histological and immunohistochemical examinations showed that increased collagen deposition, myofibroblast accumulation, microvessel density, and M1 macrophage count in the peritoneal fibrosis area of vehicle-treated rats decreased following CORM-2 treatments. PCR analyses showed that CORM-2 treatments decreased hypoxia-induced Hif1a, profibrotic Tgfb1, ECM components Col1a1 and Col3a1, collagen degradation suppressor Timp1, fibrinolysis inhibitor Serpine1, and pro-inflammatory Tnf mRNA expressions, while increasing the M2 macrophage marker Arg1 mRNA expression. CONCLUSIONS: These results suggested that CORM-2 administration reduces PA formation by affecting adhesiogenic processes such as pro-inflammatory response, fibrinolytic system, angiogenesis and fibrogenesis.


Assuntos
Monóxido de Carbono , Dimetil Sulfóxido , Animais , Ratos , Monóxido de Carbono/farmacologia , Hipóxia , RNA Mensageiro
2.
Inflammopharmacology ; 31(3): 1495-1510, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36882659

RESUMO

The prevalence of gastric ulcers is increasing worldwide, especially those brought on by non-steroidal anti-inflammatory drugs (NSAIDS), so prevention is extremely crucial. The protective potential of carbon monoxide (CO) in several inflammatory disorders has been clarified. The goal of the current study was to investigate the gastroprotective effect of CO produced by its pharmacological donor (CORM2) and its nanoparticles (NPs) against indomethacin (INDO)-induced ulcers. Investigations on CORM2's dose-dependent effects were also conducted. For induction of gastric ulcer, 100 mg kg-1 of INDO was given orally. Before ulcer induction, CORM2 (5, 10, and 15 mg kg-1), CORM2 nanoparticles (5 mg kg-1), or ranitidine (30 mg kg-1) were given intraperitoneally for 7 days. Ulcer score, gastric acidity, gastric contents of malondialdehyde (MDA), nitric oxide (NO), heme oxygenase-1 (HO-1), and carboxyhemoglobin (COHb) blood content were estimated. Additionally, gene expression of nuclear factor erythroid 2-related factor 2 (NRF2) and immunohistochemical staining of cyclooxygenase-1 (COX-1) as well as cyclooxygenase-2 (COX-2) were analyzed. Results demonstrated a substantial dose-dependent decrease in ulcer score, pro-inflammatory indicators, and oxidative stress markers with CORM2 and its NPs. Furthermore, CORM2 and its NPs markedly increased NRF2, COX-1, and HO-1, but CORM2 NPs outperformed CORM2 in this regard. In conclusion, the CO released by CORM2 can protect against INDO-induced gastric ulcers dose dependently, and the highest used dose had no effect on COHb concentration.


Assuntos
Úlcera Gástrica , Ratos , Animais , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/metabolismo , Mucosa Gástrica , Monóxido de Carbono/metabolismo , Ratos Wistar , Úlcera/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Indometacina/farmacologia , Ciclo-Oxigenase 2/metabolismo
3.
Korean J Physiol Pharmacol ; 26(2): 125-133, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35203062

RESUMO

Carbon monoxide (CO) is a known gaseous bioactive substance found across a wide array of body systems. The administration of low concentrations of CO has been found to exert an anti-inflammatory, anti-apoptotic, anti-hypertensive, and vaso-dilatory effect. To date, however, it has remained unknown whether CO influences atrial natriuretic peptide (ANP) secretion. This study explores the effect of CO on ANP secretion and its associated signaling pathway using isolated beating rat atria. Atrial perfusate was collected for 10 min for use as a control, after which high atrial stretch was induced by increasing the height of the outflow catheter. Carbon monoxide releasing molecule-2 (CORM-2; 10, 50, 100 µM) and hemin (HO-1 inducer; 0.1, 1, 50 µM), but not CORM-3 (10, 50, 100 µM), decreased high stretch-induced ANP secretion. However, zinc porphyrin (HO-1 inhibitor) did not affect ANP secretion. The order of potency for the suppression of ANP secretion was found to be hemin > CORM-2 >> CORM-3. The suppression of ANP secretion by CORM-2 was attenuated by pretreatment with 5-hydroxydecanoic acid, paxilline, and 1H-[1,2,4] oxadiazolo [4,3-a] quinoxalin-1-one, but not by diltiazem, wortmannin, LY-294002, or NG-nitro-L-arginine methyl ester. Hypoxic conditions attenuated the suppressive effect of CORM-2 on ANP secretion. In sum, these results suggest that CORM-2 suppresses ANP secretion via mitochondrial KATP channels and large conductance Ca2+-activated K+ channels.

4.
Chembiochem ; 22(15): 2521-2525, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34137488

RESUMO

Hypoxia-inducible factor prolyl hydroxylase domain 2 (PHD2) is an important oxygen sensor in animals. By using the CO-releasing molecule-2 (CORM-2) as an in situ CO donor, we demonstrate that CO is an inhibitor of PHD2. This report provides further evidence about the emerging role of CO in oxygen sensing and homeostasis.


Assuntos
Prolina Dioxigenases do Fator Induzível por Hipóxia
5.
Turk J Med Sci ; 51(4): 2222-2231, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34051710

RESUMO

Background/aim: Ischemia on the colon wall negatively affects healing of anastomosis. We were aimed to evaluate the effects of carbon monoxide releasing molecule-2 (CORM-2) on the healing of anastomosis in a rat model of the ischemic colon. Materials and methods: In this prospective study a total of 60 rats were randomly divided into three groups as colon transection and end-to-end anastomosis (Group I), colon transection, and end-to-end anastomosis following the induction of ischemia (Group II), and colon transection and end-to-end anastomosis following the induction of ischemia and treated with daily intraperitoneal administration of CORM-2 (Group III). Each group was also divided into two equal subgroups as postoperative 3rd and 7th day. Postoperative healing of anastomoses was evaluated by anastomosis burst pressure (ABP), tissue biomarkers including hydroxyproline (HP), malondialdehyde (MDA), glutathione (GSH), and histopathological findings. Results: In the ischemic group treated with CORM-2, lower MDA and higher HP levels were observed in comparison to the untreated ischemic group on the 3rd day. GSH and HP levels were higher and MDA levels was lower in the ischemic rats treated with CORM-2 than in the ischemic untreated rats on the 7th day. In the ischemic group treated with CORM-2, the mucosal epithelial score decreased and the neoangiogenesis score increased compared to the untreated rats on the 7th day. Conclusion: In ischemic colon anastomosis, reduces cell destruction by suppressing the oxidative reaction, and strengthening the antioxidative mechanisms of the cells. It also increases collagen formation, epithelial development, and neoangiogenesis.


Assuntos
Anastomose Cirúrgica/efeitos adversos , Colo/cirurgia , Isquemia/tratamento farmacológico , Compostos Organometálicos/farmacologia , Fístula Anastomótica , Animais , Monóxido de Carbono , Glutationa , Hidroxiprolina , Necrose , Estudos Prospectivos , Ratos , Ratos Wistar
6.
Int J Mol Sci ; 20(13)2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31261663

RESUMO

The up-regulation of heme oxygenase-1 (HO-1) is mediated through nicotinamaide adenine dinucleotide phosphate (NADPH) oxidases (Nox) and reactive oxygen species (ROS) generation, which could provide cytoprotection against inflammation. However, the molecular mechanisms of carbon monoxide-releasing molecule (CORM)-2-induced HO-1 expression in human tracheal smooth muscle cells (HTSMCs) remain unknown. Here, we found that pretreatment with CORM-2 attenuated the lipopolysaccharide (LPS)-induced intercellular adhesion molecule (ICAM-1) expression and leukocyte count through the up-regulation of HO-1 in mice, which was revealed by immunohistochemistrical staining, Western blot, real-time PCR, and cell count. The inhibitory effects of HO-1 by CORM-2 were reversed by transfection with HO-1 siRNA. Next, Western blot, real-time PCR, and promoter activity assay were performed to examine the HO-1 induction in HTSMCs. We found that CORM-2 induced HO-1 expression via the activation of protein kinase C (PKC)α and proline-rich tyrosine kinase (Pyk2), which was mediated through Nox-derived ROS generation using pharmacological inhibitors or small interfering ribonucleic acids (siRNAs). CORM-2-induced HO-1 expression was mediated through Nox-(1, 2, 4) or p47phox, which was confirmed by transfection with their own siRNAs. The Nox-derived ROS signals promoted the activities of extracellular signal-regulated kinase 1/2 (ERK1/2). Subsequently, c-Fos and c-Jun-activator protein-1 (AP-1) subunits-were up-regulated by activated ERK1/2, which turned on transcription of the HO-1 gene by regulating the HO-1 promoter. These results suggested that in HTSMCs, CORM-2 activates PKCα/Pyk2-dependent Nox/ROS/ERK1/2/AP-1, leading to HO-1 up-regulation, which suppresses the lipopolysaccharide (LPS)-induced airway inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Heme Oxigenase-1/metabolismo , Compostos Organometálicos/farmacologia , Traqueíte/metabolismo , Animais , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Quinase 2 de Adesão Focal/metabolismo , Heme Oxigenase-1/genética , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Lipopolissacarídeos/toxicidade , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos ICR , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Traqueia/citologia , Traqueia/metabolismo , Traqueíte/etiologia
7.
BMC Microbiol ; 16: 64, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27067266

RESUMO

BACKGROUND: Increased resistance to antimicrobial agents is a characteristic of many bacteria growing in biofilms on for example indwelling urinary catheters or in intracellular bacterial reservoirs. Biofilm-related infections caused by multidrug-resistant bacteria, such as extended-spectrum ß-lactamase (ESBL)-producing Enterobacteriaceae, are a major challenge. The aim of this study was to investigate if a carbon monoxide-releasing molecule (CORM-2) has antibacterial effects against ESBL-producing uropathogenic E. coli (UPEC) in the biofilm mode of growth and following colonization of host bladder epithelial cells. RESULTS: The effect of CORM-2 was examined on bacteria grown within an established biofilm (biofilm formed for 24 h on plastic surface) by a live/dead viability staining assay. CORM-2 (500 µM) exposure for 24 h killed approximately 60 % of the ESBL-producing UPEC isolate. A non-ESBL-producing UPEC isolate and the E. coli K-12 strain TG1 were also sensitive to CORM-2 exposure when grown in biofilms. The antibacterial effect of CORM-2 on planktonic bacteria was reduced and delayed in the stationary growth phase compared to the exponential growth phase. In human bladder epithelial cell colonization experiments, CORM-2 exposure for 4 h significantly reduced the bacterial counts of an ESBL-producing UPEC isolate. CONCLUSION: This study shows that CORM-2 has antibacterial properties against multidrug-resistant UPEC under biofilm-like conditions and following host cell colonization, which motivate further studies of its therapeutic potential.


Assuntos
Biofilmes/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Infecções por Escherichia coli/microbiologia , Compostos Organometálicos/farmacologia , Escherichia coli Uropatogênica/fisiologia , Carga Bacteriana/efeitos dos fármacos , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Bexiga Urinária/citologia , Escherichia coli Uropatogênica/efeitos dos fármacos , Escherichia coli Uropatogênica/isolamento & purificação
8.
Pharmacol Res ; 114: 235-250, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27825819

RESUMO

Acetylsalicylic acid (ASA) is mainly recognized as painkiller or anti-inflammatory drug. However, ASA causes serious side effects towards gastrointestinal (GI) tract which limits its usefulness. Carbon monoxide (CO) and hydrogen sulfide (H2S) have been described to act as important endogenous messengers and mediators of gastroprotection but whether they can interact in gastroprotection against acute ASA-induced gastric damage remains unknown. In this study male Wistar rats were pretreated with 1) vehicle (saline, i.g.), 2) tricarbonyldichlororuthenium (II) dimer (CORM-2, 5mg/kg i.g.), 3) sodium hydrosulfide (NaHS, 5mg/kg i.g.), 4) zinc protoporphyrin (ZnPP, 10mg/kg i.p.), 5) D,L-propargylglycine (PAG, 30mg/kg i.g.), 6) ZnPP combined with NaHS, 7) PAG combined with CORM-2 or 8) 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10mg/kg i.p.) combined with CORM-2 or NaHS and 30min later ASA was administered i.g. in a single dose of 125mg/kg. After 1h, gastric blood flow (GBF) was determined by H2 gas clearance technique and gastric lesions were assessed by planimetry and histology. CO content in gastric mucosa and COHb concentration in blood were determined by gas chromatography and H2S production was assessed in gastric mucosa using methylene blue method. Protein and/or mRNA expression for cystathionine-γ-lyase (CSE), cystathionine-ß-synthase (CBS), 3-mercaptopyruvate sulfurtransferase (3-MST), heme oxygenase (HO)-1, HO-2, hypoxia inducible factor-alpha (HIF)-1α, nuclear factor (erythroid-derived 2)-like 2 (Nrf-2), cyclooxygenase (COX)-1 and COX-2, inducible nitric oxide synthase (iNOS) and interleukin (IL)-1ß were determined by Western blot or real-time PCR, respectively. ASA caused hemorrhagic gastric mucosal damage and significantly decreased GBF, H2S production, CO content, mRNA or protein expression for CSE, 3-MST, HO-2 and increased mRNA and/or protein expression for CBS, HO-1, Nrf-2, HIF-1α, iNOS, IL-1ß, COX-2 in gastric mucosa and COHb concentration in blood. Pretreatment with CORM-2 or NaHS but not with PAG decreased ASA-damage and increased GBF. ZnPP reversed protective and hyperemic effect of NaHS but PAG failed to affect CORM-2-induced gastroprotection. CORM-2 elevated CO content, mRNA or protein expression for HO-1, Nrf-2, and decreased expression of CBS, HIF-1α, COX-2, IL-1ß, iNOS, the H2S production in gastric mucosa and COHb concentration in blood. NaHS raised mRNA or protein expression for CSE, COX-1 and decreased mRNA expression for IL-1ß and COHb level in blood. We conclude that CO is involved in gastroprotection induced by H2S while beneficial protective action of CO released from CORM-2 in gastric mucosa seems to be H2S-independent. In contrast to H2S, CO ameliorates hypoxia, regulates Nrf-2 expression but similarly to H2S acts on sGC-dependent manner to restore gastric microcirculation and exhibit anti-inflammatory activity in gastric mucosa compromised by ASA.


Assuntos
Anti-Inflamatórios não Esteroides/efeitos adversos , Aspirina/efeitos adversos , Monóxido de Carbono/metabolismo , Sulfeto de Hidrogênio/metabolismo , Estômago/efeitos dos fármacos , Estômago/patologia , Animais , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Masculino , Substâncias Protetoras/metabolismo , Ratos Wistar
9.
Toxicol Appl Pharmacol ; 289(2): 349-59, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26385185

RESUMO

Carbon monoxide (CO) is one of the cytoprotective byproducts of heme oxygenase (HO)-1 and exerts anti-inflammatory action in various models. However, the detailed mechanisms underlying CO-induced HO-1 expression in primary human cardiomyocytes remain largely unidentified. We used primary left ventricle myocytes as a model and applied CO releasing molecule (CORM)-2 to investigate the relationship of CO and HO-1 expression. We herein used Western blot, real-time PCR, promoter activity and EIA to investigate the role of HO-1 expression protecting against thrombin-mediated responses. We found that thrombin-induced COX-2 expression, PGE2 release and cardiomyocyte hypertrophy markers (increase in ANF/BNP, α-actin expression and cell surface area) was attenuated by pretreatment with CORM-2 which was partially reversed by hemoglobin (Hb) or ZnPP (an inhibitor of HO-1 activity), suggesting that HO-1/CO system may be of clinical importance to ameliorate heart failure through inhibition of inflammatory responses. CORM-2-induced HO-1 protein expression, mRNA and promoter was attenuated by pretreatment with the inhibitors of Pyk2 (PF431396), PDGFR (AG1296), PI3K (LY294002), Akt (SH-5), p38 (SB202530), JNK1/2 (SP600125), FoxO1 (AS1842856) and Sp1 (mithramycin A). The involvement of these signaling components was further confirmed by transfection with respective siRNAs, consistent with those of pharmacological inhibitors. These results suggested that CORM-2-induced HO-1 expression is mediated through a Pyk2/PDGFR/PI3K/Akt/FoxO1/Sp1-dependent manner and exerts a cytoprotective effect in human cardiomyocytes.


Assuntos
Dióxido de Carbono/farmacologia , Cardiomegalia/prevenção & controle , Ciclo-Oxigenase 2/metabolismo , Heme Oxigenase-1/biossíntese , Miócitos Cardíacos/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Trombina/farmacologia , Actinas/metabolismo , Fator Natriurético Atrial/metabolismo , Dióxido de Carbono/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/enzimologia , Cardiomegalia/genética , Cardiomegalia/patologia , Células Cultivadas , Ciclo-Oxigenase 2/genética , Citoproteção , Dinoprostona/metabolismo , Relação Dose-Resposta a Droga , Indução Enzimática , Inibidores Enzimáticos/farmacologia , Heme Oxigenase-1/antagonistas & inibidores , Heme Oxigenase-1/genética , Humanos , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Peptídeo Natriurético Encefálico/metabolismo , Compostos Organometálicos/metabolismo , Cultura Primária de Células , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção
10.
Nanomedicine ; 11(5): 1077-83, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25791804

RESUMO

Folic Acid (FA)-tagged protein nanoemulsions were found to be preferentially internalized on B-cell lymphoma cell line (A20 cell line), which, for the first time, is reported to express folate receptor (FR)-alpha. Carbon monoxide releasing molecule-2 (CORM-2) was incorporated in the oil phase of the initial formulation. FA-functionalized nanoemulsions loaded with CORM-2 exhibited a considerable antitumor effect and an increased survival of BALB/c mice bearing subcutaneous A20 lymphoma tumors. The developed nanoemulsions also demonstrated to be well tolerated by these immunocompetent mice. Thus, the results obtained in this study demonstrate that FA-tagged protein nanoemulsions can be successfully used in cancer therapy, with the important ability to delivery drugs intracellularly. FROM THE CLINICAL EDITOR: In this research, the authors developed folic acid tagged nanoemulsions containing a carbon monoxide releasing protein molecule for targeted cancer cell treatment. In-vitro and in-vivo experiments showed efficacy against B-cell lymphoma cells. The same nanocarrier platform could be applied to other tumor cells expressing folate receptors on the cell surface.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Ácido Fólico/química , Linfoma/tratamento farmacológico , Compostos Organometálicos/administração & dosagem , Soroalbumina Bovina/química , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Portadores de Fármacos/metabolismo , Feminino , Receptores de Folato com Âncoras de GPI/metabolismo , Ácido Fólico/metabolismo , Humanos , Linfoma/metabolismo , Linfoma/patologia , Camundongos Endogâmicos BALB C , Compostos Organometálicos/uso terapêutico , Soroalbumina Bovina/metabolismo
11.
Biochim Biophys Acta ; 1834(9): 1693-703, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23624261

RESUMO

BACKGROUND: CO-releasing molecules (CO-RMs) are potential therapeutic agents, able to deliver CO - a critical gasotransmitter - in biological environments. CO-RMs are also effective antimicrobial agents; although the mechanisms of action are poorly defined, haem-containing terminal oxidases are primary targets. Nevertheless, it is clear from several studies that the effects of CO-RMs on biological systems are frequently not adequately explained by the release of CO: CO-RMs are generally more potent inhibitors than is CO gas and other effects of the molecules are evident. METHODS: Because sensitivity to CO-RMs cannot be predicted by sensitivity to CO gas, we assess the differential susceptibilities of strains, each expressing only one of the three terminal oxidases of E. coli - cytochrome bd-I, cytochrome bd-II and cytochrome bo', to inhibition by CORM-3. We present the first sensitive measurement of the oxygen affinity of cytochrome bd-II (Km 0.24µM) employing globin deoxygenation. Finally, we investigate the way(s) in which thiol compounds abolish the inhibitory effects of CORM-2 and CORM-3 on respiration, growth and viability, a phenomenon that is well documented, but poorly understood. RESULTS: We show that a strain expressing cytochrome bd-I as the sole oxidase is least susceptible to inhibition by CORM-3 in its growth and respiration of both intact cells and membranes. Growth studies show that cytochrome bd-II has similar CORM-3 sensitivity to cytochrome bo'. Cytochromes bo' and bd-II also have considerably lower affinities for oxygen than bd-I. We show that the ability of N-acetylcysteine to abrogate the toxic effects of CO-RMs is not attributable to its antioxidant effects, or prevention of CO targeting to the oxidases, but may be largely due to the inhibition of CO-RM uptake by bacterial cells. CONCLUSIONS: A strain expressing cytochrome bd-I as the sole terminal oxidase is least susceptible to inhibition by CORM-3. N-acetylcysteine is a potent inhibitor of CO-RM uptake by E. coli. GENERAL SIGNIFICANCE: Rational design and exploitation of CO-RMs require a fundamental understanding of their activity. CO and CO-RMs have multifaceted effects on mammalian and microbial cells; here we show that the quinol oxidases of E. coli are differentially sensitive to CORM-3. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.


Assuntos
Acetilcisteína/farmacologia , Monóxido de Carbono/metabolismo , Respiração Celular/efeitos dos fármacos , Citocromos/antagonistas & inibidores , Complexo de Proteínas da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Proteínas de Escherichia coli/antagonistas & inibidores , Escherichia coli/metabolismo , Compostos Organometálicos/farmacologia , Oxirredutases/antagonistas & inibidores , Consumo de Oxigênio/efeitos dos fármacos , Antioxidantes/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Grupo dos Citocromos b , Citocromos/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Escherichia coli/metabolismo , Heme/metabolismo , Oxigenoterapia Hiperbárica , Leghemoglobina/metabolismo , Oxirredutases/metabolismo , Rutênio/farmacologia
12.
Microb Pathog ; 66: 29-35, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24361394

RESUMO

Carbon monoxide (CO) releasing molecules (CO-RMs) have been shown to inhibit growth of commensal Escherichia coli (E. coli). In the present study we examined the effect of CORM-2 on uropathogenic E. coli (UPEC) that produces extended-spectrum ß-lactamase (ESBL). Viability experiments showed that CORM-2 inhibited the growth of several different ESBL-producing UPEC isolates and that 500 µM CORM-2 had a bactericidal effect within 4 h. The bactericidal effect of CORM-2 was significantly more pronounced than the effect of the antibiotic nitrofurantoin. CORM-2 demonstrated a low level of cytotoxicity in eukaryotic cells (human bladder epithelial cell line 5637) at the concentrations and time-points where the antibacterial effect was obtained. Real-time RT-PCR studies of different virulence genes showed that the expression of capsule group II kpsMT II and serum resistance traT was reduced and that some genes encoding iron acquisition systems were altered by CORM-2. Our results demonstrate that CORM-2 has a fast bactericidal effect against multiresistant ESBL-producing UPEC isolates, and also identify some putative UPEC virulence factors as targets for CORM-2. CO-RMs may be candidate drugs for further studies in the field of finding new therapeutic approaches for treatment of uropathogenic ESBLproducing E. coli.


Assuntos
Antibacterianos/farmacologia , Compostos Organometálicos/farmacologia , Escherichia coli Uropatogênica/efeitos dos fármacos , beta-Lactamases/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adulto , Proteínas da Membrana Bacteriana Externa/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultura/química , DNA Bacteriano/genética , Farmacorresistência Bacteriana Múltipla , Células Epiteliais/efeitos dos fármacos , Proteínas de Escherichia coli/metabolismo , Feminino , Regulação Bacteriana da Expressão Gênica , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Pessoa de Meia-Idade , Nitrofurantoína/farmacologia , Bexiga Urinária/citologia , Urina/microbiologia , Escherichia coli Uropatogênica/enzimologia , Fatores de Virulência/metabolismo
13.
Toxicol Appl Pharmacol ; 273(1): 53-8, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23994557

RESUMO

Stress-inducible protein heme oxygenase-1(HO-1) is well-appreciative to counteract oxidative damage and inflammatory stress involving the pathogenesis of alcoholic liver diseases (ALD). The potential role and signaling pathways of HO-1 metabolite carbon monoxide (CO), however, still remained unclear. To explore the precise mechanisms, ethanol-dosed adult male Balb/c mice (5.0g/kg.bw.) or ethanol-incubated primary rat hepatocytes (100mmol/L) were pretreated by tricarbonyldichlororuthenium (II) dimmer (CORM-2, 8mg/kg for mice or 20µmol/L for hepatocytes), as well as other pharmacological reagents. Our data showed that CO released from HO-1 induction by quercetin prevented ethanol-derived oxidative injury, which was abolished by CO scavenger hemoglobin. The protection was mimicked by CORM-2 with the attenuation of GSH depletion, SOD inactivation, MDA overproduction, and the leakage of AST, ALT or LDH in serum and culture medium induced by ethanol. Moreover, CORM-2 injection or incubation stimulated p38 phosphorylation and suppressed abnormal Tnfa and IL-6, accompanying the alleviation of redox imbalance induced by ethanol and aggravated by inflammatory factors. The protective role of CORM-2 was abolished by SB203580 (p38 inhibitor) but not by PD98059 (ERK inhibitor) or SP600125 (JNK inhibitor). Thus, HO-1 released CO prevented ethanol-elicited hepatic oxidative damage and inflammatory stress through activating p38 MAPK pathway, suggesting a potential therapeutic role of gaseous signal molecule on ALD induced by naturally occurring phytochemicals.


Assuntos
Monóxido de Carbono/farmacologia , Etanol/efeitos adversos , Sistema de Sinalização das MAP Quinases , Estresse Oxidativo/efeitos dos fármacos , Alanina Transaminase/sangue , Animais , Antracenos/farmacologia , Aspartato Aminotransferases/sangue , Flavonoides/farmacologia , Glutationa/metabolismo , Heme Oxigenase-1/metabolismo , Hepatócitos/efeitos dos fármacos , Imidazóis/farmacologia , Interleucina-6/antagonistas & inibidores , Interleucina-6/sangue , L-Lactato Desidrogenase/sangue , Hepatopatias Alcoólicas/etiologia , Hepatopatias Alcoólicas/patologia , Hepatopatias Alcoólicas/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Compostos Organometálicos/farmacologia , Fosforilação , Compostos Fitoquímicos , Piridinas/farmacologia , Quercetina/farmacologia , Ratos , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/sangue , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
J Adv Res ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38030129

RESUMO

INTRODUCTION: Cisplatin is a life-saving anticancer compound used to treat multiple solid malignant tumors, while it causes permanent hearing loss. There is no known cure, and the FDA has not approved any preventative treatment for cisplatin-based ototoxicity. OBJECTIVES: This study investigated whether the carbon monoxide (CO)-releasing tricarbonyldichlororuthenium (II) dimer, CORM-2, reverses cisplatin-induced hearing impairment and reduces cisplatin accumulation in the mouse inner ear. METHODS: Male 6-week-old BALB/c mice were randomly assigned to one of the following groups: control (saline-treated, i.p.), CORM-2 only (30 mg/kg, i.p., four doses), cisplatin only (20 mg/kg, i.p., one dose), and CORM-2 + cisplatin, to determine whether cisplatin-based hearing impairment was alleviated by CORM-2 treatment. RESULTS: Our results revealed CORM-2 significantly attenuated cisplatin-induced hearing loss in young adult mice. CORM-2 co-treatment significantly decreased platinum accumulation in the inner ear and activated the plasma membrane repair system of the stria vascularis. Moreover, CORM-2 co-treatment significantly decreased cisplatin-induced inflammation, apoptosis, and cochlear necroptosis. Because the stria vascularis is the likely cochlear entry point of cisplatin, we next focused on the microvasculature. Cisplatin induced increased extravasation of a chromatic tracer (fluorescein isothiocyanate [FITC]-dextran, MW 75 kDa) around the cochlear microvessels at 4 days post-treatment; this extravasation was completely inhibited by CORM-2 co-therapy. CORM-2 co-treatment effectively maintained the integrity of stria vascularis components including endothelial cells, pericytes, and perivascular-resident macrophage-type melanocytes. CONCLUSION: CORM-2 co-therapy substantially protects against cisplatin-induced ototoxicity by reducing platinum accumulation and toxic cellular stress responses. These data indicate that CORM-2 co-treatment may be translated into clinical strategy to reduce cisplatin-induced hearing loss.

15.
Naunyn Schmiedebergs Arch Pharmacol ; 394(10): 2103-2115, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34338837

RESUMO

PURPOSE: Cardioprotective effect of carbon monoxide, a gasotransmitter against myocardial ischemia-reperfusion injury (I/R), is well established in preclinical studies with male rats. However, its ischemic tolerance in post-menopausal animals has not been examined due to functional perturbations at the cellular level. METHODS: The protective role of carbon monoxide releasing molecule-2 (CORM-2) on myocardial I/R was studied in female Wistar rats using the Langendorff apparatus. The animals were randomly divided into normal and ovariectomized (Ovx) female rats and were maintained 2 months post-surgery. Each group was further divided into 4 subgroups (n = 6/subgroup): normal, I/R, CORM-2-control (20 µmol/L), and CORM-2-I/R. The cardiac injury was estimated via myocardial infarct size, lactate dehydrogenase, and creatine kinase levels in coronary effluent and cardiac hemodynamic indices. Mitochondrial functional activity was assessed by measuring mitochondrial electron transport chain enzyme activities, swelling behavior, mitochondrial membrane potential, and oxidative stress. RESULTS: Hemodynamic indices were significantly lower in ovariectomized rat hearts than in normal rat hearts. Sixty minutes of reperfusion of ischemic heart exhibited deteriorated cardiac physiological recovery in both ovariectomized and normal groups, where prominent decline was observed in ovariectomized rat. However, preconditioning the isolated heart with CORM-2 improved hemodynamics parameters significantly in both ovariectomized and normal rat hearts challenged with I/R, but with a limited degree of protection in ovariectomized rat hearts. The protective effect of CORM-2 was further confirmed via a reduction in cardiac injury, preservation of mitochondrial enzymes, and reduction in oxidative stress in all groups. CONCLUSION: CORM-2 administration significantly attenuated myocardial I/R injury in ovariectomized rat hearts by attenuating I/R-associated mitochondrial perturbations and reducing oxidative stress.


Assuntos
Cardiotônicos/uso terapêutico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Compostos Organometálicos/uso terapêutico , Animais , Monóxido de Carbono/metabolismo , Cardiotônicos/farmacologia , Feminino , Hemodinâmica , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/fisiologia , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia , Compostos Organometálicos/farmacologia , Ovariectomia , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar
16.
Antioxidants (Basel) ; 10(6)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198746

RESUMO

Carbon monoxide (CO)-releasing molecules (CORMs) are used to deliver CO, a biological 'gasotransmitter', in biological chemistry and biomedicine. CORMs kill bacteria in culture and in animal models, but are reportedly benign towards mammalian cells. CORM-2 (tricarbonyldichlororuthenium(II) dimer, Ru2Cl4(CO)6), the first widely used and commercially available CORM, displays numerous pharmacological, biochemical and microbiological activities, generally attributed to CO release. Here, we investigate the basis of its potent antibacterial activity against Escherichia coli and demonstrate, using three globin CO sensors, that CORM-2 releases negligible CO (<0.1 mol CO per mol CORM-2). A strong negative correlation between viability and cellular ruthenium accumulation implies that ruthenium toxicity underlies biocidal activity. Exogenous amino acids and thiols (especially cysteine, glutathione and N-acetyl cysteine) protected bacteria against inhibition of growth by CORM-2. Bacteria treated with 30 µM CORM-2, with added cysteine and histidine, exhibited no significant loss of viability, but were killed in the absence of these amino acids. Their prevention of toxicity correlates with their CORM-2-binding affinities (Cys, Kd 3 µM; His, Kd 130 µM) as determined by 1H-NMR. Glutathione is proposed to be an important intracellular target of CORM-2, with CORM-2 having a much higher affinity for reduced glutathione (GSH) than oxidised glutathione (GSSG) (GSH, Kd 2 µM; GSSG, Kd 25,000 µM). The toxicity of low, but potent, levels (15 µM) of CORM-2 was accompanied by cell lysis, as judged by the release of cytoplasmic ATP pools. The biological effects of CORM-2 and related CORMs, and the design of biological experiments, must be re-examined in the light of these data.

17.
Cell Transplant ; 29: 963689720903691, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32364405

RESUMO

During the process of human islet isolation a cascade of stressful events are triggered and negatively influence islet yield, viability, and function, including the production of proinflammatory cytokines and activation of apoptosis. Carbon monoxide-releasing molecule 2 (CORM-2) is a donor of carbon monoxide (CO) and can release CO spontaneously. Accumulating studies suggest that CORM-2 exerts cytoprotective and anti-inflammatory properties. However, the effect of CORM-2 on islet isolation is still unclear. In this study, we found that CORM-2 pretreatment significantly decreased the expression of critical inflammatory genes, including tissue factor, intercellular adhesion molecule-1, chemokine (C-C motif) ligand 2, C-X-C motif chemokine 10, Toll-like receptor 4, interleukin-1ß, interleukin-6, and tumor necrosis factor-α (TNF-α). The isolated islets of the CORM-2 pretreatment group showed reduced apoptotic rate, improved viability, and higher glucose-stimulated insulin secretion, and functional gene expression in comparison to control group. Importantly, CORM-2 pretreatment prevented the impairment caused by TNF-α, evidenced by the improved glucose-stimulated index and transplantation outcomes. The present study demonstrated the anti-inflammatory property of CORM-2 during human islet isolation, and we suggest that CORM-2 pretreatment is an appealing treatment to mitigate inflammation-mediated islet dysfunction during isolation and culture ex vivo and to preserve long-term islet survival and function.


Assuntos
Inflamação/tratamento farmacológico , Compostos Organometálicos/uso terapêutico , Animais , Anti-Inflamatórios/uso terapêutico , Citometria de Fluxo , Teste de Tolerância a Glucose , Humanos , Imuno-Histoquímica , Inflamação/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Transplante das Ilhotas Pancreáticas , Masculino , Camundongos Endogâmicos BALB C , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
18.
Acta Pharm Sin B ; 10(12): 2362-2373, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33354507

RESUMO

The short release half-life of carbon monoxide (CO) is a major obstacle to the effective therapeutic use of carbon monoxide-releasing molecule-2 (CORM-2). The potential of CORM-2-entrapped ultradeformable liposomes (CORM-2-UDLs) to enhance the release half-life of CO and alleviate skin inflammation was investigated in the present study. CORM-2-UDLs were prepared by using soy phosphatidylcholine to form lipid bilayers and Tween 80 as an edge activator. The deformability of CORM-2-UDLs was measured and compared with that of conventional liposomes by passing formulations through a filter device at a constant pressure. The release profile of CO from CORM-2-UDLs was evaluated by myoglobin assay. In vitro and in vivo anti-inflammatory effects of CORM-2-UDLs were assessed in lipopolysaccharide-stimulated macrophages and TPA-induced ear edema model, respectively. The deformability of the optimized CORM-2-UDLs was 2.3 times higher than conventional liposomes. CORM-2-UDLs significantly prolonged the release half-life of CO from 30 s in a CORM-2 solution to 21.6 min. CORM-2-UDLs demonstrated in vitro anti-inflammatory activity by decreasing nitrite production and pro-inflammatory cytokine levels. Furthermore, CORM-2-UDLs successfully ameliorated skin inflammation by reducing ear edema, pathological scores, neutrophil accumulation, and inflammatory cytokines expression. The results demonstrate that CORM-2-UDLs could be used as promising therapeutics against acute skin inflammation.

19.
J Clin Med ; 8(4)2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-30934992

RESUMO

The upregulation of heme oxygenase-1 (HO-1) by the carbon monoxide-releasing molecule (CORM)-2 may be mediated through the activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases [Nox] and reactive oxygen species (ROS) generation, which could provide cytoprotection against various cellular injuries. However, the detailed mechanisms of CORM-2-induced HO-1 expression in human pulmonary alveolar epithelial cells (HPAEpiCs) remain largely unknown. Therefore, we dissected the mechanisms underlying CORM-2-induced HO-1 expression in HPAEpiCs. We found that the administration of mice with CORM-2 attenuated the tumor necrosis factor-alpha (TNF-α)-induced intercellular adhesion molecule-1 (ICAM-1) expression and leukocyte count as revealed by immunohistochemical staining, western blot, real-time polymerase chain reaction (PCR), and cell count. Furthermore, TNF-α-induced ICAM-1 expression associated with monocyte adhesion to HPAEpiCs was attenuated by infection with adenovirus (adv)-HO-1 or incubation with CORM-2. These inhibitory effects of HO-1 were reversed by pretreatment with hemoglobin (Hb). Moreover, CORM-2-induced HO-1 expression was mediated via the phosphorylation of p47phox, c-Src, epidermal growth factor receptor (EGFR), Akt, and NF-E2-related factor 2 (Nrf2), which were inhibited by their pharmacological inhibitors, including diphenyleneiodonium (DPI) or apocynin (APO), ROS [N-acetyl-L-cysteine (NAC)], PP1, AG1478, PI3K (LY294002), or Akt (SH-5), and small interfering RNAs (siRNAs). CORM-2-enhanced Nrf2 expression, and anti-oxidant response element (ARE) promoter activity was also inhibited by these pharmacological inhibitors. The interaction between Nrf2 and AREs was confirmed with a chromatin immunoprecipitation (ChIP) assay. These findings suggest that CORM-2 increases the formation of the Nrf2 and AREs complex and binds with ARE-binding sites via Src, EGFR, and PI3K/Akt, which further induces HO-1 expression in HPAEpiCs. Thus, the HO-1/CO system might suppress TNF-α-mediated inflammatory responses and exert a potential therapeutic strategy in pulmonary diseases.

20.
J Mol Neurosci ; 63(1): 58-69, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28780624

RESUMO

Carbon monoxide-releasing molecule (CORM-2) acts as a carbon monoxide (CO) deliverer in a more controlled manner without altering carboxyhemoglobin level and exerts potential function in inhibiting inflammation and/or acute nociception. However, the regulatory mechanism of CORM-2 on spinal nerve ligation (SNL)-induced neuropathic pain is not currently clear. Our study aims to investigate the role of CORM-2 in neuropathic pain and the underlying mechanism. We found that spinal cord astrocytes were dramatically activated on day 7 after SNL. L-α-aminoadipate (L-α-AA), an astroglial toxin, reversed SNL-induced astrocyte activation at sub-toxic dose. Intrathecal administration of CO donor CORM-2 induced antiallodynic and antihyperalgesic effects in neuropathic animals induced by SNL and suppressed SNL-induced spontaneous excitatory postsynaptic current (EPSC) frequency in lamina II neurons of spinal cord slices. CORM-2 administration markedly inhibited SNL-induced connexin 43 (Cx43) expression, hemichannel function, and gap junction function on spinal astrocyte membranes. Moreover, exogenous CORM-2 could attenuate HO-1 expression, while overexpressed heme oxygenase-1 (HO-1) increased intracellular CO production, attenuated Cx43 expression, hemichannel function, and gap junction function on spinal astrocyte membranes. Additionally, Cx43 over-expression markedly reduced CORM-2-induced mechanical threshold and thermal hyperalgesia and elevated CORM-2-induced spontaneous EPSC frequency. In conclusion, CORM-2 attenuated SNL-induced neuropathic pain via suppressing Cx43-hemichannel function, which may contribute to understanding of the pathology of neuropathic pain.


Assuntos
Analgésicos/farmacologia , Astrócitos/efeitos dos fármacos , Conexina 43/metabolismo , Neuralgia/tratamento farmacológico , Compostos Organometálicos/farmacologia , Medula Espinal/efeitos dos fármacos , Analgésicos/uso terapêutico , Animais , Astrócitos/metabolismo , Células Cultivadas , Conexina 43/genética , Potenciais Pós-Sinápticos Excitadores , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Neuralgia/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , Compostos Organometálicos/uso terapêutico , Ratos , Ratos Sprague-Dawley , Medula Espinal/citologia , Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA