Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.619
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 184(2): 476-488.e11, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33412089

RESUMO

Coronavirus disease 2019 (COVID-19) exhibits variable symptom severity ranging from asymptomatic to life-threatening, yet the relationship between severity and the humoral immune response is poorly understood. We examined antibody responses in 113 COVID-19 patients and found that severe cases resulting in intubation or death exhibited increased inflammatory markers, lymphopenia, pro-inflammatory cytokines, and high anti-receptor binding domain (RBD) antibody levels. Although anti-RBD immunoglobulin G (IgG) levels generally correlated with neutralization titer, quantitation of neutralization potency revealed that high potency was a predictor of survival. In addition to neutralization of wild-type SARS-CoV-2, patient sera were also able to neutralize the recently emerged SARS-CoV-2 mutant D614G, suggesting cross-protection from reinfection by either strain. However, SARS-CoV-2 sera generally lacked cross-neutralization to a highly homologous pre-emergent bat coronavirus, WIV1-CoV, which has not yet crossed the species barrier. These results highlight the importance of neutralizing humoral immunity on disease progression and the need to develop broadly protective interventions to prevent future coronavirus pandemics.


Assuntos
Anticorpos Neutralizantes/imunologia , Biomarcadores/análise , COVID-19/imunologia , COVID-19/fisiopatologia , Adulto , Anticorpos Neutralizantes/análise , Anticorpos Antivirais/análise , Anticorpos Antivirais/sangue , Biomarcadores/sangue , COVID-19/sangue , COVID-19/epidemiologia , Comorbidade , Coronavirus/classificação , Coronavirus/fisiologia , Reações Cruzadas , Citocinas/sangue , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunoglobulina A/análise , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Masculino , Massachusetts/epidemiologia , Pessoa de Meia-Idade , Domínios Proteicos , SARS-CoV-2/química , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/química , Análise de Sobrevida , Resultado do Tratamento
2.
Cell ; 182(4): 828-842.e16, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32645326

RESUMO

Neutralizing antibody responses to coronaviruses mainly target the receptor-binding domain (RBD) of the trimeric spike. Here, we characterized polyclonal immunoglobulin Gs (IgGs) and Fabs from COVID-19 convalescent individuals for recognition of coronavirus spikes. Plasma IgGs differed in their focus on RBD epitopes, recognition of alpha- and beta-coronaviruses, and contributions of avidity to increased binding/neutralization of IgGs over Fabs. Using electron microscopy, we examined specificities of polyclonal plasma Fabs, revealing recognition of both S1A and RBD epitopes on SARS-CoV-2 spike. Moreover, a 3.4 Å cryo-electron microscopy (cryo-EM) structure of a neutralizing monoclonal Fab-spike complex revealed an epitope that blocks ACE2 receptor binding. Modeling based on these structures suggested different potentials for inter-spike crosslinking by IgGs on viruses, and characterized IgGs would not be affected by identified SARS-CoV-2 spike mutations. Overall, our studies structurally define a recurrent anti-SARS-CoV-2 antibody class derived from VH3-53/VH3-66 and similarity to a SARS-CoV VH3-30 antibody, providing criteria for evaluating vaccine-elicited antibodies.


Assuntos
Anticorpos Neutralizantes/química , Betacoronavirus/química , Infecções por Coronavirus/imunologia , Fragmentos Fab das Imunoglobulinas/química , Imunoglobulina G/química , Pneumonia Viral/imunologia , Glicoproteína da Espícula de Coronavírus/química , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/isolamento & purificação , Betacoronavirus/imunologia , COVID-19 , Infecções por Coronavirus/sangue , Infecções por Coronavirus/terapia , Reações Cruzadas , Microscopia Crioeletrônica , Mapeamento de Epitopos , Epitopos , Humanos , Imunização Passiva , Fragmentos Fab das Imunoglobulinas/sangue , Fragmentos Fab das Imunoglobulinas/isolamento & purificação , Fragmentos Fab das Imunoglobulinas/ultraestrutura , Imunoglobulina G/sangue , Imunoglobulina G/isolamento & purificação , Imunoglobulina G/ultraestrutura , Coronavírus da Síndrome Respiratória do Oriente Médio/química , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Modelos Moleculares , Pandemias , Pneumonia Viral/sangue , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia , Soroterapia para COVID-19
3.
J Biol Chem ; 300(4): 107155, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479597

RESUMO

Despite significant advances in the development of therapeutic interventions targeting autoimmune diseases and chronic inflammatory conditions, lack of effective treatment still poses a high unmet need. Modulating chronically activated T cells through the blockade of the Kv1.3 potassium channel is a promising therapeutic approach; however, developing selective Kv1.3 inhibitors is still an arduous task. Phage display-based high throughput peptide library screening is a rapid and robust approach to develop promising drug candidates; however, it requires solid-phase immobilization of target proteins with their binding site preserved. Historically, the KcsA bacterial channel chimera harboring only the turret region of the human Kv1.3 channel was used for screening campaigns. Nevertheless, literature data suggest that binding to this type of chimera does not correlate well with blocking potency on the native Kv1.3 channels. Therefore, we designed and successfully produced advanced KcsA-Kv1.3, KcsA-Kv1.1, and KcsA-Kv1.2 chimeric proteins in which both the turret and part of the filter regions of the human Kv1.x channels were transferred. These T+F (turret-filter) chimeras showed superior peptide ligand-binding predictivity compared to their T-only versions in novel phage ELISA assays. Phage ELISA binding and competition results supported with electrophysiological data confirmed that the filter region of KcsA-Kv1.x is essential for establishing adequate relative affinity order among selected peptide toxins (Vm24 toxin, Hongotoxin-1, Kaliotoxin-1, Maurotoxin, Stichodactyla toxin) and consequently obtaining more reliable selectivity data. These new findings provide a better screening tool for future drug development efforts and offer insight into the target-ligand interactions of these therapeutically relevant ion channels.


Assuntos
Canal de Potássio Kv1.3 , Bloqueadores dos Canais de Potássio , Proteínas Recombinantes de Fusão , Animais , Humanos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/antagonistas & inibidores , Sítios de Ligação , Canal de Potássio Kv1.3/metabolismo , Canal de Potássio Kv1.3/antagonistas & inibidores , Canal de Potássio Kv1.3/genética , Canal de Potássio Kv1.3/química , Ligantes , Biblioteca de Peptídeos , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/metabolismo , Canais de Potássio/química , Canais de Potássio/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Linhagem Celular
4.
RNA ; 29(5): 705-712, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36759126

RESUMO

N6-methyladenosine (m6A) is a widely studied and abundant RNA modification. The m6A mark regulates the fate of RNAs in various ways, which in turn drives changes in cell physiology, development, and disease pathology. Over the last decade, numerous methods have been developed to map and quantify m6A sites genome-wide through deep sequencing. Alternatively, m6A levels can be quantified from a population of RNAs using techniques such as liquid chromatography-mass spectrometry or thin layer chromatography. However, many methods for quantifying m6A levels involve extensive protocols and specialized data analysis, and often only a few samples can be handled in a single experiment. Here, we developed a simple method for determining relative m6A levels in mRNA populations from various sources based on an enzyme-linked immunosorbent-based assay (m6A-ELISA). We have optimized various steps of m6A-ELISA, such as sample preparation and the background signal resulting from the primary antibody. We validated the method using mRNA populations from budding yeast and mouse embryonic stem cells. The full protocol takes less than a day, requiring only 25 ng of mRNA. The m6A-ELISA protocol is quick, cost-effective, and scalable, making it a valuable tool for determining relative m6A levels in samples from various sources that could be adapted to detect other mRNA modifications.


Assuntos
Anticorpos , RNA , Animais , Camundongos , RNA Mensageiro/genética , RNA/genética , Ensaio de Imunoadsorção Enzimática
5.
Artigo em Inglês | MEDLINE | ID: mdl-38385694

RESUMO

RATIONALE: Sarcoidosis is a systemic granulomatous disorder associated with hypergammaglobulinemia and the presence of autoantibodies. The specific antigens initiating granulomatous inflammation in sarcoidosis are unknown and there is no specific test available to diagnose sarcoidosis. To discover novel sarcoidosis antigens, we developed a high-throughput T7 phage display library derived from the sarcoidosis cDNA and identified numerous clones differentiating sarcoidosis from other respiratory diseases. After clone sequencing and homology search, we identified two epitopes (Cofilinµ and Chain A) that specifically bind to serum IgGs of sarcoidosis patients. OBJECTIVES: To develop and validate an epitope-specific IgG-based immunoassay specific for sarcoidosis. METHODS: We chemically synthesized both immunoepitopes (Cofilinµ and Chain A), and generated rabbit polyclonal antibodies against both neoantigens. After extensive standardization, we developed a direct peptide ELISA and measured epitope-specific IgG in sera of 386 subjects including, healthy controls (n=100), three sarcoidosis cohorts (n=186), pulmonary tuberculosis (n=70) and lung cancer (n=30). MEASUREMENTS AND MAIN RESULTS: To develop a model to classify sarcoidosis from other groups, data were analyzed using five-fold cross-validation when adjusting for confounders. The Cofilinµ IgGs model yielded a mean sensitivity, specificity, and positive and negative predictive value (PPV, NPV) of 0.97, 0.9, 0.9 and 0.96, respectively. Those same measures for Chain A IgG antibody were 0.9, 0.83, 0.84 and 0.9 respectively. Combining both biomarkers improved AUC, sensitivity, specificity, PPV and NPV. CONCLUSIONS: These results provide a novel immunoassay for sarcoidosis. The discovery of two neoantigens facilitates the development of biospecific drug discovery and the sarcoidosis-specific model.

6.
Biochem J ; 481(11): 669-682, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38713013

RESUMO

The fundamental biology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein (Ncap), its use in diagnostic assays and its potential application as a vaccine component have received considerable attention since the outbreak of the Covid19 pandemic in late 2019. Here we report the scalable expression and purification of soluble, immunologically active, SARS-CoV-2 Ncap in Escherichia coli. Codon-optimised synthetic genes encoding the original Ncap sequence and four common variants with an N-terminal 6His affinity tag (sequence MHHHHHHG) were cloned into an inducible expression vector carrying a regulated bacteriophage T5 synthetic promoter controlled by lac operator binding sites. The constructs were used to express Ncap proteins and protocols developed which allow efficient production of purified Ncap with yields of over 200 mg per litre of culture media. These proteins were deployed in ELISA assays to allow comparison of their responses to human sera. Our results suggest that there was no detectable difference between the 6His-tagged and untagged original Ncap proteins but there may be a slight loss of sensitivity of sera to other Ncap isolates.


Assuntos
COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus , Escherichia coli , SARS-CoV-2 , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/biossíntese , Proteínas do Nucleocapsídeo de Coronavírus/isolamento & purificação , Proteínas do Nucleocapsídeo de Coronavírus/química , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Humanos , COVID-19/virologia , Fosfoproteínas/genética , Fosfoproteínas/isolamento & purificação , Fosfoproteínas/metabolismo
7.
J Proteome Res ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937710

RESUMO

Plasma membrane proteins (PMPs) play critical roles in a myriad of physiological and disease conditions. A unique subset of PMPs functions through interacting with each other in trans at the interface between two contacting cells. These trans-interacting PMPs (tiPMPs) include adhesion molecules and ligands/receptors that facilitate cell-cell contact and direct communication between cells. Among the tiPMPs, a significant number have apparent extracellular binding domains but remain orphans with no known binding partners. Identification of their potential binding partners is therefore important for the understanding of processes such as organismal development and immune cell activation. While a number of methods have been developed for the identification of protein binding partners in general, very few are applicable to tiPMPs, which interact in a two-dimensional fashion with low intrinsic binding affinities. In this review, we present the significance of tiPMP interactions, the challenges of identifying binding partners for tiPMPs, and the landscape of method development. We describe current avidity-based screening approaches for identifying novel tiPMP binding partners and discuss their advantages and limitations. We conclude by highlighting the importance of developing novel methods of identifying new tiPMP interactions for deciphering the complex protein interactome and developing targeted therapeutics for diseases.

8.
J Cell Mol Med ; 28(3): e18111, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38235996

RESUMO

Primary angle-closure glaucoma (PACG) is the leading cause of irreversible blindness in the world. Angle closure induced by pupil block and secondary iris synechia is the fundamental pathology of the PACG. The molecular mechanisms of angle closure have not yet been clearly illustrated. This study was designed to investigate the protein difference in the aqueous humour and explore new biomarker of the PACG. Aqueous humour (AH) was collected from patients with acute primary angle closure (APAC) and cataract (n = 10 in APAC group) and patients with cataract only (n = 10 in control group). Samples were pooled and measured using label-free proteome technology. Then, the differentially expressed proteins (DEPs) were verified by ELISA using independent AH samples (n = 20 each group). More than 400 proteins were revealed in both groups through proteomics. Comparing the two groups, there were 91DEPs. These proteins participate in biological activities such as inflammation, fibrosis, nerve growth and degeneration and metabolism. We found that the expression of transforming growth factor-ß2 and matrilin2 was downregulated in the APAC group. The two proteins are related to inflammation and extracellular matrix formation, which might be involved in angle closure. This study characterized DEPs in AH of the APAC and found a downregulated protein matrilin2.


Assuntos
Humor Aquoso , Catarata , Humanos , Doença Aguda , Humor Aquoso/metabolismo , Catarata/metabolismo , Ensaio de Imunoadsorção Enzimática , Inflamação/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Proteínas Matrilinas/metabolismo
9.
Infect Immun ; 92(7): e0021524, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38884473

RESUMO

Human babesiosis is a malaria-like illness caused by protozoan parasites of the genus Babesia. Babesia microti is responsible for most cases of human babesiosis in the United States, particularly in the Northeast and the Upper Midwest. Babesia microti is primarily transmitted to humans through the bite of infected deer ticks but also through the transfusion of blood components, particularly red blood cells. There is a high risk of severe and even fatal disease in immunocompromised patients. To date, serology testing relies on an indirect immunofluorescence assay that uses the whole Babesia microti antigen. Here, we report the construction of phage display cDNA libraries from Babesia microti-infected erythrocytes as well as human reticulocytes obtained from donors with hereditary hemochromatosis. Plasma samples were obtained from patients who were or had been infected with Babesia microti. The non-specific antibody reactivity of these plasma samples was minimized by pre-exposure to the human reticulocyte library. Using this novel experimental strategy, immunoreactive segments were identified in three Babesia microti antigens termed BmSA1 (also called BMN1-9; BmGPI12), BMN1-20 (BMN1-17; Bm32), and BM4.12 (N1-15). Moreover, our findings indicate that the major immunoreactive segment of BmSA1 does not overlap with the segment that mediates BmSA1 binding to mature erythrocytes. When used in combination, the three immunoreactive segments form the basis of a sensitive and comprehensive diagnostic immunoassay for human babesiosis, with implications for vaccine development.


Assuntos
Antígenos de Protozoários , Babesia microti , Babesiose , Biblioteca Gênica , Babesia microti/imunologia , Babesia microti/genética , Humanos , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/genética , Babesiose/imunologia , Babesiose/parasitologia , Anticorpos Antiprotozoários/imunologia , Anticorpos Antiprotozoários/sangue , Eritrócitos/parasitologia , Eritrócitos/imunologia , Técnicas de Visualização da Superfície Celular , Animais
10.
Clin Infect Dis ; 78(2): 470-475, 2024 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-37787062

RESUMO

BACKGROUND: Tetanus, a life-threatening infection, has become rare in the United States since introduction of tetanus toxoid-containing vaccines (TTCVs), recommended as a childhood series followed by decennial boosters beginning at age 11-12 years; vaccination uptake is high in children but suboptimal in adults. The objective of this study was to estimate the prevalence of sero-immunity to tetanus among persons aged ≥6 years in the United States and to identify factors associated with tetanus sero-immunity. Understanding population protection against tetanus informs current and future vaccine recommendations. METHODS: Anti-tetanus toxoid antibody concentrations were measured for participants of the 2015-2016 National Health and Nutrition Examination Survey (NHANES) aged ≥6 years for whom surplus serum samples were available using a microsphere-based multiplex antibody capture assay. Prevalence of sero-immunity, defined as ≥0.10 IU/mL, was estimated overall and by demographic characteristics. Factors associated with tetanus sero-immunity were examined using multivariable regression. RESULTS: Overall, 93.8% of the US population aged ≥6 years had sero-protection against tetanus. Prevalence of sero-immunity was above 90% across racial/ethnic categories, sex, and poverty levels. By age, ≥ 90% had protective sero-immunity through age 69 years, but prevalence of sero-immunity declined thereafter, with 75.8% of those aged ≥80 years having protective sero-immunity. Older age (adjusted prevalence ratio [aPR]: 0.89, 95% confidence interval [CI]: .85-.92) and being born outside the United States (aPR: 0.96, 95% CI: .93-.98) were significantly associated with lower prevalence of sero-immunity. CONCLUSIONS: The majority of the US population has vaccine-induced sero-immunity to tetanus, demonstrating the success of the vaccination program.


Assuntos
Tétano , Adulto , Criança , Humanos , Estados Unidos/epidemiologia , Idoso , Tétano/epidemiologia , Tétano/prevenção & controle , Inquéritos Nutricionais , Toxoide Tetânico , Vacinação , Imunização Secundária , Anticorpos Antibacterianos
11.
Cancer Sci ; 115(5): 1665-1679, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38475675

RESUMO

Cholangiocarcinoma often remains undetected until advanced stages due to the lack of reliable diagnostic markers. Our goal was to identify a unique secretory protein for cholangiocarcinoma diagnosis and differentiation from other malignancies, benign hepatobiliary diseases, and chronic liver conditions. We conducted bulk RNA-seq analysis to identify genes specifically upregulated in cholangiocarcinoma but not in most other cancers, benign hepatobiliary diseases, and chronic liver diseases focusing on exocrine protein-encoding genes. Single-cell RNA sequencing examined subcellular distribution. Immunohistochemistry and enzyme-linked immunosorbent assays assessed tissue and serum expression. Diagnostic performance was evaluated via receiver-operating characteristic (ROC) analysis. Inter-alpha-trypsin inhibitor heavy chain family member five (ITIH5), a gene encoding an extracellular protein, is notably upregulated in cholangiocarcinoma. This elevation is not observed in most other cancer types, benign hepatobiliary diseases, or chronic liver disorders. It is specifically expressed by malignant cholangiocytes. ITIH5 expression in cholangiocarcinoma tissues exceeded that in nontumorous bile duct, hepatocellular carcinoma, and nontumorous hepatic tissues. Serum ITIH5 levels were elevated in cholangiocarcinoma compared with controls (hepatocellular carcinoma, benign diseases, chronic hepatitis B, and healthy individuals). ITIH5 yielded areas under the ROC curve (AUCs) from 0.839 to 0.851 distinguishing cholangiocarcinoma from controls. Combining ITIH5 with carbohydrate antigen 19-9 (CA19-9) enhanced CA19-9's diagnostic effectiveness. In conclusion, serum ITIH5 may serve as a novel noninvasive cholangiocarcinoma diagnostic marker.


Assuntos
Neoplasias dos Ductos Biliares , Biomarcadores Tumorais , Colangiocarcinoma , Proteínas Secretadas Inibidoras de Proteinases , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias dos Ductos Biliares/diagnóstico , Neoplasias dos Ductos Biliares/sangue , Neoplasias dos Ductos Biliares/genética , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Antígeno CA-19-9/sangue , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/sangue , Colangiocarcinoma/genética , Diagnóstico Diferencial , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/genética , Proteínas Secretadas Inibidoras de Proteinases/sangue , Proteínas Secretadas Inibidoras de Proteinases/genética , Curva ROC , Regulação para Cima
12.
Am J Epidemiol ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885957

RESUMO

Studies of SARS-CoV-2 incidence are important for response to continued transmission and future pandemics. We followed a rural community cohort with broad age representation with active surveillance for SARS-CoV-2 identification from November 2020 through July 2022. Participants provided serum specimens at regular intervals and following SARS-CoV-2 infection or vaccination. We estimated the incidence of SARS-CoV-2 infection identified by study RT-PCR, electronic health record documentation or self-report of a positive test, or serology. We also estimated the seroprevalence of SARS-CoV-2 spike and nucleocapsid antibodies measured by ELISA. Overall, 65% of the cohort had ≥1 SARS-CoV-2 infection by July 2022, and 19% of those with primary infection were reinfected. Infection and vaccination contributed to high seroprevalence, 98% (95% CI: 95%, 99%) of participants were spike or nucleocapsid seropositive at the end of follow-up. Among those seropositive, 82% were vaccinated. Participants were more likely to be seropositive to spike than nucleocapsid following infection. Infection among seropositive individuals could be identified by increases in nucleocapsid, but not spike, ELISA optical density values. Nucleocapsid antibodies waned more quickly after infection than spike antibodies. High levels of SARS-CoV-2 population immunity, as found in this study, are leading to changing epidemiology necessitating ongoing surveillance and policy evaluation.

13.
Prostate ; 84(11): 1067-1075, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38734979

RESUMO

INTRODUCTION: Aberrant glycosylation of proteins is an important hallmark in multiple cancers. Prostate-specific membrane antigen (PSMA), a highly glycosylated protein with 10 N-linked glycosylation sites, is an Food and Drug Administration approved theranostic for prostate cancer. However, glycosylation changes in PSMA that are associated with prostate cancer disease progression have not been fully characterized. METHODS: We investigated whether urinary PSMA sialylation correlate with high-grade prostate cancer. Urine samples were collected from men after digital rectal examination (DRE) before prostate biopsy. Lectin-antibody enzyme-linked immunoassay was used to quantify α2,3-sialyl PSMA in post-DRE urine samples from subjects with benign prostate tumors, Grade Group 1 prostate cancer and those with Grade Group ≥2 disease. RESULTS: There are significant increases in α2,3-sialylated PSMA in patients with Grade Group ≥2 disease compared to benign (p = 0.0009) and those with Grade Group 1 disease (p = 0.0063). There were no significant differences in α2,3-sialyl PSMA levels between Grade Group 1 and benign prostate tumors (p = 0.7947). CONCLUSIONS: Our study shows that there are significant differences in the abundance of α2,3-sialylated PSMA in post-DRE urines from disease stratified prostate cancer patients, and the increase is correlated with progression and disease severity. The detection of increased PSMA sialyation in post-DRE urines from patients with higher Grade Group ≥2 disease states provides novel untapped potential for the development of prognostic biomarkers for prostate cancer. Specifically, quantitation of α2,3-sialylated PSMA shows potential for discriminating between benign to intermediate grade disease, which is a significant clinical challenge in staging and risk stratification of prostate cancer.


Assuntos
Antígenos de Superfície , Biomarcadores Tumorais , Glutamato Carboxipeptidase II , Gradação de Tumores , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/urina , Neoplasias da Próstata/patologia , Neoplasias da Próstata/diagnóstico , Idoso , Glutamato Carboxipeptidase II/urina , Antígenos de Superfície/urina , Pessoa de Meia-Idade , Glicosilação , Biomarcadores Tumorais/urina
14.
Biochem Biophys Res Commun ; 710: 149826, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38581946

RESUMO

Cytosolic peptide:N-glycanase (NGLY1, PNGase) is an enzyme that cleaves N-glycans from misfolded glycoproteins. In 2012, a human genetic disorder, NGLY1 deficiency, was first reported to be caused by mutations of the NGLY1 gene. Since then, there has been rapid progresses on NGLY1 biology, and gene therapy has been proposed as a promising therapeutic option for NGLY1 deficiency. While a plasma/urine biomarker has also been developed for this disease, detection of NGLY1 activity could be another viable option for early diagnosis of NGLY1 deficiency. Thus far, several in vitro and in cellulo NGLY1 assays have been reported, but those assay systems have several issues that must be addressed in order to develop an assay system compatible for routine clinical examination. Here, we show a facile, highly sensitive in vitro assay system that could be used to detect NGLY1 activity by utilizing its sequence editing function, i.e. conversion of glycosylated Asn into Asp, followed by a detection of newly generated epitope (HA)-tag by anti-HA antibody. Using this ELISA-based assay, we detected endogenous NGLY1 activity in as little as 2 µg of crude extract, which is the equivalent of 5 × 103 cells. Our system also detects NGLY1 activity from cells with compromised NGLY1 activity, such as iPS cells from patient samples. This assay system could be applied in future clinical examinations to achieve an early diagnosis of NGLY1 deficiency.


Assuntos
Defeitos Congênitos da Glicosilação , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/deficiência , Humanos , Citosol/metabolismo , Glicosilação , Glicoproteínas/metabolismo , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/genética
15.
Small ; 20(15): e2307556, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38012537

RESUMO

Immunoassay is one of the most common bioanalytical techniques from lab-based to point-of-care settings. Over time, various approaches have been developed to amplify signals for greater sensitivity. However, the need for effective, versatile, and simple signal amplification methods persists yet. This paper presents a novel signal amplification method for immunoassay that utilizes spatial concentration of a cellulose-based plate possessing sensor transducers, specifically gold nanoparticles. By modifying the dimensions of the plate, the density of nanoparticles increased, resulting in intensified color signals. The coating material, polydopamine, which is utilized to protect the gold nanoparticles. Chemical changes in nanocomposites are characterized using scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. The application of this method to colorimetric quantification demonstrated great consistency across various concentrations of nanoparticles, with better reliability at lower concentration ranges. A model immunoassay is designed to evaluate the analytical performance. As a result, this method successfully corrected a false-negative result with a lowered Kd of 0.509 pmol per zone. This method shows strong signal enhancement capability that can correct false-negative signals in the immunoassays, with potential benefits including versatility, simplicity, low cost, and the ability to operate multiple plates simultaneously.


Assuntos
Celulose , Nanopartículas Metálicas , Nanopartículas Metálicas/química , Ouro/química , Reprodutibilidade dos Testes , Imunoensaio/métodos , Limite de Detecção
16.
Chembiochem ; : e202400316, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38867605

RESUMO

With the increasing use of polyethylene glycol (PEG) based proteins and drug delivery systems, anti-PEG antibodies have commonly been detected among the population, causing the accelerated blood clearance and hypersensitivity reactions, poses potential risks to the clinical efficacy and safety of PEGylated drugs. Therefore, vigilant monitoring of anti-PEG antibodies is crucial for both research and clinical guidance regarding PEGylated drugs. The enzyme-linked immunosorbent assay (ELISA) is a common method for detecting anti-PEG antibodies. However, diverse coating methods, blocking solutions and washing solutions have been employed across different studies, and unsuitable use of Tween 20 as the surfactant even caused biased results. In this study, we established the optimal substrate coating conditions, and investigated the influence of various surfactants and blocking solutions on the detection accuracy. The findings revealed that incorporating 1% bovine serum albumin into the serum dilution in the absence of surfactants will result the credible outcomes of anti-PEG antibody detection.

17.
Clin Exp Immunol ; 215(3): 268-278, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-37313783

RESUMO

As there are limited data on B-cell epitopes for the nucleocapsid protein in SARS-CoV-2, we sought to identify the immunodominant regions within the N protein, recognized by patients with varying severity of natural infection with the Wuhan strain (WT), delta, omicron, and in those who received the Sinopharm vaccines, which is an inactivated, whole virus vaccine. Using overlapping peptides representing the N protein, with an in-house ELISA, we mapped the immunodominant regions within the N protein, in seronegative (n = 30), WT infected (n = 30), delta infected (n = 30), omicron infected + vaccinated (n = 20) and Sinopharm (BBIBP-CorV) vaccinees (n = 30). We then investigated the sensitivity and specificity of these immunodominant regions and analyzed their conservation with other SARS-CoV-2 variants of concern, seasonal human coronaviruses, and bat Sarbecoviruses. We identified four immunodominant regions aa 29-52, aa 155-178, aa 274-297, and aa 365-388, which were highly conserved within SARS-CoV-2 and the bat coronaviruses. The magnitude of responses to these regions varied based on the infecting SARS-CoV-2 variants, >80% of individuals gave responses above the positive cut-off threshold to many of the four regions, with some differences with individuals who were infected with different VoCs. These regions were found to be 100% specific, as none of the seronegative individuals gave any responses. As these regions were highly specific with high sensitivity, they have a potential to be used to develop diagnostic assays and to be used in development of vaccines.


Assuntos
COVID-19 , Quirópteros , Humanos , Animais , SARS-CoV-2 , Formação de Anticorpos , Epitopos Imunodominantes , Nucleocapsídeo , Anticorpos Antivirais
18.
BMC Microbiol ; 24(1): 118, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575865

RESUMO

Q fever, a worldwide-occurring zoonotic disease, can cause economic losses for public and veterinary health systems. Vaccines are not yet available worldwide and currently under development. In this regard, it is important to produce a whole cell antigen, with preserved structural and antigenic properties and free of chemical modifications. Thus, inactivation of Coxiella burnetii with ultraviolet light C (UVC) was evaluated. C. burnetii Nine Mile phase I (NMI) and phase II (NMII) were exposed to decreasing intensities in a time-dependent manner and viability was tested by rescue cultivation in axenic medium or cell culture. Effects on the cell structure were visualized by transmission electron microscopy and antigenicity of UVC-treated NMI was studied by immunization of rabbits. NMI and NMII were inactivated at UVC intensities of 250 µW/cm2 for 5 min or 100 µW/cm2 for 20 min. Reactivation by DNA repair was considered to be unlikely. No morphological changes were observed directly after UVC inactivation by transmission electron microscopy, but severe swelling and membrane degradation of bacteria with increasing severity occurred after 24 and 48 h. Immunization of rabbits resulted in a pronounced antibody response. UVC inactivation of C. burnetii resulted in a structural preserved, safe whole cell antigen and might be useful as antigen for diagnostic purposes or as vaccine candidate.


Assuntos
Coxiella burnetii , Febre Q , Vacinas , Animais , Coelhos , Febre Q/microbiologia
19.
J Med Virol ; 96(7): e29779, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38975640

RESUMO

Clinical manifestation of dengue disease ranges from asymptomatic, febrile fever without warning sign (DOS) to serious outcome dengue with warning sign (DWS) and severe disease (SD) leading to shock syndrome and death. The role of antibody response in natural dengue infection is complex and not completely understood. Here, we aimed to assess serological marker for disease severity. Antibody response of dengue-confirmed pediatric patients with acute secondary infection were evaluated against infecting virus, immature virus, and recombinant envelop protein. Immature virus antibody titers were significantly higher in DWS as compared to DOS (p = 0.0006). However, antibody titers against recombinant envelop protein were higher in DOS as compared to DWS, and antibody avidity was significantly higher against infecting virus in DOS. Serum samples of DOS patients displayed higher in vitro neutralization potential in plaque assay as compared to DWS, whereas DWS serum samples showed higher antibody-dependent enhancement in the in vitro enhancement assays. Thus, antibodies targeting immature virus can predict disease severity and could be used in early forecast of disease outcome using an enzyme-linked immunoassay assay system which is less laborious and cheaper than plaque assay system for correlates of protection and could help optimize medical care and resources.


Assuntos
Anticorpos Antivirais , Biomarcadores , Vírus da Dengue , Dengue , Índice de Gravidade de Doença , Humanos , Anticorpos Antivirais/sangue , Criança , Dengue/imunologia , Dengue/diagnóstico , Dengue/sangue , Masculino , Vírus da Dengue/imunologia , Pré-Escolar , Feminino , Biomarcadores/sangue , Adolescente , Lactente , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Afinidade de Anticorpos , Hospitalização , Ensaio de Imunoadsorção Enzimática , Anticorpos Facilitadores
20.
Clin Proteomics ; 21(1): 46, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951753

RESUMO

PURPOSE: The primary objective of this investigation is to systematically screen and identify differentially expressed proteins (DEPs) within the plasma of individuals afflicted with sepsis. This endeavor employs both Data-Independent Acquisition (DIA) and enzyme-linked immunosorbent assay (ELISA) methodologies. The overarching goal is to furnish accessible and precise serum biomarkers conducive to the diagnostic discernment of sepsis. METHOD: The study encompasses 53 sepsis patients admitted to the Affiliated Hospital of Southwest Medical University between January 2019 and December 2020, alongside a control cohort consisting of 16 individuals devoid of sepsis pathology. Subsequently, a subset comprising 10 randomly selected subjects from the control group and 22 from the sepsis group undergoes quantitative proteomic analysis via DIA. The acquired data undergoes Gene Ontology (GO) and Kyoto Encyclopedia of Genes (KEGG) analyses, facilitating the construction of a Protein-Protein Interaction (PPI) network to discern potential markers. Validation of core proteins is then accomplished through ELISA. Comparative analysis between the normal and sepsis groups ensues, characterized by Receiver Operating Characteristic (ROC) curve construction to evaluate diagnostic efficacy. RESULT: A total of 187 DEPs were identified through bioinformatic methodologies. Examination reveals their predominant involvement in biological processes such as wound healing, coagulation, and blood coagulation. Functional pathway analysis further elucidates their engagement in the complement pathway and malaria. Resistin emerges as a candidate plasma biomarker, subsequently validated through ELISA. Notably, the protein exhibits significantly elevated levels in the serum of sepsis patients compared to the normal control group. ROC curve analysis underscores the robust diagnostic capacity of these biomarkers for sepsis. CONCLUSION: Data-Independent Acquisition (DIA) and Enzyme-Linked Immunosorbent Assay (ELISA) show increased Resistin levels in sepsis patients, suggesting diagnostic potential, warranting further research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA