Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(9): 2095-2116, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38670067

RESUMO

Plant diseases cause famines, drive human migration, and present challenges to agricultural sustainability as pathogen ranges shift under climate change. Plant breeders discovered Mendelian genetic loci conferring disease resistance to specific pathogen isolates over 100 years ago. Subsequent breeding for disease resistance underpins modern agriculture and, along with the emergence and focus on model plants for genetics and genomics research, has provided rich resources for molecular biological exploration over the last 50 years. These studies led to the identification of extracellular and intracellular receptors that convert recognition of extracellular microbe-encoded molecular patterns or intracellular pathogen-delivered virulence effectors into defense activation. These receptor systems, and downstream responses, define plant immune systems that have evolved since the migration of plants to land ∼500 million years ago. Our current understanding of plant immune systems provides the platform for development of rational resistance enhancement to control the many diseases that continue to plague crop production.


Assuntos
Resistência à Doença , Doenças das Plantas , Imunidade Vegetal , Plantas , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Plantas/imunologia , Plantas/genética , Resistência à Doença/genética , Humanos
2.
Semin Immunol ; 69: 101804, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37406548

RESUMO

Pyroptosis is a proinflammatory form of programmed cell death featured with membrane pore formation that causes cellular swelling and allows the release of intracellular inflammatory mediators. This cell death process is elicited by the activation of the pore-forming proteins named gasdermins, and is intricately orchestrated by diverse regulatory factors in mammalian hosts to exert a prompt immune response against infections. However, growing evidence suggests that bacterial pathogens have evolved to regulate host pyroptosis for evading immune clearance and establishing progressive infection. In this review, we highlight current understandings of the functional role and regulatory network of pyroptosis in host antibacterial immunity. Thereafter, we further discuss the latest advances elucidating the mechanisms by which bacterial pathogens modulate pyroptosis through adopting their effector proteins to drive infections. A better understanding of regulatory mechanisms underlying pyroptosis at the interface of host-bacterial interactions will shed new light on the pathogenesis of infectious diseases and contribute to the development of promising therapeutic strategies against bacterial pathogens.


Assuntos
Inflamassomos , Piroptose , Animais , Humanos , Proteínas de Bactérias , Apoptose , Mediadores da Inflamação , Bactérias/metabolismo , Mamíferos/metabolismo
3.
J Cell Sci ; 137(9)2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38606629

RESUMO

The ADP-ribosylation factors (ARFs) and ARF-like (ARL) GTPases serve as essential molecular switches governing a wide array of cellular processes. In this study, we used proximity-dependent biotin identification (BioID) to comprehensively map the interactome of 28 out of 29 ARF and ARL proteins in two cellular models. Through this approach, we identified ∼3000 high-confidence proximal interactors, enabling us to assign subcellular localizations to the family members. Notably, we uncovered previously undefined localizations for ARL4D and ARL10. Clustering analyses further exposed the distinctiveness of the interactors identified with these two GTPases. We also reveal that the expression of the understudied member ARL14 is confined to the stomach and intestines. We identified phospholipase D1 (PLD1) and the ESCPE-1 complex, more precisely, SNX1, as proximity interactors. Functional assays demonstrated that ARL14 can activate PLD1 in cellulo and is involved in cargo trafficking via the ESCPE-1 complex. Overall, the BioID data generated in this study provide a valuable resource for dissecting the complexities of ARF and ARL spatial organization and signaling.


Assuntos
Fatores de Ribosilação do ADP , Fosfolipase D , Transdução de Sinais , Fatores de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/genética , Humanos , Fosfolipase D/metabolismo , Fosfolipase D/genética , Células HEK293 , Animais , Nexinas de Classificação/metabolismo , Nexinas de Classificação/genética , Mapeamento de Interação de Proteínas
4.
Proc Natl Acad Sci U S A ; 120(27): e2221595120, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37364116

RESUMO

The chromatophores in Paulinella are evolutionary-early-stage photosynthetic organelles. Biological processes in chromatophores depend on a combination of chromatophore and nucleus-encoded proteins. Interestingly, besides proteins carrying chromatophore-targeting signals, a large arsenal of short chromatophore-targeted proteins (sCTPs; <90 amino acids) without recognizable targeting signals were found in chromatophores. This situation resembles endosymbionts in plants and insects that are manipulated by host-derived antimicrobial peptides. Previously, we identified an expanded family of sCTPs of unknown function, named here "DNA-binding (DB)-sCTPs". DB-sCTPs contain a ~45 amino acid motif that is conserved in some bacterial proteins with predicted functions in DNA processing. Here, we explored antimicrobial activity, DNA-binding capacity, and structures of three purified recombinant DB-sCTPs. All three proteins exhibited antimicrobial activity against bacteria involving membrane permeabilization, and bound to bacterial lipids in vitro. A combination of in vitro assays demonstrated binding of recombinant DB-sCTPs to chromatophore-derived genomic DNA sequences with an affinity in the low nM range. Additionally, we report the 1.2 Å crystal structure of one DB-sCTP. In silico docking studies suggest that helix α2 inserts into the DNA major grove and the exposed residues, that are highly variable between different DB-sCTPs, confer interaction with the DNA bases. Identification of photosystem II subunit CP43 as a potential interaction partner of one DB-sCTP, suggests DB-sCTPs to be involved in more complex regulatory mechanisms. We hypothesize that membrane binding of DB-sCTPs is related to their import into chromatophores. Once inside, they interact with the chromatophore genome potentially providing nuclear control over genetic information processing.


Assuntos
Anti-Infecciosos , Cromatóforos , Rhizaria , Evolução Biológica , Fotossíntese/genética , Cromatóforos/metabolismo , Anti-Infecciosos/metabolismo
5.
Cell Mol Life Sci ; 81(1): 249, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836877

RESUMO

Protein ubiquitination is one of the most important posttranslational modifications (PTMs) in eukaryotes and is involved in the regulation of almost all cellular signaling pathways. The intracellular bacterial pathogen Legionella pneumophila translocates at least 26 effectors to hijack host ubiquitination signaling via distinct mechanisms. Among these effectors, SidC/SdcA are novel E3 ubiquitin ligases with the adoption of a Cys-His-Asp catalytic triad. SidC/SdcA are critical for the recruitment of endoplasmic reticulum (ER)-derived vesicles to the Legionella-containing vacuole (LCV). However, the ubiquitination targets of SidC/SdcA are largely unknown, which restricts our understanding of the mechanisms used by these effectors to hijack the vesicle trafficking pathway. Here, we demonstrated that multiple Rab small GTPases and target soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) proteins are bona fide ubiquitination substrates of SidC/SdcA. SidC/SdcA-mediated ubiquitination of syntaxin 3 and syntaxin 4 promotes their unconventional pairing with the vesicle-SNARE protein Sec22b, thereby contributing to the membrane fusion of ER-derived vesicles with the phagosome. In addition, our data reveal that ubiquitination of Rab7 by SidC/SdcA is critical for its association with the LCV membrane. Rab7 ubiquitination could impair its binding with the downstream effector Rab-interacting lysosomal protein (RILP), which partially explains why LCVs avoid fusion with lysosomes despite the acquisition of Rab7. Taken together, our study reveals the biological mechanisms employed by SidC/SdcA to promote the maturation of the LCVs.


Assuntos
Legionella pneumophila , Fagossomos , Proteínas SNARE , Ubiquitinação , Proteínas rab de Ligação ao GTP , Legionella pneumophila/metabolismo , Humanos , Fagossomos/metabolismo , Fagossomos/microbiologia , Proteínas SNARE/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Animais , Proteínas Qa-SNARE/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Vacúolos/metabolismo , Vacúolos/microbiologia , Células HEK293 , Camundongos , proteínas de unión al GTP Rab7/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Retículo Endoplasmático/metabolismo
6.
Trends Biochem Sci ; 45(6): 526-544, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32413327

RESUMO

Bacterial pathogens have developed complex strategies to successfully survive and proliferate within their hosts. Throughout the infection cycle, direct interaction with host cells occurs. Many bacteria have been found to secrete proteins, such as effectors and toxins, directly into the host cell with the potential to interfere with cell regulatory processes, either enzymatically or through protein-protein interactions (PPIs). Short linear motifs (SLiMs) are abundant peptide modules in cell signaling proteins. Here, we cover the reported examples of eukaryotic-like SLiM mimicry being used by pathogenic bacteria to hijack host cell machinery and discuss how drugs targeting SLiM-regulated cell signaling networks are being evaluated for interference with bacterial infections. This emerging anti-infective opportunity may become an essential contributor to antibiotic replacement strategies.


Assuntos
Bactérias/metabolismo , Mimetismo Molecular , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais
7.
Infect Immun ; 92(9): e0050023, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39166846

RESUMO

Type VI secretion systems (T6SSs) are complex molecular machines that allow bacteria to deliver toxic effector proteins to neighboring bacterial and eukaryotic cells. Although initial work focused on the T6SS as a virulence mechanism of human pathogens, the field shifted to examine the use of T6SSs for interbacterial competition in various environments, including in the plant rhizosphere. Genes encoding the T6SS are estimated to be found in a quarter of all Gram-negative bacteria and are especially highly represented in Proteobacteria, a group which includes the most important bacterial phytopathogens. Many of these pathogens encode multiple distinct T6SS gene clusters which can include the core components of the apparatus as well as effector proteins. The T6SS is deployed by pathogens at multiple points as they colonize their hosts and establish an infection. In this review, we describe what is known about the use of T6SS by phytopathogens against plant hosts and non-plant organisms, keeping in mind that the structure of plants requires unique mechanisms of attack that are distinct from the mechanisms used for interbacterial interactions and against animal hosts. While the interactions of specific effectors (such as phospholipases, endonucleases, peptidases, and amidases) with targets have been well described in the context of interbacterial competition and in some eukaryotic interactions, this review highlights the need for future studies to assess the activity of phytobacterial T6SS effectors against plant cells.


Assuntos
Doenças das Plantas , Plantas , Sistemas de Secreção Tipo VI , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Plantas/microbiologia , Doenças das Plantas/microbiologia , Interações Hospedeiro-Patógeno , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
8.
Mol Plant Microbe Interact ; 37(3): 338-346, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38171380

RESUMO

Similar to plant pathogens, phloem-feeding insects such as aphids deliver effector proteins inside their hosts that act to promote host susceptibility and enable feeding and infestation. Despite exciting progress toward identifying and characterizing effector proteins from these insects, their functions remain largely unknown. The recent groundbreaking development in protein structure prediction algorithms, combined with the availability of proteomics and transcriptomic datasets for agriculturally important pests, provides new opportunities to explore the structural and functional diversity of effector repertoires. In this study, we sought to gain insight into the infection strategy used by the Myzus persicae (green peach aphid) by predicting and analyzing the structures of a set of 71 effector candidate proteins. We used two protein structure prediction methods, AlphaFold and OmegaFold, that produced mutually consistent results. We observed a wide continuous spectrum of structures among the effector candidates, from disordered proteins to globular enzymes. We made use of the structural information and state-of-the-art computational methods to predict M. persicae effector protein properties, including function and interaction with host plant proteins. Overall, our investigation provides novel insights into prediction of structure, function, and interaction of M. persicae effector proteins and will guide the necessary experimental characterization to address new hypotheses. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Afídeos , Animais , Transcriptoma , Perfilação da Expressão Gênica , Proteínas de Plantas/genética
9.
Mol Microbiol ; 119(2): 262-274, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36577706

RESUMO

Type VI secretion systems (T6SSs) are cell envelope-spanning protein complexes that Gram-negative bacteria use to inject a diverse arsenal of antibacterial toxins into competitor cells. Recently, Wang et al. reported that the H2-T6SS of Pseudomonas aeruginosa delivers the peptidoglycan recycling amidase, AmpDh3, into the periplasm of recipient cells where it is proposed to act as a peptidoglycan degrading toxin. They further reported that PA0808, the open reading frame downstream of AmpDh3, encodes an immunity protein that localizes to the periplasm where it binds to and inactivates intercellularly delivered AmpDh3, thus protecting against its toxic activity. Given that AmpDh3 has an established role in cell wall homeostasis and that no precedent exists for cytosolic enzymes moonlighting as T6SS effectors, we attempted to replicate these findings. We found that cells lacking PA0808 are not susceptible to bacterial killing by AmpDh3 and that PA0808 and AmpDh3 do not physically interact in vitro or in vivo. Additionally, we found no evidence that AmpDh3 is exported from cells, including by strains with a constitutively active H2-T6SS. Finally, subcellular fractionation experiments and a 1.97 Å crystal structure reveal that PA0808 does not contain a canonical signal peptide or localize to the correct cellular compartment to confer protection against a cell wall targeting toxin. Taken together, these results cast doubt on the assertion that AmpDh3-PA0808 constitutes an H2-T6SS effector-immunity pair.


Assuntos
Sistemas de Secreção Tipo VI , Sistemas de Secreção Tipo VI/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/metabolismo , Peptidoglicano/metabolismo , Antibacterianos/metabolismo , Sistemas de Secreção Bacterianos/metabolismo
10.
New Phytol ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39290056

RESUMO

Thaumatin-like proteins (TLPs) in plants play a crucial role in combating stress, and they have been proven to possess antifungal properties. However, the role of TLPs in pathogens has not been reported. We identified a effector protein, Pt9029, which contained a Thaumatin domain in Puccinia triticina (Pt), possessing a chloroplast transit peptide and localized in the chloroplasts. Silencing Pt9029 in the Pt physiological race THTT resulted in a notable reduction in virulence and stunted growth and development of Pt hypha in near-isogenic wheat line TcLr2b. Overexpression of Pt9029 in wheat exerted a suppressive effect on H2O2 production, consequently impeding the wheat's disease resistance mechanisms. The TLP domain of Pt9029 targets the Rubisco activase (TaRCA) in chloroplasts. This interaction effectively inhibited the function of TaRCA, subsequently leading to a decrease in Rubisco enzyme activity. Therefore, this indicates that TLPs in Pt can inhibit host defense mechanisms during the pathogenic process of Pt. Moreover, TaRCA silencing resulted in reduced resistance of TcLr2b against Pt race THTT. This clearly demonstrated that TaRCA positively regulates wheat resistance to leaf rust. These findings reveal a novel strategy exploited by Pt to manipulate wheat rust resistance and promote pathogenicity.

11.
New Phytol ; 241(3): 1007-1020, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38073141

RESUMO

Rice blast, the most destructive disease of cultivated rice world-wide, is caused by the filamentous fungus Magnaporthe oryzae. To cause disease in plants, M. oryzae secretes a diverse range of effector proteins to suppress plant defense responses, modulate cellular processes, and support pathogen growth. Some effectors can be secreted by appressoria even before host penetration, while others accumulate in the apoplast, or enter living plant cells where they target specific plant subcellular compartments. During plant infection, the blast fungus induces the formation of a specialized plant structure known as the biotrophic interfacial complex (BIC), which appears to be crucial for effector delivery into plant cells. Here, we review recent advances in the cell biology of M. oryzae-host interactions and show how new breakthroughs in disease control have stemmed from an increased understanding of effector proteins of M. oryzae are deployed and delivered into plant cells to enable pathogen invasion and host susceptibility.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Proteínas Fúngicas/metabolismo , Ascomicetos/metabolismo , Transporte Biológico , Oryza/metabolismo , Doenças das Plantas/microbiologia
12.
Mol Breed ; 44(10): 67, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39345972

RESUMO

Disease-resistant plants activate immune responses by specifically recognition Candidate Secreted Effector Proteins (CSEPs) through resistance (R) proteins. In research on cucumber powdery mildew resistance breeding, several R genes and CSEPs have been identified; however, the specific interactions between R proteins and CSEPs are still largely unexplored. In this study, we used a luciferase reporter assay to identify six CSEPs from Podosphaera xanthii that potentially induce cell death in cucumber. Subsequent yeast two-hybrid analysis revealed that only the mature form of CSEP30 (CSEP30∆SP) interacted with the cucumber mutant STAY-GREEN (Cssgr), a gene previously recognized for its broad-spectrum resistance in genetic studies. This interaction was confirmed using pull-down and co-immunoprecipitation assays. Additionally, to determine if the interaction leads to phenotypic changes, Cssgr and CSEP30∆SP were transiently expressed in tobacco leaves. The infiltration of Cssgr in tobacco resulted in reduced chlorosis compared to the wild-type CsSGR. Co-infiltration of Cssgr with CSEP30∆SP induced distinct dry necrotic lesions, contrasting the effects observed when Cssgr and CSEP30∆SP were infiltrated separately. Additionally, after P. xanthii infection in moderately powdery mildew-resistant Gy14 cucumber, similar necrotic lesions and specific expression of Cssgr, as along with defense response-related genes (CsPR1 and CsLecRK6.1), were observed. This study suggests that the interaction between Cssgr and CSEP30∆SP could trigger cell death and defense response, offering new insights into the molecular function of Cssgr in disease resistance in Gy14 cucumber. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01504-6.

13.
Mol Biol Rep ; 51(1): 962, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235644

RESUMO

The MD-2-related lipid-recognition (ML/Md-2) domain is a lipid/sterol-binding domain that are involved in sterol transfer and innate immunity in eukaryotes. Here we report a genome-wide survey of this family, identifying 84 genes in 30 fungi including plant pathogens. All the studied species were found to have varied ML numbers, and expansion of the family was observed in Rhizophagus irregularis (RI) with 33 genes. The molecular docking studies of these proteins with cholesterol derivatives indicate lipid-binding functional conservation across the animal and fungi kingdom. The phylogenetic studies among eukaryotic ML proteins showed that Puccinia ML members are more closely associated with animal (insect) npc2 proteins than other fungal ML members. One of the candidates from leaf rust fungus Puccinia triticina, Pt5643 was PCR amplified and further characterized using various studies such as qRT-PCR, subcellular localization studies, yeast functional complementation, signal peptide validation, and expression studies. The Pt5643 exhibits the highest expression on the 5th day post-infection (dpi). The confocal microscopy of Pt5643 in onion epidermal cells and N. benthamiana shows its location in the cytoplasm and nucleus. The functional complementation studies of Pt5643 in npc2 mutant yeast showed its functional similarity to the eukaryotic/yeast npc2 gene. Furthermore, the overexpression of Pt5643 also suppressed the BAX, NEP1, and H2O2-induced program cell death in Nicotiana species and yeast. Altogether the present study reports the novel function of ML domain proteins in plant fungal pathogens and their possible role as effector molecules in host defense manipulation.


Assuntos
Morte Celular , Proteínas Fúngicas , Filogenia , Doenças das Plantas , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Nicotiana/microbiologia , Nicotiana/metabolismo , Nicotiana/genética , Basidiomycota/patogenicidade , Basidiomycota/metabolismo , Basidiomycota/genética , Puccinia/patogenicidade , Puccinia/metabolismo , Domínios Proteicos , Simulação de Acoplamento Molecular , Cebolas/microbiologia , Cebolas/metabolismo , Cebolas/genética
14.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34880132

RESUMO

Plants use intracellular nucleotide-binding domain (NBD) and leucine-rich repeat (LRR)-containing immune receptors (NLRs) to detect pathogen-derived effector proteins. The Arabidopsis NLR pair RRS1-R/RPS4 confers disease resistance to different bacterial pathogens by perceiving the structurally distinct effectors AvrRps4 from Pseudomonas syringae pv. pisi and PopP2 from Ralstonia solanacearum via an integrated WRKY domain in RRS1-R. How the WRKY domain of RRS1 (RRS1WRKY) perceives distinct classes of effector to initiate an immune response is unknown. Here, we report the crystal structure of the in planta processed C-terminal domain of AvrRps4 (AvrRps4C) in complex with RRS1WRKY Perception of AvrRps4C by RRS1WRKY is mediated by the ß2-ß3 segment of RRS1WRKY that binds an electronegative patch on the surface of AvrRps4C Structure-based mutations that disrupt AvrRps4C-RRS1WRKY interactions in vitro compromise RRS1/RPS4-dependent immune responses. We also show that AvrRps4C can associate with the WRKY domain of the related but distinct RRS1B/RPS4B NLR pair, and the DNA-binding domain of AtWRKY41, with similar binding affinities and how effector binding interferes with WRKY-W-box DNA interactions. This work demonstrates how integrated domains in plant NLRs can directly bind structurally distinct effectors to initiate immunity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Bactérias/metabolismo , Proteínas de Plantas/metabolismo , Pseudomonas syringae/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Bactérias/genética , Morte Celular , Clonagem Molecular , DNA de Plantas , Regulação da Expressão Gênica de Plantas/imunologia , Modelos Moleculares , Mutação , Proteínas de Plantas/genética , Conformação Proteica , Pseudomonas syringae/imunologia , Nicotiana
15.
Mol Plant Microbe Interact ; 36(12): 779-795, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37551980

RESUMO

Fungal effectors play critical roles in manipulating plant immune responses and promoting colonization. Sphaerulina musiva is a heterothallic ascomycete fungus that causes Septoria leaf spot and stem canker disease in poplar (Populus spp.) plantations. This disease can result in premature defoliation, branch and stem breakage, increased mortality, and plantation failure. However, little is known about the interaction between S. musiva and poplar. Previous work predicted 142 candidate secreted effector proteins in S. musiva (SmCSEPs), 19 of which were selected for further functional characterization in this study. SmCSEP3 induced plant cell death in Nicotiana benthamiana, while 8 out of 19 tested SmCSEPs suppressed cell death. The signal peptides of these eight SmCSEPs exhibited secretory activity in a yeast signal sequence trap assay. Confocal microscopy revealed that four of these eight SmCSEPs target both the cytoplasm and the nucleus, whereas four predominantly localize to discrete punctate structures. Pathogen challenge assays in N. benthamiana demonstrated that the transient expression of six SmCSEPs promoted Fusarium proliferatum infection. The expression of these six SmCSEP genes were induced during infection. SmCSEP2, SmCSEP13, and SmCSEP25 suppressed chitin-triggered reactive oxygen species burst and callose deposition in N. benthamiana. The candidate secreted effector proteins of S. musiva target multiple compartments in the plant cell and modulate different pattern-triggered immunity pathways. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2023.


Assuntos
Ascomicetos , Populus , Populus/genética , Populus/microbiologia , Virulência , Ascomicetos/genética , Imunidade Vegetal , Doenças das Plantas/microbiologia
16.
Mol Ecol ; 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36862075

RESUMO

The powdery mildew fungi (Erysiphaceae) are globally distributed plant pathogens with a range of more than 10,000 plant hosts. In this review, we discuss the long- and short-term evolution of these obligate biotrophic fungi and outline their diversity with respect to morphology, lifestyle, and host range. We highlight their remarkable ability to rapidly overcome plant immunity, evolve fungicide resistance, and broaden their host range, for example, through adaptation and hybridization. Recent advances in genomics and proteomics, particularly in cereal powdery mildews (genus Blumeria), provided first insights into mechanisms of genomic adaptation in these fungi. Transposable elements play key roles in shaping their genomes, where even close relatives exhibit diversified patterns of recent and ongoing transposon activity. These transposons are ubiquitously distributed in the powdery mildew genomes, resulting in a highly adaptive genome architecture lacking obvious regions of conserved gene space. Transposons can also be neofunctionalized to encode novel virulence factors, particularly candidate secreted effector proteins, which may undermine the plant immune system. In cereals like barley and wheat, some of these effectors are recognized by plant immune receptors encoded by resistance genes with numerous allelic variants. These effectors determine incompatibility ("avirulence") and evolve rapidly through sequence diversification and copy number variation. Altogether, powdery mildew fungi possess plastic genomes that enable their fast evolutionary adaptation towards overcoming plant immunity, host barriers, and chemical stress such as fungicides, foreshadowing future outbreaks, host range shifts and expansions as well as potential pandemics by these pathogens.

17.
Microb Ecol ; 85(1): 1-8, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35039905

RESUMO

Aphids and Pseudomonas syringae are a permanent challenge for agriculture, causing severe losses to the crop industry worldwide. Despite the obvious phylogenetic distance between them, both have become predominant colonizers of the plant kingdom. In this study, we reviewed three key steps of spread and colonization that aphids and P. syringae have mastered to successfully colonize the phyllosphere. These steps involve (i) plant-to-plant movement for locating new nutritional sources, (ii) disruption and modification of the apoplast to facilitate nutrient acquisition, and (iii) suppression of host defenses through effector proteins. In addition, we will provide insights about the direct interaction between aphids and P. syringae and how this yet underrated phenomenon could bring new ecological implications for both organisms beyond their pathogenicity.


Assuntos
Afídeos , Pseudomonas syringae , Animais , Pseudomonas syringae/genética , Filogenia , Plantas/metabolismo , Doenças das Plantas , Proteínas de Bactérias/genética
18.
Phytopathology ; 113(8): 1548-1559, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37454086

RESUMO

Parasites can interact with their host plants through the induction and delivery of secreted effector proteins that facilitate plant colonization by decomposing plant cell walls and inhibiting plant immune response to weaken the defense ability of the host. Yet effectors mediating parasitic plant-host interactions are poorly understood. Phelipanche aegyptiaca is an obligate root parasite plant causing severe yield and economic losses in agricultural fields worldwide. Host resistance against P. aegyptiaca occurred during the attachment period of parasitism. Comparative transcriptomics was used to assess resistant and susceptible interactions simultaneously between P. aegyptiaca and two contrasting melon cultivars. In total, 2,740 secreted proteins from P. aegyptiaca were identified here. Combined with transcriptome profiling, 209 candidate secreted effector proteins (CSEPs) were predicted, with functional annotations such as cell wall degrading enzymes, protease inhibitors, transferases, kinases, and elicitor proteins. A heterogeneous expression system in Nicotiana benthamiana was used to investigate the functions of 20 putatively effector genes among the CSEPs. Cluster 15140.0 can suppress BAX-triggered programmed cell death in N. benthamiana. These findings showed that the prediction of P. aegyptiaca effector proteins based on transcriptomic analysis and multiple bioinformatics software is effective and more accurate, providing insights into understanding the essential molecular nature of effectors and laying the foundation of revealing the parasite mechanism of P. aegyptiaca, which is helpful in understanding parasite-host plant interaction.

19.
Proc Natl Acad Sci U S A ; 117(24): 13708-13718, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32482853

RESUMO

The Q fever agent Coxiella burnetii uses a defect in organelle trafficking/intracellular multiplication (Dot/Icm) type 4b secretion system (T4SS) to silence the host innate immune response during infection. By investigating C. burnetii effector proteins containing eukaryotic-like domains, here we identify NopA (nucleolar protein A), which displays four regulator of chromosome condensation (RCC) repeats, homologous to those found in the eukaryotic Ras-related nuclear protein (Ran) guanine nucleotide exchange factor (GEF) RCC1. Accordingly, NopA is found associated with the chromatin nuclear fraction of cells and uses the RCC-like domain to interact with Ran. Interestingly, NopA triggers an accumulation of Ran-GTP, which accumulates at nucleoli of transfected or infected cells, thus perturbing the nuclear import of transcription factors of the innate immune signaling pathway. Accordingly, qRT-PCR analysis on a panel of cytokines shows that cells exposed to the C. burnetii nopA::Tn or a Dot/Icm-defective dotA::Tn mutant strain present a functional innate immune response, as opposed to cells exposed to wild-type C. burnetii or the corresponding nopA complemented strain. Thus, NopA is an important regulator of the innate immune response allowing Coxiella to behave as a stealth pathogen.


Assuntos
Proteínas de Bactérias/metabolismo , Coxiella burnetii/metabolismo , Febre Q/imunologia , Animais , Proteínas de Bactérias/genética , Coxiella burnetii/genética , Feminino , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Febre Q/genética , Febre Q/microbiologia
20.
Int J Mol Sci ; 24(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37894919

RESUMO

Fungal effector proteins are important in mediating disease infections in agriculturally important crops. These secreted small proteins are known to interact with their respective host receptor binding partners in the host, either inside the cells or in the apoplastic space, depending on the localisation of the effector proteins. Consequently, it is important to understand the interactions between fungal effector proteins and their target host receptor binding partners, particularly since this can be used for the selection of potential plant resistance or susceptibility-related proteins that can be applied to the breeding of new cultivars with disease resistance. In this study, molecular docking simulations were used to characterise protein-protein interactions between effector and plant receptors. Benchmarking was undertaken using available experimental structures of effector-host receptor complexes to optimise simulation parameters, which were then used to predict the structures and mediating interactions of effector proteins with host receptor binding partners that have not yet been characterised experimentally. Rigid docking was applied for both the so-called bound and unbound docking of MAX effectors with plant HMA domain protein partners. All bound complexes used for benchmarking were correctly predicted, with 84% being ranked as the top docking pose using the ZDOCK scoring function. In the case of unbound complexes, a minimum of 95% of known residues were predicted to be part of the interacting interface on the host receptor binding partner, and at least 87% of known residues were predicted to be part of the interacting interface on the effector protein. Hydrophobic interactions were found to dominate the formation of effector-plant protein complexes. An optimised set of docking parameters based on the use of ZDOCK and ZRANK scoring functions were established to enable the prediction of near-native docking poses involving different binding interfaces on plant HMA domain proteins. Whilst this study was limited by the availability of the experimentally determined complexed structures of effectors and host receptor binding partners, we demonstrated the potential of molecular docking simulations to predict the likely interactions between effectors and their respective host receptor binding partners. This computational approach may accelerate the process of the discovery of putative interacting plant partners of effector proteins and contribute to effector-assisted marker discovery, thereby supporting the breeding of disease-resistant crops.


Assuntos
Proteínas de Transporte , Proteínas de Plantas , Simulação de Acoplamento Molecular , Proteínas de Plantas/metabolismo , Proteínas de Transporte/metabolismo , Melhoramento Vegetal , Proteínas Fúngicas/metabolismo , Ligação Proteica , Produtos Agrícolas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA