Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(9): 2158-2174.e19, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38604175

RESUMO

Centriole biogenesis, as in most organelle assemblies, involves the sequential recruitment of sub-structural elements that will support its function. To uncover this process, we correlated the spatial location of 24 centriolar proteins with structural features using expansion microscopy. A time-series reconstruction of protein distributions throughout human procentriole assembly unveiled the molecular architecture of the centriole biogenesis steps. We found that the process initiates with the formation of a naked cartwheel devoid of microtubules. Next, the bloom phase progresses with microtubule blade assembly, concomitantly with radial separation and rapid cartwheel growth. In the subsequent elongation phase, the tubulin backbone grows linearly with the recruitment of the A-C linker, followed by proteins of the inner scaffold (IS). By following six structural modules, we modeled 4D assembly of the human centriole. Collectively, this work provides a framework to investigate the spatial and temporal assembly of large macromolecules.


Assuntos
Centríolos , Microtúbulos , Centríolos/metabolismo , Humanos , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas de Ciclo Celular/metabolismo
2.
Genes Dev ; 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35981754

RESUMO

Hepatocyte polyploidization is a tightly controlled process that is initiated at weaning and increases with age. The proliferation of polyploid hepatocytes in vivo is restricted by the PIDDosome-P53 axis, but how this pathway is triggered remains unclear. Given that increased hepatocyte ploidy protects against malignant transformation, the evolutionary driver that sets the upper limit for hepatocyte ploidy remains unknown. Here we show that hepatocytes accumulate centrioles during cycles of polyploidization in vivo. The presence of excess mature centrioles containing ANKRD26 was required to activate the PIDDosome in polyploid cells. As a result, mice lacking centrioles in the liver or ANKRD26 exhibited increased hepatocyte ploidy. Under normal homeostatic conditions, this increase in liver ploidy did not impact organ function. However, in response to chronic liver injury, blocking centriole-mediated ploidy control leads to a massive increase in hepatocyte polyploidization, severe liver damage, and impaired liver function. These results show that hyperpolyploidization sensitizes the liver to injury, posing a trade-off for the cancer-protective effect of increased hepatocyte ploidy. Our results may have important implications for unscheduled polyploidization that frequently occurs in human patients with chronic liver disease.

3.
Genes Dev ; 35(21-22): 1445-1460, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34711653

RESUMO

Joubert syndrome (JS) is a recessive ciliopathy in which all affected individuals have congenital cerebellar vermis hypoplasia. Here, we report that CEP120, a JS-associated protein involved in centriole biogenesis and cilia assembly, regulates timely neuronal differentiation and the departure of granule neuron progenitors (GNPs) from their germinal zone during cerebellar development. Our results show that depletion of Cep120 perturbs GNP cell cycle progression, resulting in a delay of cell cycle exit in vivo. To dissect the potential mechanism, we investigated the association between CEP120 interactome and the JS database and identified KIAA0753 (a JS-associated protein) as a CEP120-interacting protein. Surprisingly, we found that CEP120 recruits KIAA0753 to centrioles, and that loss of this interaction induces accumulation of GNPs in the germinal zone and impairs neuronal differentiation. Importantly, the replenishment of wild-type CEP120 rescues the above defects, whereas expression of JS-associated CEP120 mutants, which hinder KIAA0753 recruitment, does not. Together, our data reveal a close interplay between CEP120 and KIAA0753 for the germinal zone exit and timely neuronal differentiation of GNPs during cerebellar development, and mutations in CEP120 and KIAA0753 may participate in the heterotopia and cerebellar hypoplasia observed in JS patients.


Assuntos
Centríolos , Doenças Renais Císticas , Anormalidades Múltiplas , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Centríolos/genética , Centríolos/metabolismo , Cerebelo/anormalidades , Cerebelo/metabolismo , Anormalidades do Olho , Humanos , Doenças Renais Císticas/genética , Doenças Renais Císticas/metabolismo , Proteínas Associadas aos Microtúbulos , Retina/anormalidades
4.
EMBO J ; 42(16): e113616, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37317646

RESUMO

Cilia are cellular projections that perform sensory and motile functions in eukaryotic cells. A defining feature of cilia is that they are evolutionarily ancient, yet not universally conserved. In this study, we have used the resulting presence and absence pattern in the genomes of diverse eukaryotes to identify a set of 386 human genes associated with cilium assembly or motility. Comprehensive tissue-specific RNAi in Drosophila and mutant analysis in C. elegans revealed signature ciliary defects for 70-80% of novel genes, a percentage similar to that for known genes within the cluster. Further characterization identified different phenotypic classes, including a set of genes related to the cartwheel component Bld10/CEP135 and two highly conserved regulators of cilium biogenesis. We propose this dataset defines the core set of genes required for cilium assembly and motility across eukaryotes and presents a valuable resource for future studies of cilium biology and associated disorders.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Humanos , Caenorhabditis elegans/genética , Filogenia , Cílios/genética , Proteínas de Drosophila/genética
5.
EMBO J ; 41(21): e112107, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36125182

RESUMO

Over the course of evolution, the centrosome function has been conserved in most eukaryotes, but its core architecture has evolved differently in some clades, with the presence of centrioles in humans and a spindle pole body (SPB) in yeast. Similarly, the composition of these two core elements has diverged, with the exception of Centrin and SFI1, which form a complex in yeast to initiate SPB duplication. However, it remains unclear whether this complex exists at centrioles and whether its function has been conserved. Here, using expansion microscopy, we demonstrate that human SFI1 is a centriolar protein that associates with a pool of Centrin at the distal end of the centriole. We also find that both proteins are recruited early during procentriole assembly and that depletion of SFI1 results in the loss of the distal pool of Centrin, without altering centriole duplication. Instead, we show that SFI1/Centrin complex is essential for centriolar architecture, CEP164 distribution, and CP110 removal during ciliogenesis. Together, our work reveals a conserved SFI1/Centrin module displaying divergent functions between mammals and yeast.


Assuntos
Proteínas de Ligação ao Cálcio , Proteínas de Ciclo Celular , Centríolos , Animais , Humanos , Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Corpos Polares do Fuso/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo
6.
Development ; 150(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37882665

RESUMO

Sperm flagellum plays a crucial role in male fertility. Here, we generated Ccdc183 knockout mice using the CRISPR/Cas9 system to reveal the protein function of the testis-specific protein CCDC183 in spermiogenesis. We demonstrated that the absence of CCDC183 causes male infertility with morphological and motility defects in spermatozoa. Owing to the lack of CCDC183, centrioles after elongation of axonemal microtubules do not connect the cell surface and nucleus during spermiogenesis, which causes subsequent loss of cytoplasmic invagination around the flagellum. As a result, the flagellar compartment does not form properly and cytosol-exposed axonemal microtubules collapse during spermiogenesis. In addition, ectopic localization of accessory structures, such as the fibrous sheath and outer dense fibers, and abnormal head shape as a result of abnormal sculpting by the manchette are observed in Ccdc183 knockout spermatids. Our results indicate that CCDC183 plays an essential role in cytoplasmic invagination around the flagellum to form functional spermatozoa during spermiogenesis.


Assuntos
Sêmen , Espermatogênese , Camundongos , Animais , Masculino , Citosol , Espermatogênese/genética , Flagelos , Camundongos Knockout , Fertilidade/genética
7.
Proc Natl Acad Sci U S A ; 120(1): e2213846120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574677

RESUMO

Piezo1 and 2 are evolutionarily conserved mechanosensory cation channels known to function on the cell surface by responding to external pressure and transducing a mechanically activated Ca2+ current. Here we show that both Piezo1 and 2 also exhibit concentrated intracellular localization at centrosomes. Both Piezo1 and 2 loss-of-function and Piezo1 activation by the small molecule Yoda1 result in supernumerary centrosomes, premature centriole disengagement, multi-polar spindles, and mitotic delay. By using a GFP, Calmodulin and M13 Protein fusion (GCaMP) Ca2+-sensitive reporter, we show that perturbations in Piezo modulate Ca2+ flux at centrosomes. Moreover, the inhibition of Polo-like-kinase 1 eliminates Yoda1-induced centriole disengagement. Because previous studies have implicated force generation by microtubules as essential for maintaining centrosomal integrity, we propose that mechanotransduction by Piezo maintains pericentrosomal Ca2+ within a defined range, possibly through sensing cell intrinsic forces from microtubules.


Assuntos
Centrossomo , Mecanotransdução Celular , Centrossomo/metabolismo , Centríolos , Microtúbulos
8.
Semin Cell Dev Biol ; 137: 16-25, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34896019

RESUMO

Centrioles are microtubule-based cell organelles present in most eukaryotes. They participate in the control of cell division as part of the centrosome, the major microtubule-organizing center of the cell, and are also essential for the formation of primary and motile cilia. During centriole assembly as well as across its lifetime, centriolar tubulin display marks defined by post-translational modifications (PTMs), such as glutamylation or acetylation. To date, the functions of these PTMs at centrioles are not well understood, although pioneering experiments suggest a role in the stability of this organelle. Here, we review the current knowledge regarding PTMs at centrioles with a particular focus on a possible link between these modifications and centriole's architecture, and propose possible hypothesis regarding centriolar tubulin PTMs's function.


Assuntos
Centríolos , Tubulina (Proteína) , Tubulina (Proteína)/genética , Centro Organizador dos Microtúbulos , Microtúbulos , Cílios
9.
EMBO J ; 40(7): e107410, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33694216

RESUMO

Motile cilia are molecular machines used by a myriad of eukaryotic cells to swim through fluid environments. However, available molecular structures represent only a handful of cell types, limiting our understanding of how cilia are modified to support motility in diverse media. Here, we use cryo-focused ion beam milling-enabled cryo-electron tomography to image sperm flagella from three mammalian species. We resolve in-cell structures of centrioles, axonemal doublets, central pair apparatus, and endpiece singlets, revealing novel protofilament-bridging microtubule inner proteins throughout the flagellum. We present native structures of the flagellar base, which is crucial for shaping the flagellar beat. We show that outer dense fibers are directly coupled to microtubule doublets in the principal piece but not in the midpiece. Thus, mammalian sperm flagella are ornamented across scales, from protofilament-bracing structures reinforcing microtubules at the nano-scale to accessory structures that impose micron-scale asymmetries on the entire assembly. Our structures provide vital foundations for linking molecular structure to ciliary motility and evolution.


Assuntos
Cauda do Espermatozoide/ultraestrutura , Animais , Axonema/ultraestrutura , Movimento Celular , Centríolos/ultraestrutura , Cílios/fisiologia , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Cavalos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Cauda do Espermatozoide/fisiologia , Suínos
10.
J Cell Sci ; 136(23)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038054

RESUMO

The centrosome is a non-membrane-bound organelle that is conserved across most animal cells and serves various functions throughout the cell cycle. In dividing cells, the centrosome is known as the spindle pole and nucleates a robust microtubule spindle to separate genetic material equally into two daughter cells. In non-dividing cells, the mother centriole, a substructure of the centrosome, matures into a basal body and nucleates cilia, which acts as a signal-transducing antenna. The functions of centrosomes and their substructures are important for embryonic development and have been studied extensively using in vitro mammalian cell culture or in vivo using invertebrate models. However, there are considerable differences in the composition and functions of centrosomes during different aspects of vertebrate development, and these are less studied. In this Review, we discuss the roles played by centrosomes, highlighting conserved and divergent features across species, particularly during fertilization and embryonic development.


Assuntos
Centríolos , Centrossomo , Animais , Centrossomo/metabolismo , Centríolos/metabolismo , Ciclo Celular/genética , Microtúbulos/fisiologia , Fertilização , Mamíferos
11.
Proc Natl Acad Sci U S A ; 119(19): e2120098119, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35507869

RESUMO

Microtubule dynamics is regulated by various cellular proteins and perturbed by small-molecule compounds. To what extent the mechanism of the former resembles that of the latter is an open question. We report here structures of tubulin bound to the PN2-3 domain of CPAP, a protein controlling the length of the centrioles. We show that an α-helix of the PN2-3 N-terminal region binds and caps the longitudinal surface of the tubulin ß subunit. Moreover, a PN2-3 N-terminal stretch lies in a ß-tubulin site also targeted by fungal and bacterial peptide-like inhibitors of the vinca domain, sharing a very similar binding mode with these compounds. Therefore, our results identify several characteristic features of cellular partners that bind to this site and highlight a structural convergence of CPAP with small-molecule inhibitors of microtubule assembly.


Assuntos
Tubulina (Proteína) , Vinca , Microtúbulos/metabolismo , Ligação Proteica , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina , Vinca/metabolismo
12.
Ann Hum Genet ; 88(1): 45-57, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37771269

RESUMO

Most mammalian cells have a single primary cilium that acts as a signalling hub in mediating cellular functions. However, little is known about the mechanisms that result in aberrant supernumerary primary cilia per cell. In this study, we re-analysed a previously published whole-genome siRNA-based reverse genetic screen for genes mediating ciliogenesis to identify knockdowns that permit multi-ciliation. We identified siRNA knockdowns that caused significant formation of supernumerary cilia, validated candidate hits in different cell-lines and confirmed that RACGAP1, a component of the centralspindlin complex, was the strongest candidate hit at the whole-genome level. Following loss of RACGAP1, mother centrioles were specified correctly prior to ciliogenesis and the cilia appeared normal. Live cell imaging revealed that increased cilia incidence was caused by cytokinesis failure which led to the formation of multinucleate cells with supernumerary cilia. This suggests that the signalling mechanisms for ciliogenesis are unable to identify supernumerary centrosomes and therefore allow ciliation of duplicated centrosomes as if they were in a new diploid daughter cell. These results, demonstrating that aberrant ciliogenesis is de-coupled from cell cycle regulation, have functional implications in diseases marked by centrosomal amplification.


Assuntos
Cílios , Citocinese , Proteínas Ativadoras de GTPase , Animais , Humanos , Centríolos/metabolismo , Centrossomo/metabolismo , Cílios/genética , Cílios/metabolismo , Mamíferos/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Ativadoras de GTPase/metabolismo
13.
Development ; 148(20)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34545391

RESUMO

Correct cell division relies on the formation of a bipolar spindle. In animal cells, microtubule nucleation at the spindle poles is facilitated by the pericentriolar material (PCM), which assembles around a pair of centrioles. Although centrioles are essential for PCM assembly, the proteins that anchor the PCM to the centrioles are less known. Here, we investigate the molecular function of PCMD-1 in bridging the PCM and the centrioles in Caenorhabditis elegans. We demonstrate that the centrosomal recruitment of PCMD-1 is dependent on the outer centriolar protein SAS-7. The most C-terminal part of PCMD-1 is sufficient to target it to the centrosome, and the coiled-coil domain promotes its accumulation by facilitating self-interaction. We reveal that PCMD-1 interacts with the PCM scaffold protein SPD-5, the mitotic kinase PLK-1 and the centriolar protein SAS-4. Using an ectopic translocation assay, we show that PCMD-1 can selectively recruit downstream PCM scaffold components to an ectopic location in the cell, indicating that PCMD-1 is able to anchor the PCM scaffold proteins at the centrioles. Our work suggests that PCMD-1 is an essential functional bridge between the centrioles and the PCM.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Animais , Linhagem Celular , Centrossomo/metabolismo , Células HEK293 , Humanos , Mitose/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Polos do Fuso/metabolismo
14.
EMBO Rep ; 23(3): e54160, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34957672

RESUMO

The actin motor protein myosin VI is a multivalent protein with diverse functions. Here, we identified and characterised a myosin VI ubiquitous interactor, the oral-facial-digital syndrome 1 (OFD1) protein, whose mutations cause malformations of the face, oral cavity, digits and polycystic kidney disease. We found that myosin VI regulates the localisation of OFD1 at the centrioles and, as a consequence, the recruitment of the distal appendage protein Cep164. Myosin VI depletion in non-tumoural cell lines causes an aberrant localisation of OFD1 along the centriolar walls, which is due to a reduction in the OFD1 mobile fraction. Finally, loss of myosin VI triggers a severe defect in ciliogenesis that could be, at least partially, ascribed to an impairment in the autophagic removal of OFD1 from satellites. Altogether, our results highlight an unprecedent layer of regulation of OFD1 and a pivotal role of myosin VI in coordinating the formation of the distal appendages and primary cilium with important implications for the genetic disorders known as ciliopathies.


Assuntos
Ciliopatias , Proteínas Associadas aos Microtúbulos , Centríolos/metabolismo , Cílios/metabolismo , Ciliopatias/genética , Ciliopatias/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Proteínas/metabolismo
15.
Adv Exp Med Biol ; 1452: 37-64, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38805124

RESUMO

The impact of centrosome abnormalities on cancer cell proliferation has been recognized as early as 1914 (Boveri, Zur Frage der Entstehung maligner Tumoren. Jena: G. Fisher, 1914), but vigorous research on molecular levels has only recently started when it became fully apparent that centrosomes can be targeted for new cancer therapies. While best known for their microtubule-organizing capabilities as MTOC (microtubule organizing center) in interphase and mitosis, centrosomes are now further well known for a variety of different functions, some of which are related to microtubule organization and consequential activities such as cell division, migration, maintenance of cell shape, and vesicle transport powered by motor proteins, while other functions include essential roles in cell cycle regulation, metabolic activities, signal transduction, proteolytic activity, and several others that are now heavily being investigated for their role in diseases and disorders (reviewed in Schatten and Sun, Histochem Cell Biol 150:303-325, 2018; Schatten, Adv Anat Embryol Cell Biol 235:43-50, 2022a; Schatten, Adv Anat Embryol Cell Biol 235:17-35, 2022b).Cancer cell centrosomes differ from centrosomes in noncancer cells in displaying specific abnormalities that include phosphorylation abnormalities, overexpression of specific centrosomal proteins, abnormalities in centriole and centrosome duplication, formation of multipolar spindles that play a role in aneuploidy and genomic instability, and several others that are highlighted in the present review on ovarian cancer. Ovarian cancer cell centrosomes, like those in other cancers, display complex abnormalities that in part are based on the heterogeneity of cells in the cancer tissues resulting from different etiologies of individual cancer cells that will be discussed in more detail in this chapter.Because of the critical role of centrosomes in cancer cell proliferation, several lines of research are being pursued to target centrosomes for therapeutic intervention to inhibit abnormal cancer cell proliferation and control tumor progression. Specific centrosome abnormalities observed in ovarian cancer will be addressed in this chapter with a focus on targeting such aberrations for ovarian cancer-specific therapies.


Assuntos
Centrossomo , Neoplasias Ovarianas , Humanos , Animais , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/terapia , Ciclo Celular , Centrossomo/patologia , Centrossomo/fisiologia , Proliferação de Células , Progressão da Doença
16.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33597294

RESUMO

Centrioles and basal bodies (CBBs) are found in physically linked pairs, and in mammalian cells intercentriole connections (G1-G2 tether and S-M linker) regulate centriole duplication and function. In trypanosomes BBs are not associated with the spindle and function in flagellum/cilia nucleation with an additional role in mitochondrial genome (kinetoplast DNA [kDNA]) segregation. Here, we describe BBLP, a BB/pro-BB (pBB) linker protein in Trypanosoma brucei predicted to be a large coiled-coil protein conserved in the kinetoplastida. Colocalization with the centriole marker SAS6 showed that BBLP localizes between the BB/pBB pair, throughout the cell cycle, with a stronger signal in the old flagellum BB/pBB pair. Importantly, RNA interference (RNAi) depletion of BBLP leads to a conspicuous splitting of the BB/pBB pair associated only with the new flagellum. BBLP RNAi is lethal in the bloodstream form of the parasite and perturbs mitochondrial kDNA inheritance. Immunogold labeling confirmed that BBLP is localized to a cytoskeletal component of the BB/pBB linker, and tagged protein induction showed that BBLP is incorporated de novo in both new and old flagella BB pairs of dividing cells. We show that the two aspects of CBB disengagement-loss of orthogonal orientation and ability to separate and move apart-are consistent but separable events in evolutionarily diverse cells and we provide a unifying model explaining centriole/BB linkage differences between such cells.


Assuntos
Corpos Basais/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/citologia , Citoesqueleto/metabolismo , DNA de Cinetoplasto/genética , Flagelos/metabolismo , Proteínas de Protozoários/genética , Interferência de RNA , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/crescimento & desenvolvimento , Trypanosoma brucei brucei/metabolismo
17.
EMBO J ; 38(14): e101082, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31304626

RESUMO

Centrioles are core structural elements of both centrosomes and cilia. Although cytoplasmic granules called centriolar satellites have been observed around these structures, lack of a comprehensive inventory of satellite proteins impedes our understanding of their ancestry. To address this, we performed mass spectrometry (MS)-based proteome profiling of centriolar satellites obtained by affinity purification of their key constituent, PCM1, from sucrose gradient fractions. We defined an interactome consisting of 223 proteins, which showed striking enrichment in centrosome components. The proteome also contained new structural and regulatory factors with roles in ciliogenesis. Quantitative MS on whole-cell and centriolar satellite proteomes of acentriolar cells was performed to reveal dependencies of satellite composition on intact centrosomes. Although most components remained associated with PCM1 in acentriolar cells, reduced cytoplasmic and satellite levels were observed for a subset of centrosomal proteins. These results demonstrate that centriolar satellites and centrosomes form independently but share a substantial fraction of their proteomes. Dynamic exchange of proteins between these organelles could facilitate their adaptation to changing cellular environments during development, stress response and tissue homeostasis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Linfócitos/metabolismo , Animais , Autoantígenos/metabolismo , Galinhas , Células HEK293 , Homeostase , Humanos , Células Jurkat , Linfócitos/citologia , Proteômica
18.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36674791

RESUMO

The cytosolic carboxypeptidase 6 (CCP6) catalyzes the deglutamylation of polyglutamate side chains, a post-translational modification that affects proteins such as tubulins or nucleosome assembly proteins. CCP6 is involved in several cell processes, such as spermatogenesis, antiviral activity, embryonic development, and pathologies like renal adenocarcinoma. In the present work, the cellular role of CCP6 has been assessed by BioID, a proximity labeling approach for mapping physiologically relevant protein-protein interactions (PPIs) and bait proximal proteins by mass spectrometry. We used HEK 293 cells stably expressing CCP6-BirA* to identify 37 putative interactors of this enzyme. This list of CCP6 proximal proteins displayed enrichment of proteins associated with the centrosome and centriolar satellites, indicating that CCP6 could be present in the pericentriolar material. In addition, we identified cilium assembly-related proteins as putative interactors of CCP6. In addition, the CCP6 proximal partner list included five proteins associated with the Joubert syndrome, a ciliopathy linked to defects in polyglutamylation. Using the proximity ligation assay (PLA), we show that PCM1, PIBF1, and NudC are true CCP6 physical interactors. Therefore, the BioID methodology confirms the location and possible functional role of CCP6 in centrosomes and centrioles, as well as in the formation and maintenance of primary cilia.


Assuntos
Centríolos , Cílios , Masculino , Humanos , Cílios/metabolismo , Células HEK293 , Centríolos/metabolismo , Centrossomo/metabolismo , Proteínas/metabolismo
19.
Cell Mol Life Sci ; 78(11): 4955-4972, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33860332

RESUMO

Correct timing of cellular processes is essential during embryological development and to maintain the balance between healthy proliferation and tumour formation. Assembly and disassembly of the primary cilium, the cell's sensory signalling organelle, are linked to cell cycle timing in the same manner as spindle pole assembly and chromosome segregation. Mitotic processes, ciliary assembly, and ciliary disassembly depend on the centrioles as microtubule-organizing centres (MTOC) to regulate polymerizing and depolymerizing microtubules. Subsequently, other functional protein modules are gathered to potentiate specific protein-protein interactions. In this review, we show that a significant subset of key mitotic regulator proteins is moonlighting at the cilium, among which PLK1, AURKA, CDC20, and their regulators. Although ciliary assembly defects are linked to a variety of ciliopathies, ciliary disassembly defects are more often linked to brain development and tumour formation. Acquiring a better understanding of the overlap in regulators of ciliary disassembly and mitosis is essential in finding therapeutic targets for the different diseases and types of tumours associated with these regulators.


Assuntos
Cílios/metabolismo , Mitose , Proteína da Polipose Adenomatosa do Colo/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Ciliopatias/metabolismo , Ciliopatias/patologia , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Via de Sinalização Wnt
20.
Genes Dev ; 28(13): 1461-71, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24934224

RESUMO

Multiciliate cells employ hundreds of motile cilia to produce fluid flow, which they nucleate and extend by first assembling hundreds of centrioles. In most cells, entry into the cell cycle allows centrioles to undergo a single round of duplication, but in differentiating multiciliate cells, massive centriole assembly occurs in G0 by a process initiated by a small coiled-coil protein, Multicilin. Here we show that Multicilin acts by forming a ternary complex with E2f4 or E2f5 and Dp1 that binds and activates most of the genes required for centriole biogenesis, while other cell cycle genes remain off. This complex also promotes the deuterosome pathway of centriole biogenesis by activating the expression of deup1 but not its paralog, cep63. Finally, we show that this complex is disabled by mutations in human Multicilin that cause a severe congenital mucociliary clearance disorder due to reduced generation of multiple cilia. By coopting the E2f regulation of cell cycle genes, Multicilin drives massive centriole assembly in epithelial progenitors in a manner required for multiciliate cell differentiation.


Assuntos
Centríolos/metabolismo , Fatores de Transcrição E2F/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Fatores de Transcrição E2F/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Mutação/genética , Ligação Proteica/genética , Pele/citologia , Pele/metabolismo , Fator de Transcrição DP1/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis/genética , Xenopus laevis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA