Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurophysiol ; 127(6): 1535-1546, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35507506

RESUMO

The orbitofrontal cortex (OFC) is an important brain area for executive functions. The OFC projects to both the nucleus accumbens (NAc) and the basolateral nucleus of the amygdala (BLA). These two pathways share some similar behavioral functions, but their anatomical and physiological properties have not been compared before. In this study, we first explored the connection of the lateral OFC (lOFC) to NAc core (NAcc) and/or BLA, especially the collateral projections (experiments 1 and 2) with rats. In experiment 1, fluorophore-conjugated retrograde tracers were locally infused into the NAcc and the BLA to sample neurons in the lOFC. Our results revealed that along the anterior-posterior axis of the lOFC, more NAcc- and/or BLA-projecting neurons were distributed toward the posterior end, but the average percentage of collateral projecting neurons at the four sampled lOFC levels remained fairly stable. In experiment 2, antidromic single units in the lOFC responsive to the NAcc and/or the BLA stimulation were identified in anesthetized rats. However, we found that collateral projections from the lOFC to NAcc and BLA were sparse. We next studied the physiological characteristics of these two pathways (experiment 3). In this experiment, orthodromic single units in the NAcc or the BLA responsive to the lOFC stimulation were located in anesthetized rats. Our results showed no difference in the evoked thresholds or the intensity-response probability curves between the two. Together, our results showed that these two pathways were similar in projecting neuron distribution and physiological characteristics.NEW & NOTEWORTHY Using the double retrograde tracing and electrophysiological approach, we reported that among the sampled NAcc- or the BLA-projecting lOFC neurons, the percentage of collateral projections were fairly stable (about 20%-25%) along the lOFC anterior-posterior axis. Furthermore, among the neurons sampled in the NAcc and the BLA, there was no difference in physiological characteristics in response to lOFC stimulation between the two pathways.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Núcleo Accumbens , Tonsila do Cerebelo/fisiologia , Animais , Complexo Nuclear Basolateral da Amígdala/fisiologia , Núcleo Accumbens/fisiologia , Córtex Pré-Frontal/fisiologia , Ratos , Ratos Sprague-Dawley
2.
Anat Sci Int ; 98(4): 580-592, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37160827

RESUMO

Midbrain dopaminergic (DAergic) regions including ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) are involved in diverse brain functions. Previous studies demonstrated that the VTA/SNc to nucleus accumbens (NAc) pathway is critical in reward and motivation. Moreover, DAergic innervations within the insular cortex (IC) are reported to play important roles in pain regulation. To investigate whether VTA/SNc sends collateral projections to NAc and IC, we injected retrograde tracer Fluoro-Gold (FG) into the NAc and Fluorescent retrograde tracer beads (RetroBeads) into the ipsilateral IC in rats. Then, to detect whether collateral projection neurons participate in neuropathic pain, parts of the rats received the spare nerve injury (SNI) surgery. The immunofluorescence staining results showed that FG, RetroBeads, and FG/RetroBeads double-labeled neurons were distributed in the VTA/SNc bilaterally with an ipsilateral predominance. The proportion of FG/RetroBeads double-labeled neurons to the total number of FG and RetroBeads-labeled neurons was 16.7% and 30.3%, respectively. About 90.3% of FG/RetroBeads double-labeled neurons showed DAergic neuron marker tyrosine hydroxylase (TH)-immunoreactive (IR), whereas, only 7.5% exhibited a subset of GABAergic inhibitory projection neuron marker parvalbumin (PV)-IR. One week after SNI, about 53.1% and 33.6% of FG- and RetroBeads-labeled neurons were FG/Fos- and RetroBeads/Fos-IR neurons, respectively. Finally, about 35.9% of the FG/RetroBeads double-labeled neurons showed Fos-IR. The present study indicates that parts of DAergic and PV-IR GABAergic neurons in the VTA/SNc send collateral projections to both NAc and IC, which are activated under SNI-induced neuropathic pain, and probably contribute to the regulation of nociception.


Assuntos
Neuralgia , Área Tegmentar Ventral , Ratos , Animais , Área Tegmentar Ventral/metabolismo , Núcleo Accumbens/metabolismo , Parte Compacta da Substância Negra/metabolismo , Córtex Insular , Substância Negra , Dopamina/metabolismo , Neuralgia/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
3.
Mol Brain ; 15(1): 88, 2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309684

RESUMO

The pedunculopontine nucleus (PPN) is a heterogeneous midbrain structure involved in various brain functions, such as motor control, learning, reward, and sleep. Previous studies using conventional tracers have shown that the PPN receives extensive afferent inputs from various cortical areas. To examine how these cortical axons make collateral projections to other subcortical areas, we used a dual-viral injection strategy to sparsely label PPN-targeting cortical pyramidal neurons in CaMKIIα-Cre transgenic mice. Using a high-speed volumetric imaging with on-the-fly-scan and Readout (VISoR) technique, we visualized brain-wide axonal projections of individual PPN-targeting neurons from several cortical areas, including the prelimbic region (PL), anterior cingulate area (ACA) and secondary motor cortex (MOs). We found that each PPN-projecting neuron had a unique profile of collateralization, with some subcortical areas being preferential targets. In particular, PPN-projecting neurons from all three traced cortical areas exhibited common preferential collateralization to several nuclei, with most neurons targeting the striatum (STR), lateral hypothalamic area (LHA) and periaqueductal gray (PAG), and a substantial portion of neurons also targeting the zona incerta (ZI), median raphe nucleus (MRN) and substantia nigra pars reticulata (SNr). Meanwhile, very specific collateralization patterns were found for other nuclei, including the intermediate reticular nucleus (IRN), parvicellular reticular nucleus (PARN) and gigantocellular reticular nucleus (GRN), which receive collateral inputs almost exclusively from the MOs. These observations provide potential anatomical mechanisms for cortical neurons to coordinate the PPN with other subcortical areas in performing different physiological functions.


Assuntos
Encéfalo , Córtex Motor , Animais , Camundongos , Encéfalo/fisiologia , Células Piramidais , Bulbo , Substância Cinzenta Periaquedutal
4.
Neuroscience ; 410: 293-304, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31075313

RESUMO

Medullary dorsal horn (MDH), the homolog of spinal dorsal horn, plays essential roles in processing of nociceptive signals from orofacial region toward higher centers, such as the ventral posteromedial thalamic nucleus (VPM) and parafascicular thalamic nucleus (Pf), which belong to the sensory-discriminative and affective aspects of pain transmission systems at the thalamic level, respectively. In the present study, in order to provide morphological evidence for whether neurons in the MDH send collateral projections to the VPM and Pf, a retrograde double tracing method combined with immunofluorescence staining for substance P (SP), SP receptor (SPR) and Fos protein was used. Fluoro-gold (FG) was injected into the VPM and the tetramethylrhodamine-dextran (TMR) was injected into the Pf. The result revealed that both FG- and TMR-labeled projection neurons were observed throughout the entire extent of the MDH, while the FG/TMR double-labeled neurons were mainly located in laminae I and III. It was also found that some of the FG/TMR double-labeled neurons within lamina I expressed SPR and were in close contact with SP-immunoreactive (SP-ir) terminals. After formalin injection into the orofacial region, 41.4% and 34.3% of the FG/TMR double-labeled neurons expressed Fos protein in laminae I and III, respectively. The present results provided morphological evidence for that some SPR-expressing neurons within the MDH send collateral projections to both VPM and Pf and might be involved in sensory-discriminative and affective aspects of acute orofacial nociceptive information transmission.


Assuntos
Núcleos Intralaminares do Tálamo/fisiologia , Bulbo/fisiologia , Corno Dorsal da Medula Espinal/fisiologia , Núcleos Ventrais do Tálamo/fisiologia , Animais , Núcleos Intralaminares do Tálamo/química , Masculino , Bulbo/química , Vias Neurais/química , Vias Neurais/fisiologia , Ratos , Ratos Sprague-Dawley , Corno Dorsal da Medula Espinal/química , Núcleos Ventrais do Tálamo/química
5.
Mol Brain ; 11(1): 22, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29650024

RESUMO

The trigemino-thalamic (T-T) and trigemino-parabrachial (T-P) pathways are strongly implicated in the sensory-discriminative and affective/emotional aspects of orofacial pain, respectively. These T-T and T-P projection fibers originate from the spinal trigeminal nucleus (Vsp). We previously determined that many vesicular glutamate transporter (VGLUT1 and/or VGLUT2) mRNA-positive neurons were distributed in the Vsp of the adult rat, and most of these neurons sent their axons to the thalamus or cerebellum. However, whether VGLUT1 or VGLUT2 mRNA-positive projection neurons exist that send their axons to both the thalamus and the parabrachial nucleus (PBN) has not been reported. Thus, in the present study, dual retrograde tract tracing was used in combination with fluorescence in situ hybridization (FISH) for VGLUT1 or VGLUT2 mRNA to identify the existence of VGLUT1 or VGLUT2 mRNA neurons that send collateral projections to both the thalamus and the PBN. Neurons in the Vsp that send collateral projections to both the thalamus and the PBN were mainly VGLUT2 mRNA-positive, with a proportion of 90.3%, 93.0% and 85.4% in the oral (Vo), interpolar (Vi) and caudal (Vc) subnucleus of the Vsp, respectively. Moreover, approximately 34.0% of the collateral projection neurons in the Vc showed Fos immunopositivity after injection of formalin into the lip, and parts of calcitonin gene-related peptide (CGRP)-immunopositive axonal varicosities were in direct contact with the Vc collateral projection neurons. These results indicate that most collateral projection neurons in the Vsp, particularly in the Vc, which express mainly VGLUT2, may relay orofacial nociceptive information directly to the thalamus and PBN via axon collaterals.


Assuntos
Neurônios/metabolismo , Núcleos Parabraquiais/metabolismo , Tálamo/metabolismo , Núcleo Espinal do Trigêmeo/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/genética , Animais , Axônios/metabolismo , Biotina/administração & dosagem , Biotina/análogos & derivados , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Dendritos/metabolismo , Dextranos/administração & dosagem , Formaldeído , Hibridização in Situ Fluorescente , Injeções Subcutâneas , Lábio , Masculino , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Rodaminas/administração & dosagem , Estilbamidinas/administração & dosagem , Sinapses/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
6.
Neurosci Lett ; 629: 245-250, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27423318

RESUMO

Combined the retrograde double tracing with immunofluorescence histochemical staining, we examined the neurons in the lateral parabrachial nucleus (LPB) sent collateral projections to the paraventricular thalamic nucleus (PVT) and central amygdaloid nucleus (CeA) and their roles in the nociceptive transmission in the rat. After the injection of Fluoro-gold (FG) into the PVT and tetramethylrhodamine-dextran (TMR) into the CeA, respectively, FG/TMR double-labeled neurons were observed in the LPB. The percentages of FG/TMR double-labeled neurons to the total number of FG- or TMR-labeled neurons were 6.18% and 9.09%, respectively. Almost all of the FG/TMR double-labeled neurons (95%) exhibited calcitonin gene-related peptide (CGRP) immunoreactivity. In the condition of neuropathic pain, 94% of these neurons showed FOS immunoreactivity. The present data indicates that some of CGRP-expressing neurons in the LPB may transmit nociceptive information toward the PVT and CeA by way of axon collaterals.


Assuntos
Núcleo Central da Amígdala/citologia , Núcleos da Linha Média do Tálamo/citologia , Neurônios/citologia , Núcleos Parabraquiais/citologia , Animais , Axônios , Masculino , Vias Neurais/citologia , Técnicas de Rastreamento Neuroanatômico , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA