Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 324
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genomics ; 116(3): 110834, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38527595

RESUMO

The edgeR (Robust) is a popular approach for identifying differentially expressed genes (DEGs) from RNA-Seq profiles. However, it shows weak performance against gene-specific outliers and is unable to handle missing observations. To address these issues, we proposed a pre-processing approach of RNA-Seq count data by combining the iLOO-based outlier detection and random forest-based missing imputation approach for boosting the performance of edgeR (Robust). Both simulation and real RNA-Seq count data analysis results showed that the proposed edgeR (Robust) outperformed than the conventional edgeR (Robust). To investigate the effectiveness of identified DEGs for diagnosis, and therapies of ovarian cancer (OC), we selected top-ranked 12 DEGs (IL6, XCL1, CXCL8, C1QC, C1QB, SNAI2, TYROBP, COL1A2, SNAP25, NTS, CXCL2, and AGT) and suggested hub-DEGs guided top-ranked 10 candidate drug-molecules for the treatment against OC. Hence, our proposed procedure might be an effective computational tool for exploring potential DEGs from RNA-Seq profiles for diagnosis and therapies of any disease.


Assuntos
Biomarcadores Tumorais , Neoplasias Ovarianas , RNA-Seq , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/terapia , Feminino , Biomarcadores Tumorais/genética , Software , Transcriptoma , Perfilação da Expressão Gênica
2.
BMC Genomics ; 25(1): 61, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225545

RESUMO

BACKGROUND: Sweetpotato is a typical ''potassium (K+) favoring'' food crop, which root differentiation process needs a large supply of potassium fertilizer and determine the final root yield. To further understand the regulatory network of the response to low potassium stress, here we analyze physiological and biochemical characteristics, and investigated root transcriptional changes in two sweetpotato genotypes, namely, - K tolerant "Xu32" and - K susceptible"NZ1". RESULT: We found Xu32 had the higher capability of K+ absorption than NZ1 with better growth performance, higher net photosynthetic rate and higher chlorophyll contents under low potassium stress, and identified 889 differentially expressed genes (DEGs) in Xu32, 634 DEGs in NZ1, 256 common DEGs in both Xu32 and NZ1. The Gene Ontology (GO) term in molecular function enrichment analysis revealed that the DEGs under low K+ stress are predominately involved in catalytic activity, binding, transporter activity and antioxidant activity. Moreover, the more numbers of identified DEGs in Xu32 than that in NZ1 responded to K+-deficiency belong to the process of photosynthesis, carbohydrate metabolism, ion transport, hormone signaling, stress-related and antioxidant system may result in different ability to K+-deficiency tolerance. The unique genes in Xu32 may make a great contribution to enhance low K+ tolerance, and provide useful information for the molecular regulation mechanism of K+-deficiency tolerance in sweetpotato. CONCLUSIONS: The common and distinct expression pattern between the two sweetpotato genotypes illuminate a complex mechanism response to low potassium exist in sweetpotato. The study provides some candidate genes, which can be used in sweetpotato breeding program for improving low potassium stress tolerance.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genótipo , Potássio/metabolismo , Fotossíntese/genética , Transcriptoma , Estresse Fisiológico/genética
3.
BMC Plant Biol ; 24(1): 584, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38898387

RESUMO

BACKGROUND: High temperatures significantly affect the growth, development, and yield of plants. Anoectochilus roxburghii prefers a cool and humid environment, intolerant of high temperatures. It is necessary to enhance the heat tolerance of A. roxburghii and breed heat-tolerant varieties. Therefore, we studied the physiological indexes and transcriptome of A. roxburghii under different times of high-temperature stress treatments. RESULTS: Under high-temperature stress, proline (Pro), H2O2 content increased, then decreased, then increased again, catalase (CAT) activity increased continuously, peroxidase (POD) activity decreased rapidly, then increased, then decreased again, superoxide dismutase (SOD) activity, malondialdehyde (MDA), and soluble sugars (SS) content all decreased, then increased, and chlorophyll and soluble proteins (SP) content increased, then decreased. Transcriptomic investigation indicated that a total of 2740 DEGs were identified and numerous DEGs were notably enriched for "Plant-pathogen interaction" and "Plant hormone signal transduction". We identified a total of 32 genes in these two pathways that may be the key genes for resistance to high-temperature stress in A. roxburghii. CONCLUSIONS: To sum up, the results of this study provide a reference for the molecular regulation of A. roxburghii's tolerance to high temperatures, which is useful for further cultivation of high-temperature-tolerant A. roxburghii varieties.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Orchidaceae , Orchidaceae/genética , Orchidaceae/fisiologia , Orchidaceae/metabolismo , Transcriptoma , Temperatura Alta , Resposta ao Choque Térmico/genética , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Malondialdeído/metabolismo , Estresse Fisiológico/genética
4.
Liver Int ; 44(2): 614-624, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38105495

RESUMO

BACKGROUND AND AIMS: Hepatitis B virus X protein (HBx) play a key role in pathogenesis of HBV-induced hepatocellular carcinoma (HCC) by promoting epithelial to mesenchymal transition (EMT). In this study, we hypothesized that inhibition of HBx is an effective strategy to combat HCC. METHODOLOGY AND RESULTS: We designed and synthesized novel HBx gene specific single guide RNA (sgRNA) with CRISPR/Cas9 system and studied its in vitro effects on tumour properties of HepG2-2.15. Full length HBx gene was excised using HBx-CRISPR that resulted in significant knockdown of HBx expression in hepatoma cells. HBx-CRISPR also decreased levels of HBsAg and HBV cccDNA expression. A decreased expression of mesenchymal markers, proliferation and tumorigenic properties was observed in HBx-CRISPR treated cells as compared to controls in both two- and three- dimensional (2D and 3D) tumour models. Transcriptomics data showed that out of 1159 differentially expressed genes in HBx-CRISPR transfected cells as compared to controls, 70 genes were upregulated while 1089 genes associated with cell proliferation and EMT pathways were downregulated. CONCLUSION: Thus, targeting of HBx by CRISPR/Cas9 gene editing system reduces covalently closed circular DNA (cccDNA) levels, HBsAg production and mesenchymal characteristics of HBV-HCC cells. We envision inhibition of HBx by CRISPR as a novel therapeutic approach for HBV-induced HCC.


Assuntos
Carcinoma Hepatocelular , Hepatite B , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Vírus da Hepatite B/genética , Neoplasias Hepáticas/genética , Antígenos de Superfície da Hepatite B/genética , Edição de Genes , Sistemas CRISPR-Cas , Transição Epitelial-Mesenquimal/genética , RNA Guia de Sistemas CRISPR-Cas , DNA Circular , Replicação Viral , Células Hep G2
5.
Mol Biol Rep ; 51(1): 283, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324135

RESUMO

BACKGROUND: Eleusine coracana (L.) Gaertn is a crucial C4 species renowned for its stress robustness and nutritional significance. Because of its adaptability traits, finger millet (ragi) is a storehouse of critical genomic resources for crop improvement. However, more knowledge about this crop's molecular responses to heat stress needs to be gained. METHODS AND RESULTS: In the present study, a comparative RNA sequencing analysis was done in the leaf tissue of the finger millet, between the heat-sensitive (KJNS-46) and heat-tolerant (PES-110) cultivars of Ragi, in response to high temperatures. On average, each sample generated about 24 million reads. Interestingly, a comparison of transcriptomic profiling identified 684 transcripts which were significantly differentially expressed genes (DEGs) examined between the heat-stressed samples of both genotypes. The heat-induced change in the transcriptome was confirmed by qRT-PCR using a set of randomly selected genes. Pathway analysis and functional annotation analysis revealed the activation of various genes involved in response to stress specifically heat, oxidation-reduction process, water deprivation, and changes in heat shock protein (HSP) and transcription factors, calcium signaling, and kinase signaling. The basal regulatory genes, such as bZIP, were involved in response to heat stress, indicating that heat stress activates genes involved in housekeeping or related to basal regulatory processes. A substantial percentage of the DEGs belonged to proteins of unknown functions (PUFs), i.e., not yet characterized. CONCLUSION: These findings highlight the importance of candidate genes, such as HSPs and pathways that can confer tolerance towards heat stress in ragi. These results will provide valuable information to improve the heat tolerance in heat-susceptible agronomically important varieties of ragi and other crops.


Assuntos
Eleusine , Termotolerância , Genótipo , Perfilação da Expressão Gênica , Proteínas de Choque Térmico
6.
Ecotoxicol Environ Saf ; 270: 115890, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38150750

RESUMO

Plutella xylostella (Linnaeus) is an important pest of cruciferous plants, which is harmful all over the world, causing serious economic losses, and its drug resistance is increasing rapidly. The sterile insect technique (SIT) is a green control method and does not cause resistance. In this study, transcriptomics and bioinformatics were used to explore the effects of irradiation on the reproductive function of Plutella xylostella, and the response mechanism of sterility under irradiation was initially revealed. We identified 3342 (1682 up-regulated, 1660 down-regulated), 1963 (1042 up-regulated, 921 down-regulated) and 1531 (721 up-regulated, 810 down-regulated) differentially expressed genes (DEGs) in the 200 Gy vs CK (Control Check), 400 Gy vs CK and 400 Gy vs 200 Gy groups, respectively. GO and KEGG analyses were performed for DEGs in each group. The results showed that 200 Gy activated the downstream phosphorylation pathway and inhibited the cytochrome p450 immune response mechanism. 400 Gy promoted protein decomposition and absorption pathways, autophagy pathways, etc. Down-regulated genes were concentrated in the transformation process of energy metabolizing substances such as ATP, phosphorylation signaling pathway, and insulin, while up-regulated genes were concentrated in biological regulation and metabolic processes. Eight genes in the phosphorylation pathway were selected for qRT-PCR verification, and the results showed that the phosphorylation of different dose groups was regulated in different ways. 400 Gy used positive feedback regulation, while the phosphorylation of F1 used negative feedback regulation.


Assuntos
Infertilidade , Mariposas , Animais , Perfilação da Expressão Gênica , Transcriptoma
7.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612764

RESUMO

In clinical practice, colon cancer is a prevalent malignant tumor of the digestive system, characterized by a complex and progressive process involving multiple genes and molecular pathways. Historically, research efforts have primarily focused on investigating individual genes; however, our current study aims to explore the collective impact of multiple genes on colon cancer and to identify potential therapeutic targets associated with these genes. For this research, we acquired the gene expression profiles and RNA sequencing data of colon cancer from TCGA. Subsequently, we conducted differential gene expression analysis using R, followed by GO and KEGG pathway enrichment analyses. To construct a protein-protein interaction (PPI) network, we selected survival-related genes using the log-rank test and single-factor Cox regression analysis. Additionally, we performed LASSO regression analysis, immune infiltration analysis, mutation analysis, and cMAP analysis, as well as an investigation into ferroptosis. Our differential expression and survival analyses identified 47 hub genes, and subsequent LASSO regression analysis refined the focus to 23 key genes. These genes are closely linked to cancer metastasis, proliferation, apoptosis, cell cycle regulation, signal transduction, cancer microenvironment, immunotherapy, and neurodevelopment. Overall, the hub genes discovered in our study are pivotal in colon cancer and are anticipated to serve as important biological markers for the diagnosis and treatment of the disease.


Assuntos
Neoplasias do Colo , Ferroptose , Humanos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Apoptose , Análise Fatorial , Imunoterapia , Microambiente Tumoral
8.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396749

RESUMO

Tube-like outgrowths from root epidermal cells, known as root hairs, enhance water and nutrient absorption, facilitate microbial interactions, and contribute to plant anchorage by expanding the root surface area. Genetically regulated and strongly influenced by environmental conditions, longer root hairs generally enhance water and nutrient absorption, correlating with increased stress resistance. Wheat, a globally predominant crop pivotal for human nutrition, necessitates the identification of long root hair genotypes and their regulatory genes to enhance nutrient capture and yield potential. This study focused on 261 wheat samples of diverse genotypes during germination, revealing noticeable disparities in the length of the root hair among the genotypes. Notably, two long root hair genotypes (W106 and W136) and two short root hair genotypes (W90 and W100) were identified. Transcriptome sequencing resulted in the development of 12 root cDNA libraries, unveiling 1180 shared differentially expressed genes (DEGs). Further analyses, including GO function annotation, KEGG enrichment, MapMan metabolic pathway analysis, and protein-protein interaction (PPI) network prediction, underscored the upregulation of root hair length regulatory genes in the long root hair genotypes. These included genes are associated with GA and BA hormone signaling pathways, FRS/FRF and bHLH transcription factors, phenylpropanoid, lignin, lignan secondary metabolic pathways, the peroxidase gene for maintaining ROS steady state, and the ankyrin gene with diverse biological functions. This study contributes valuable insights into modulating the length of wheat root hair and identifies candidate genes for the genetic improvement of wheat root traits.


Assuntos
Transcriptoma , Triticum , Humanos , Perfilação da Expressão Gênica , Fenótipo , Água , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética
9.
Toxicol Mech Methods ; 34(5): 527-544, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38294000

RESUMO

Recent studies have revealed a notable connection between pesticide exposure and Recurrent Pregnancy Loss (RPL), yet the precise molecular underpinning of this toxicity remains elusive. Through the alignment of Differentially Expressed Genes (DEGs) of healthy and RPL patients with the target genes of 9 pesticide components, we identified a set of 12 genes responsible for RPL etiology. Interestingly, biological process showed that besides RPL, those 12 genes also associated with preeclampsia and cardiovascular disease. Enrichment analysis showed the engagement of these genes associated with essential roles in the molecular transport of small molecules, as well as the aldosterone-regulated sodium reabsorption, endocrine and other factor-regulated calcium reabsorption, mineral absorption, ion homeostasis, and ion transport by P-type ATPases. Notably, the crosstalk targets between pesticide components played crucial roles in influencing RPL results, suggesting a role in attenuating pesticide agents that contribute to RPL. It is important to note that non-significant concentration of the pesticide components observed in both control and RPL samples should not prematurely undermine the potential for pesticides to induce RPL in humans. This study emphasizes the complexity of pesticide induced RPL and highlights avenues for further research and precautionary measures.


Assuntos
Aborto Habitual , Perfilação da Expressão Gênica , Praguicidas , Transcriptoma , Humanos , Feminino , Aborto Habitual/genética , Aborto Habitual/induzido quimicamente , Praguicidas/toxicidade , Gravidez , Transcriptoma/efeitos dos fármacos , Estudos de Casos e Controles
10.
BMC Genomics ; 24(1): 421, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37501179

RESUMO

BACKGROUND: Peanut is an economically-important oilseed crop and needs a large amount of calcium for its normal growth and development. Calcium deficiency usually leads to embryo abortion and subsequent abnormal pod development. Different tolerance to calcium deficiency has been observed between different cultivars, especially between large and small-seed cultivars. RESULTS: In order to figure out different molecular mechanisms in defensive responses between two cultivars, we treated a sensitive (large-seed) and a tolerant (small-seed) cultivar with different calcium levels. The transcriptome analysis identified a total of 58 and 61 differentially expressed genes (DEGs) within small-seed and large-seed peanut groups under different calcium treatments, and these DEGs were entirely covered by gene modules obtained via weighted gene co-expression network analysis (WGCNA). KEGG enrichment analysis showed that the blue-module genes in the large-seed cultivar were mainly enriched in plant-pathogen attack, phenolic metabolism and MAPK signaling pathway, while the green-module genes in the small-seed cultivar were mainly enriched in lipid metabolism including glycerolipid and glycerophospholipid metabolisms. By integrating DEGs with WGCNA, a total of eight hub-DEGs were finally identified, suggesting that the large-seed cultivar concentrated more on plant defensive responses and antioxidant activities under calcium deficiency, while the small-seed cultivar mainly focused on maintaining membrane features to enable normal photosynthesis and signal transduction. CONCLUSION: The identified hub genes might give a clue for future gene validation and molecular breeding to improve peanut survivability under calcium deficiency.


Assuntos
Arachis , Cálcio , Arachis/genética , Arachis/metabolismo , Cálcio/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Sementes/genética , Transcriptoma
11.
BMC Genomics ; 24(1): 729, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049726

RESUMO

BACKGROUND: The epididymis is a highly regionalized tubular organ possesses vectorial functions of sperm concentration, maturation, transport, and storage. The epididymis-expressed genes and proteins are characterized by regional and developmental dependent pattern. However, a systematic and comprehensive insight into the postnatal development dependent changes in gene and protein expressions of porcine epididymis is still lacking. Here, the RNA and protein of epididymis of Duroc pigs at different postnatal development stages were extracted by using commercial RNeasy Midi kit and extraction buffer (7 M Urea, 2 M thiourea, 3% CHAPS, and 1 mM PMSF) combined with sonication, respectively, which were further subjected to transcriptomic and proteomic profiling. RESULTS: Transcriptome analysis indicated that 198 and 163 differentially expressed genes (DEGs) were continuously up-regulated and down-regulated along with postnatal development stage changes, respectively. Most of the up-regulated DEGs linked to functions of endoplasmic reticulum and lysosome, while the down-regulated DEGs mainly related to molecular process of extracellular matrix. Moreover, the following key genes INSIG1, PGRMC1, NPC2, GBA, MMP2, MMP14, SFRP1, ELN, WNT-2, COL3A1, and SPARC were highlighted. A total of 49 differentially expressed proteins (DEPs) corresponding to postnatal development stages changes were uncovered by the proteome analysis. Several key proteins ACSL3 and ACADM, VDAC1 and VDAC2, and KNG1, SERPINB1, C3, and TF implicated in fatty acid metabolism, voltage-gated ion channel assembly, and apoptotic and immune processes were emphasized. In the integrative network, the key genes and proteins formed different clusters and showed strong interactions. Additionally, NPC2, COL3A1, C3, and VDAC1 are located at the hub position in each cluster. CONCLUSIONS: The identified postnatal development dependent genes and proteins in the present study will pave the way for shedding light on the molecular basis of porcine epididymis functions and are useful for further studies on the specific regulation mechanisms responsible for epididymal sperm maturation.


Assuntos
Epididimo , Proteômica , Masculino , Animais , Suínos , Epididimo/metabolismo , Sêmen , Perfilação da Expressão Gênica , Proteoma/metabolismo
12.
BMC Genomics ; 24(1): 185, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024819

RESUMO

BACKGROUND: Rice is one of the most important cereals consumed worldwide. Two major abiotic factors affecting rice plants in different growth stages are flooding stress and cold stress. These abiotic stresses can take place independently or simultaneously and significantly affect rice plants during germination and seedling growth. Fortunately, a wide array of phenotypic responses conferring flooding stress and chilling stress tolerance exist within the rice germplasm, indicating the presence of different molecular mechanisms underlying tolerance to these stresses. Understanding these differences may assist in developing improved rice cultivars having higher tolerance to both stresses. In this study, we conducted a comparative global gene expression analysis of two rice genotypes with contrasting phenotypes under cold stress, anaerobic stress, and combined cold and anaerobic stress during germination. RESULTS: The differential gene expression analysis revealed that 5571 differentially expressed genes (DEGs), 7206 DEGs, and 13279 DEGs were identified under anaerobic stress, cold stress, and combined stress, respectively. Genes involved in the carbohydrate metabolic process, glucosyltransferase activity, regulation of nitrogen compound metabolic process, protein metabolic process, lipid metabolic process, cellular nitrogen compound biosynthetic process, lipid biosynthetic process, and a microtubule-based process were enriched across all stresses. Notably, the common Gene Ontology (GO) analysis identified three hub genes, namely Os08g0176800 (similar to mRNA-associated protein mrnp 41), Os11g0454200 (dehydrin), and OS10g0505900 (expressed protein). CONCLUSION: A large number of differentially expressed genes were identified under anaerobic, cold conditions during germination and the combination of the two stress conditions in rice. These results will assist in the identification of promising candidate genes for possible manipulation toward rice crops that are more tolerant under flooding and cold during germination, both independently and concurrently.


Assuntos
Oryza , Transcriptoma , Plântula , Resposta ao Choque Frio/genética , Anaerobiose , Perfilação da Expressão Gênica , Nitrogênio/metabolismo , Lipídeos , Regulação da Expressão Gênica de Plantas , Temperatura Baixa
13.
BMC Plant Biol ; 23(1): 79, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36740701

RESUMO

BACKGROUND: Chestnut blight, one of the most serious branch diseases in Castanea caused by Cryphonectria parasitica, which has ravaged across American chestnut and most of European chestnut since the early twentieth century. Interestingly, the Chinese chestnut is strongly resistant to chestnut blight, shedding light on restoring the ecological status of Castanea plants severely affected by chestnut blight. To better explore the early defense of Chinese chestnut elicited in response to C. parasitica, the early stage of infection process of C. parasitica was observed and RNA sequencing-based transcriptomic profiling of responses of the chestnut blight-resistant wild resource 'HBY-1' at 0, 3 and 9 h after C. parasitica inoculation was performed. RESULTS: First, we found that 9 h was a critical period for Chinese chestnut infected by C. parasitica, which was the basis of further study on transcriptional activation of Chinese chestnut in response to chestnut blight in the early stage. In the transcriptome analysis, a total of 283 differentially expressed genes were identified between T9 h and Mock9 h, and these DEGs were mainly divided into two clusters, one of which was metabolism-related pathways including biosynthesis of secondary metabolites, phenylpropanoid biosynthesis, amino sugar and nucleotide sugar metabolism, and photosynthesis; the other was related to plant-pathogen interaction and MAPK signal transduction. Meanwhile, the two clusters of pathways could be connected through junction among phosphatidylinositol signaling system, phytohormone signaling pathway and α-Linolenic acid metabolism pathway. It is worth noting that genes associated with JA biosynthesis and metabolic pathway were significantly up-regulated, revealing that the entire JA metabolic pathway was activated in Chinese chestnut at the early stage of chestnut blight infection. CONCLUSION: We identified the important infection nodes of C. parasitica and observed the morphological changes of Chinese chestnut wounds at the early stage of infection. In response to chestnut blight, the plant hormone and MAPK signal transduction pathways, plant-pathogen interaction pathways and metabolism-related pathways were activated at the early stage. JA biosynthesis and metabolic pathway may be particularly involved in the Chinese chestnut resistance to chestnut blight. These results contributes to verifying the key genes involved in the resistance of Chinese chestnut to C. parasitica.


Assuntos
Doenças das Plantas , Perfilação da Expressão Gênica , Doenças das Plantas/genética
14.
Virus Genes ; 59(3): 377-390, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36973608

RESUMO

Ferroptosis, an iron-dependent form of regulated cell death, has been associated with many virus infections. However, the role of ferroptosis in dengue virus (DENV) infection remains to be clarified. In our study, a dengue fever microarray dataset (GSE51808) of whole blood samples was downloaded from the Gene Expression Omnibus (GEO), and a list of ferroptosis related genes (FRGs) was extracted from the FerrDb. We identified 37 ferroptosis-related differentially expressed genes (FR-DEGs) in DENV-infected patient blood samples compared to healthy individuals. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses as well as protein-protein interaction (PPI) network of FR-DEGs revealed that these 37 FR-DEGs were mainly related to the C-type lectin receptor and p53 signaling pathway. Nine out of the 37 FR-DEGs (HSPA5, CAV1, HRAS, PTGS2, JUN, IL6, ATF3, XBP1, and CDKN2A) were hub genes, of which 5 were validated by qRT-PCR in DENV-infected HepG2 cells. Finally, using miRNA-mRNA regulatory network, we identified has-miR-124-3p and has-miR-16-5p as the most critical miRNAs in regulating the expression of these hub genes. In conclusion, our findings demonstrated that 5 FR-DEGs, JUN, IL6, ATF3, XBP1, and CDKN2A, and two miRNAs, has-miR-124-3p and has-miR-16-5p may implicate an essential role of ferroptosis in DENV infection, and further studies are warranted to explore the underlying mechanisms.


Assuntos
Vírus da Dengue , Ferroptose , MicroRNAs , Humanos , Vírus da Dengue/genética , Ferroptose/genética , Interleucina-6 , Células Hep G2 , Biologia Computacional
15.
BMC Nephrol ; 24(1): 305, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853335

RESUMO

BACKGROUND: There are no reliable molecular targets for early diagnosis and effective treatment in the clinical management of diabetic kidney disease (DKD). To identify novel gene factors underlying the progression of DKD. METHODS: The public transcriptomic datasets of the alloxan-induced DKD model and the streptozotocin-induced DKD model were retrieved to perform an integrative bioinformatic analysis of differentially expressed genes (DEGs) shared by two experimental animal models. The dominant biological processes and pathways associated with DEGs were identified through enrichment analysis. The expression changes of the key DEGs were validated in the classic db/db DKD mouse model. RESULTS: The downregulated and upregulated genes in DKD models were uncovered from GSE139317 and GSE131221 microarray datasets. Enrichment analysis revealed that metabolic process, extracellular exosomes, and hydrolase activity are shared biological processes and molecular activity is altered in the DEGs. Importantly, Hmgcs2, angptl4, and Slco1a1 displayed a consistent expression pattern across the two DKD models. In the classic db/db DKD mice, Hmgcs2 and angptl4 were also found to be upregulated while Slco1a1 was downregulated in comparison to the control animals. CONCLUSIONS: In summary, we identified the common biological processes and molecular activity being altered in two DKD experimental models, as well as the novel gene factors (Hmgcs2, Angptl4, and Slco1a1) which may be implicated in DKD. Future works are warranted to decipher the biological role of these genes in the pathogenesis of DKD.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Camundongos , Animais , Nefropatias Diabéticas/metabolismo , Perfilação da Expressão Gênica , Biologia Computacional
16.
Hereditas ; 160(1): 7, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765431

RESUMO

BACKGROUND: Increasing evidence indicates that psoriasis (PSO) and periodontitis (PD) are likely to occur together, however, the underlying mechanism remains unclear. MATERIALS AND METHODS: The expression profiles of PSO (lesion vs non-lesion, GSE30999, GSE14905) and PD (affected vs unaffected gingival tissue, GSE16134, GSE10334) were downloaded from the GEO database. First, we investigated the common differentially expressed genes (DEGs) of PSO and PD. Then, GO and KEGG enrichment analysis, protein interaction network (PPI) construction, and hub gene identification analysis were carried out. Finally, GO and KEGG enrichment analysis, miRNA interaction analysis, and transcription factors (TFs) interaction analysis for hub genes were performed. RESULTS: Eighteen DEGs were identified for further analysis, including 15 up-regulated genes and 3 down-regulated genes. 9 hub genes were then identified via Cytohubba, including IL1B, CXCL1, CXCL8, MMP12, CCL18, SELL, CXCL13, FCGR3B, and SELE. Their functions are mainly enriched in two aspects: neutrophil chemotaxis and migration, chemokine activation and interaction. The enriched signaling pathways includes three categories: host defense, inflammation-related signaling pathways, and disease-related pathways. 9 common miRNAs based on experimental evidence and 10 common TFs were further identified in both PSO and PD. CONCLUSION: Our study revealed possible comorbidity mechanisms in PSO and PD from the perspective of bioinformatics tentatively. The data can present new insight for joint prevention and treatment of in PSO and PD, as well as provide data support for further prospective studies.


Assuntos
MicroRNAs , Periodontite , Psoríase , Humanos , Perfilação da Expressão Gênica , Estudos Prospectivos , Periodontite/genética , MicroRNAs/genética , Psoríase/genética , Comorbidade , Biologia Computacional
17.
COPD ; 20(1): 321-326, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37812260

RESUMO

As a key adipokine, leptin has been extensively investigated for its potential role in the pathogenesis of chronic obstructive pulmonary disease (COPD). However, concordant conclusions have not been attained. In this study, we investigated the relationship between leptin and COPD using an integrative analysis that combined a Mendelian randomization (MR) study with transcriptomic data analysis. Here, the MR analysis was performed on the online platform MR-Base, and the bioinformatics analyses were performed with the aid of R Bioconductor packages. No evidence was found by the integrative analysis to support the association of the two attributes. All methods detected a null causal effect of leptin on COPD in the MR analysis. In particular, when the genetically predicted leptin level increased one unit, the risk of developing COPD was estimated as 0.999 (p = 0.943), 0.920 (p = 0.516), 1.002 (p = 0.885), and 1.002 (p = 0.906) by the Inverse Variance Weighted (IVW), MR-Egger, weighted median, and weighted mode method, respectively. Furthermore, no leptin-associated genes except one were identified as being differentially expressed between COPD and control in bioinformatics analysis. The observed association between leptin and COPD in previous observational studies may be attributable to unmeasured confounding effects or reverse causation.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Transcriptoma , Humanos , Leptina/genética , Análise da Randomização Mendeliana , Doença Pulmonar Obstrutiva Crônica/genética , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla
18.
Int J Mol Sci ; 24(17)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37686108

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease, but its pathogenesis is still unclear. Bioinformatics methods were used to explore the differentially expressed genes (DEGs) and to elucidate the pathogenesis of IPF at the genetic level. The microarray datasets GSE110147 and GSE53845 were downloaded from the Gene Expression Omnibus (GEO) database and analyzed using GEO2R to obtain the DEGs. The DEGs were further analyzed for Gene Ontology (GO) and Kyoto Encyclopedia of Genomes (KEGG) pathway enrichment using the DAVID database. Then, using the STRING database and Cytoscape, a protein-protein interaction (PPI) network was created and the hub genes were selected. In addition, lung tissue from a mouse model was validated. Lastly, the network between the target microRNAs (miRNAs) and the hub genes was constructed with NetworkAnalyst. A summary of 240 genes were identified as DEGs, and functional analysis highlighted their role in cell adhesion molecules and ECM-receptor interactions in IPF. In addition, eight hub genes were selected. Four of these hub genes (VCAM1, CDH2, SPP1, and POSTN) were screened for animal validation. The IHC and RT-qPCR of lung tissue from a mouse model confirmed the results above. Then, miR-181b-5p, miR-4262, and miR-155-5p were predicted as possible key miRNAs. Eight hub genes may play a key role in the development of IPF. Four of the hub genes were validated in animal experiments. MiR-181b-5p, miR-4262, and miR-155-5p may be involved in the pathophysiological processes of IPF by interacting with hub genes.


Assuntos
Fibrose Pulmonar Idiopática , MicroRNAs , Animais , Camundongos , Redes Reguladoras de Genes , Fibrose Pulmonar Idiopática/genética , Mapas de Interação de Proteínas/genética , Biologia Computacional , Modelos Animais de Doenças , MicroRNAs/genética
19.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37511363

RESUMO

Using petiole material as explants and directly inducing the formation of microtubers without going through the callus stage is an essential way to rapidly expand scarce medical plants such as Pinellia ternata. However, the early molecular mechanism underlying the formation of the microtuber is largely elusive. Here, we conducted cytology and dynamic transcriptome analyses of inchoate microtubers in Pinellia explants and identified 1092 differentially expressed genes after their cultivation in vitro for 0, 5, and 15 days. Compared with 0 day, the number and size of the microtuber cells were larger at 5 and 15 days of culture. Detailed categorization revealed that the differentially expressed genes were mainly related to responses to stimulus, biological regulation, organelles, membranes, transcription factor activity, and protein binding. Further analysis revealed that the microtuber at different incubation days exhibited quite a difference in both hormone signaling pathway transduction and the regulation pattern of transcription factors. Therefore, this study contributes to a better understanding of the early molecular regulation during the formation of the microtuber and provides new insights for the study of the rapid expansion of P. ternata and other medical plants.


Assuntos
Pinellia , Pinellia/genética , Perfilação da Expressão Gênica , Hormônios/metabolismo , Expressão Gênica
20.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36674889

RESUMO

Chickpea (Cicer arietinum L.) production is highly susceptible to heat stress (day/night temperatures above 32/20 °C). Identifying the molecular mechanisms and potential candidate genes underlying heat stress response is important for increasing chickpea productivity. Here, we used an RNA-seq approach to investigate the transcriptome dynamics of 48 samples which include the leaf and root tissues of six contrasting heat stress responsive chickpea genotypes at the vegetative and reproductive stages of plant development. A total of 14,544 unique, differentially expressed genes (DEGs) were identified across different combinations studied. These DEGs were mainly involved in metabolic processes, cell wall remodeling, calcium signaling, and photosynthesis. Pathway analysis revealed the enrichment of metabolic pathways, biosynthesis of secondary metabolites, and plant hormone signal transduction, under heat stress conditions. Furthermore, heat-responsive genes encoding bHLH, ERF, WRKY, and MYB transcription factors were differentially regulated in response to heat stress, and candidate genes underlying the quantitative trait loci (QTLs) for heat tolerance component traits, which showed differential gene expression across tolerant and sensitive genotypes, were identified. Our study provides an important resource for dissecting the role of candidate genes associated with heat stress response and also paves the way for developing climate-resilient chickpea varieties for the future.


Assuntos
Cicer , Termotolerância , Cicer/fisiologia , Perfilação da Expressão Gênica , Transcriptoma , Fenótipo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA