Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Clin Chem Lab Med ; 59(11): 1811-1823, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34243224

RESUMO

OBJECTIVES: Lipid mediators are bioactive lipids which help regulate inflammation. We aimed to develop an ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method to quantify 58 pro-inflammatory and pro-resolving lipid mediators in plasma, determine preliminary reference ranges for adolescents, and investigate how total parenteral nutrition (TPN) containing omega-3 polyunsaturated fatty acid (n-3 PUFA) or n-6 PUFA based lipid emulsions influence lipid mediator concentrations in plasma. METHODS: Lipid mediators were extracted from plasma using SPE and measured using UHPLC-MS/MS. EDTA plasma was collected from healthy adolescents between 13 and 17 years of age to determine preliminary reference ranges and from mice given intravenous TPN for seven days containing either an n-3 PUFA or n-6 PUFA based lipid emulsion. RESULTS: We successfully quantified 43 lipid mediators in human plasma with good precision and recovery including several leukotrienes, prostaglandins, resolvins, protectins, maresins, and lipoxins. We found that the addition of methanol to human plasma after blood separation reduces post blood draw increases in 12-hydroxyeicosatetraenoic acid (12-HETE), 12-hydroxyeicosapentaenoic acid (12-HEPE), 12S-hydroxyeicosatrienoic acid (12S-HETrE), 14-hydroxydocosahexaenoic acid (14-HDHA) and thromboxane B2 (TXB2). Compared to the n-6 PUFA based TPN, the n-3 PUFA based TPN increased specialized pro-resolving mediators such as maresin 1 (MaR1), MaR2, protectin D1 (PD1), PDX, and resolvin D5 (RvD5), and decreased inflammatory lipid mediators such as leukotriene B4 (LTB4) and prostaglandin D2 (PGD2). CONCLUSIONS: Our method provides an accurate and sensitive quantification of 58 lipid mediators from plasma samples, which we used to establish a preliminary reference range for lipid mediators in plasma samples of adolescents; and to show that n-3 PUFA, compared to n-6 PUFA rich TPN, leads to a less inflammatory lipid mediator profile in mice.


Assuntos
Ácidos Graxos Ômega-3 , Espectrometria de Massas em Tandem , Adolescente , Animais , Cromatografia Líquida de Alta Pressão , Eicosanoides , Humanos , Inflamação , Camundongos , Espectrometria de Massas em Tandem/métodos
2.
Arch Toxicol ; 91(11): 3571-3585, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28975360

RESUMO

Microsomal and soluble epoxide hydrolase (mEH and sEH) fulfill apparently distinct roles: Whereas mEH detoxifies xenobiotics, sEH hydrolyzes fatty acid (FA) signaling molecules and is thus implicated in a variety of physiological functions. These epoxy FAs comprise epoxyeicosatrienoic acids (EETs) and epoxy-octadecenoic acids (EpOMEs), which are formed by CYP epoxygenases from arachidonic acid (AA) and linoleic acid, respectively, and then are hydrolyzed to their respective diols, the so-called DHETs and DiHOMEs. Although EETs and EpOMEs are also substrates for mEH, its role in lipid signaling is considered minor due to lower abundance and activity relative to sEH. Surprisingly, we found that in plasma from mEH KO mice, hydrolysis rates for 8,9-EET and 9,10-EpOME were reduced by 50% compared to WT plasma. This strongly suggests that mEH contributes substantially to the turnover of these FA epoxides-despite kinetic parameters being in favor of sEH. Given the crucial role of liver in controlling plasma diol levels, we next studied the capacity of sEH and mEH KO liver microsomes to synthesize DHETs with varying concentrations of AA (1-30 µM) and NADPH. mEH-generated DHET levels were similar to the ones generated by sEH, when AA concentrations were low (1 µM) or epoxygenase activity was curbed by modulating NADPH. With increasing AA concentrations sEH became more dominant and with 30 µM AA produced twice the level of DHETs compared to mEH. Immunohistochemistry of C57BL/6 liver slices further revealed that mEH expression was more widespread than sEH expression. mEH immunoreactivity was detected in hepatocytes, Kupffer cells, endothelial cells, and bile duct epithelial cells, while sEH immunoreactivity was confined to hepatocytes and bile duct epithelial cells. Finally, transcriptome analysis of WT, mEH KO, and sEH KO liver was carried out to discern transcriptional changes associated with the loss of EH genes along the CYP-epoxygenase-EH axis. We found several prominent dysregulations occurring in a parallel manner in both KO livers: (a) gene expression of Ephx1 (encoding for mEH protein) was increased 1.35-fold in sEH KO, while expression of Ephx2 (encoding for sEH protein) was increased 1.4-fold in mEH KO liver; (b) Cyp2c genes, encoding for the predominant epoxygenases in mouse liver, were mostly dysregulated in the same manner in both sEH and mEH KO mice, showing that loss of either EH has a similar impact. Taken together, mEH appears to play a leading role in the hydrolysis of 8,9-EET and 9,10-EpOME and also contributes to the hydrolysis of other FA epoxides. It probably profits from its high affinity for FA epoxides under non-saturating conditions and its close physical proximity to CYP epoxygenases, and compensates its lower abundance by a more widespread expression, being the only EH present in several sEH-lacking cell types.


Assuntos
Epóxido Hidrolases/metabolismo , Metabolismo dos Lipídeos/fisiologia , Fígado/fisiologia , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/metabolismo , Animais , Epóxido Hidrolases/genética , Compostos de Epóxi/metabolismo , Expressão Gênica , Inativação Metabólica , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microssomos Hepáticos/metabolismo , Ácidos Oleicos/metabolismo , Oxilipinas/sangue , Oxilipinas/metabolismo
3.
Semin Immunol ; 25(3): 240-8, 2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-24084369

RESUMO

Bioactive lipid mediators play crucial roles in promoting the induction and resolution of inflammation. Eicosanoids and other related unsaturated fatty acids have long been known to induce inflammation. These signaling molecules can modulate the circulatory system and stimulate immune cell infiltration into the site of infection. Recently, DHA- and EPA-derived metabolites have been discovered to promote the resolution of inflammation, an active process. Not only do these molecules stop the further infiltration of immune cells, they prompt non-phlogistic phagocytosis of apoptotic neutrophils, stimulating the tissue to return to homeostasis. After the rapid release of lipid precursors from the plasma membrane upon stimulation, families of enzymes in a complex network metabolize them to produce a large array of lipid metabolites. With current advances in mass spectrometry, the entire lipidome can be accurately quantified to assess the immune response upon microbial infection. In this review, we discuss the various lipid metabolism pathways in the context of the immune response to microbial pathogens, as well as their complex network interactions. With the advancement of mass spectrometry, these approaches have also been used to characterize the lipid mediator response of macrophages and neutrophils upon immune stimulation in vitro. Lastly, we describe the recent efforts to apply systems biology approaches to dissect the role of lipid mediators during bacterial and viral infections in vivo.


Assuntos
Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Eicosapentaenoico/metabolismo , Infecções/metabolismo , Macrófagos/imunologia , Espectrometria de Massas/métodos , Neutrófilos/imunologia , Biologia de Sistemas/métodos , Animais , Homeostase/imunologia , Humanos , Infecções/imunologia , Metabolismo dos Lipídeos , Macrófagos/microbiologia , Macrófagos/virologia , Espectrometria de Massas/tendências , Neutrófilos/microbiologia , Neutrófilos/virologia , Biologia de Sistemas/tendências
4.
Insect Biochem Mol Biol ; 168: 104104, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38494144

RESUMO

Upon immune challenge, recognition signals trigger insect immunity to remove the pathogens through cellular and humoral responses. Various immune mediators propagate the immune signals to nearby tissues, in which polyunsaturated fatty acid (PUFA) derivatives play crucial roles. However, little was known on how the insects terminate the activated immune responses after pathogen neutralization. Interestingly, C20 PUFA was detected at the early infection stage and later C18 PUFAs were induced in a lepidopteran insect, Spodoptera exigua. This study showed the role of epoxyoctadecamonoenoic acids (EpOMEs) in the immune resolution at the late infection stage to quench the excessive and unnecessary immune responses. In contrast, dihydroxy-octadecamonoenoates (DiHOMEs) were the hydrolyzed and inactive forms of EpOMEs. The hydrolysis is catalyzed by soluble epoxide hydrolase (sEH). Inhibitors specific to sEH mimicked the immunosuppression induced by EpOMEs. Furthermore, the inhibitor treatments significantly enhanced the bacterial virulence of Bacillus thuringiensis against S. exigua. This study proposes a negative control of the immune responses using EpOME/DiHOME in insects.


Assuntos
Ácidos Graxos Insaturados , Insetos , Animais , Spodoptera
5.
EBioMedicine ; 103: 105127, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677183

RESUMO

BACKGROUND: Obesity drives maladaptive changes in the white adipose tissue (WAT) which can progressively cause insulin resistance, type 2 diabetes mellitus (T2DM) and metabolic dysfunction-associated liver disease (MASLD). Obesity-mediated loss of WAT homeostasis can trigger liver steatosis through dysregulated lipid pathways such as those related to polyunsaturated fatty acid (PUFA)-derived oxylipins. However, the exact relationship between oxylipins and metabolic syndrome remains elusive and cross-tissue dynamics of oxylipins are ill-defined. METHODS: We quantified PUFA-related oxylipin species in the omental WAT, liver biopsies and plasma of 88 patients undergoing bariatric surgery (female N = 79) and 9 patients (female N = 4) undergoing upper gastrointestinal surgery, using UPLC-MS/MS. We integrated oxylipin abundance with WAT phenotypes (adipogenesis, adipocyte hypertrophy, macrophage infiltration, type I and VI collagen remodelling) and the severity of MASLD (steatosis, inflammation, fibrosis) quantified in each biopsy. The integrative analysis was subjected to (i) adjustment for known risk factors and, (ii) control for potential drug-effects through UPLC-MS/MS analysis of metformin-treated fat explants ex vivo. FINDINGS: We reveal a generalized down-regulation of cytochrome P450 (CYP)-derived diols during obesity conserved between the WAT and plasma. Notably, epoxide:diol ratio, indicative of soluble epoxide hydrolyse (sEH) activity, increases with WAT inflammation/fibrosis, hepatic steatosis and T2DM. Increased 12,13-EpOME:DiHOME in WAT and liver is a marker of worsening metabolic syndrome in patients with obesity. INTERPRETATION: These findings suggest a dampened sEH activity and a possible role of fatty acid diols during metabolic syndrome in major metabolic organs such as WAT and liver. They also have implications in view of the clinical trials based on sEH inhibition for metabolic syndrome. FUNDING: Wellcome Trust (PS3431_WMIH); Duke-NUS (Intramural Goh Cardiovascular Research Award (Duke-NUS-GCR/2022/0020); National Medical Research Council (OFLCG22may-0011); National Institute of Environmental Health Sciences (Z01 ES025034); NIHR Imperial Biomedical Research Centre.


Assuntos
Tecido Adiposo Branco , Fígado Gorduroso , Obesidade , Oxilipinas , Humanos , Obesidade/metabolismo , Obesidade/complicações , Feminino , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado Gorduroso/etiologia , Masculino , Oxilipinas/metabolismo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Pessoa de Meia-Idade , Adulto , Inflamação/metabolismo , Inflamação/patologia , Fígado/metabolismo , Fígado/patologia , Biomarcadores , Espectrometria de Massas em Tandem
6.
Front Physiol ; 12: 663869, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868029

RESUMO

Polyunsaturated fatty acids are metabolized into regulatory lipids important for initiating inflammatory responses in the event of disease or injury and for signaling the resolution of inflammation and return to homeostasis. The epoxides of linoleic acid (leukotoxins) regulate skin barrier function, perivascular and alveolar permeability and have been associated with poor outcomes in burn patients and in sepsis. It was later reported that blocking metabolism of leukotoxins into the vicinal diols ameliorated the deleterious effects of leukotoxins, suggesting that the leukotoxin diols are contributing to the toxicity. During quantitative profiling of fatty acid chemical mediators (eicosanoids) in COVID-19 patients, we found increases in the regioisomeric leukotoxin diols in plasma samples of hospitalized patients suffering from severe pulmonary involvement. In rodents these leukotoxin diols cause dramatic vascular permeability and are associated with acute adult respiratory like symptoms. Thus, pathways involved in the biosynthesis and degradation of these regulatory lipids should be investigated in larger biomarker studies to determine their significance in COVID-19 disease. In addition, incorporating diols in plasma multi-omics of patients could illuminate the COVID-19 pathological signature along with other lipid mediators and blood chemistry.

7.
Cardiovasc Toxicol ; 19(4): 365-371, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30725262

RESUMO

Cardiac ischemia/reperfusion injury is associated with the formation and action of lipid mediators derived from polyunsaturated fatty acids. Among them, linoleic acid (LA) is metabolized to epoxyoctadecanoic acids (EpOMEs) by cytochrome P450 (CYP) epoxygenases and further to dihydroxyoctadecanoic acids (DiHOMEs) by soluble epoxide hydrolase (sEH). We hypothesized that EpOMEs and/or DiHOMEs may affect cardiac post-ischemic recovery and addressed this question using isolated murine hearts in a Langendorff system. Hearts from C57Bl6 mice were exposed to 12,13-EpOME, 12,13-DiHOME, or vehicle (phosphate buffered sodium; PBS). Effects on basal cardiac function and functional recovery during reperfusion following 20 min of ischemia were investigated. Electrocardiogram (ECG), left ventricular (LV) pressure and coronary flow (CF) were continuously measured. Ischemia reperfusion experiments were repeated after administration of the sEH-inhibitor 12-(3-adamantan-1-yl-ureido)dodecanoic acid (AUDA). At a concentration of 100 nM, both EpOME and DiHOME decreased post-ischemic functional recovery in murine hearts. There was no effect on basal cardiac parameters. The detrimental effects seen with EpOME, but not DiHOME, were averted by sEH inhibition (AUDA). Our results indicate that LA-derived mediators EpOME/DiHOME may play an important role in cardiac ischemic events. Inhibition of sEH could provide a novel treatment option to prevent detrimental DiHOME effects in acute cardiac ischemia.


Assuntos
Epóxido Hidrolases/metabolismo , Ácido Linoleico/toxicidade , Traumatismo por Reperfusão Miocárdica/enzimologia , Miocárdio/enzimologia , Ácidos Oleicos/toxicidade , Função Ventricular Esquerda/efeitos dos fármacos , Adamantano/análogos & derivados , Adamantano/farmacologia , Animais , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , Preparação de Coração Isolado , Ácidos Láuricos/farmacologia , Ácido Linoleico/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Ácidos Oleicos/metabolismo , Recuperação de Função Fisiológica , Transdução de Sinais , Pressão Ventricular/efeitos dos fármacos
8.
Phytochemistry ; 138: 65-75, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28291596

RESUMO

Uniqueness and diversity of mango flavour across various cultivars are well known. Among various flavour metabolites lactones form an important class of aroma volatiles in certain mango varieties due to their ripening specific appearance and lower odour detection threshold. In spite of their biological and biochemical importance, lactone biosynthetic pathway in plants remains elusive. Present study encompasses quantitative real-time analysis of 9-lipoxygenase (Mi9LOX), epoxide hydrolase 2 (MiEH2), peroxygenase, hydroperoxide lyase and acyl-CoA-oxidase genes during various developmental and ripening stages in fruit of Alphonso, Pairi and Kent cultivars with high, low and no lactone content and explains their variable lactone content. Study also covers isolation, recombinant protein characterization and transient over-expression of Mi9LOX and MiEH2 genes in mango fruits. Recombinant Mi9LOX utilized linoleic and linolenic acids, while MiEH2 utilized aromatic and fatty acid epoxides as their respective substrates depicting their role in fatty acid metabolism. Significant increase in concentration of δ-valerolactone and δ-decalactone upon Mi9LOX over-expression and that of δ-valerolactone, γ-hexalactone and δ-hexalactone upon MiEH2 over-expression further suggested probable involvement of these genes in lactone biosynthesis in mango.


Assuntos
Epóxido Hidrolases/genética , Lactonas/química , Lipoxigenase/genética , Mangifera/enzimologia , Proteínas de Plantas/genética , Aldeído Liases/química , Sistema Enzimático do Citocromo P-450/química , Ácidos Graxos , Frutas/química , Mangifera/genética , Oxigenases de Função Mista/química , Pironas/química
9.
Artigo em Inglês | MEDLINE | ID: mdl-24055573

RESUMO

Prostanoids and PGE2 in particular have been long viewed as one of the major mediators of inflammation in arthritis. However, experimental data indicate that PGE2 can serve both pro- and anti-inflammatory functions. We have previously shown (Kojima et al., J. Immunol. 180 (2008) 8361-8368) that microsomal prostaglandin E synthase-1 (mPGES-1) deletion, which regulates PGE2 production, resulted in the suppression of collagen-induced arthritis (CIA) in mice. This suppression was attributable, at least in part, to the impaired generation of type II collagen autoantibodies. In order to examine the function of mPGES-1 and PGE2 in a non-autoimmune form of arthritis, we used the collagen antibody-induced arthritis (CAIA) model in mice deficient in mPGES-1, thereby bypassing the engagement of the adaptive immune response in arthritis development. Here we report that mPGES-1 deletion significantly increased CAIA disease severity. The latter was associated with a significant (~3.6) upregulation of neutrophil, but not macrophage, recruitment to the inflamed joints. The lipidomic analysis of the arthritic mouse paws by quantitative liquid chromatography/tandem mass-spectrometry (LC/MS/MS) revealed a dramatic (~59-fold) reduction of PGE2 at the peak of arthritis. Altogether, this study highlights mPGES-1 and its product PGE2 as important negative regulators of neutrophil-mediated inflammation and suggests that specific mPGES-1 inhibitors may have differential effects on different types of inflammation. Furthermore, neutrophil-mediated diseases could be exacerbated by inhibition of mPGES-1.


Assuntos
Artrite Experimental/metabolismo , Dinoprostona/metabolismo , Oxirredutases Intramoleculares/genética , Articulações/metabolismo , Neutrófilos/metabolismo , Animais , Artrite Experimental/genética , Artrite Experimental/imunologia , Artrite Experimental/patologia , Autoanticorpos/biossíntese , Autoanticorpos/imunologia , Cromatografia Líquida , Colágeno Tipo II/genética , Colágeno Tipo II/imunologia , Dinoprostona/imunologia , Feminino , Deleção de Genes , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Oxirredutases Intramoleculares/deficiência , Articulações/imunologia , Articulações/patologia , Metabolismo dos Lipídeos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Neutrófilos/patologia , Prostaglandina-E Sintases , Índice de Gravidade de Doença , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA