Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Plant Cell Physiol ; 63(9): 1230-1241, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35792499

RESUMO

Grafting-induced flowering is a key phenomenon to understand systemic floral induction caused by florigen. It can also be used as a breeding technique enabling rapid seed production of crops with long generation times. However, the degree of floral induction in grafted plants is often variable. Moreover, it is difficult in some crop species. Here, we explored the factors promoting variability in the grafting-induced flowering of cabbage (Brassica oleracea L. var. capitata), an important vegetable crop with a long generation time, via the quantitative analysis of florigen accumulation. Significant variability in the flowering response of grafted cabbage was observed when rootstocks of different genotypes were used. As reported previously, B. oleracea rootstocks did not induce the flowering of grafted cabbage plants, but radish (Raphanus sativus L.) rootstocks unstably did, depending on the accessions used. Immunoblotting analysis of the FLOWERING LOCUS T (FT) protein, a main component of florigen, revealed that floral induction was quantitatively correlated with the level of accumulated FT protein in the grafted scion. To identify rootstock factors that cause variability in the floral induction of the grafted scion, we investigated FT protein accumulation and flowering response in grafted scions when the transcription levels of FT and the leaf area of rootstocks were altered by vernalization, daylength and leaf trimming treatments. We concluded that increasing the total amount of FT protein produced in the rootstock is important for the stable floral induction of the grafted cabbage, and this can be accomplished by increasing FT transcription and the leaf area of the rootstock.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassica , Raphanus , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassica/genética , Brassica/metabolismo , Florígeno/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Raphanus/genética , Raphanus/metabolismo
2.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077286

RESUMO

Vernalization is the requirement for exposure to low temperatures to trigger flowering. The best knowledge about the mechanisms of vernalization response has been accumulated for Arabidopsis and cereals. In Arabidopsis thaliana, vernalization involves an epigenetic silencing of the MADS-box gene FLOWERING LOCUS C (FLC), which is a flowering repressor. FLC silencing releases the expression of the main flowering inductor FLOWERING LOCUS T (FT), resulting in a floral transition. Remarkably, no FLC homologues have been identified in the vernalization-responsive legumes, and the mechanisms of cold-mediated transition to flowering in these species remain elusive. Nevertheless, legume FT genes have been shown to retain the function of the main vernalization signal integrators. Unlike Arabidopsis, legumes have three subclades of FT genes, which demonstrate distinct patterns of regulation with respect to environmental cues and tissue specificity. This implies complex mechanisms of vernalization signal propagation in the flowering network, that remain largely elusive. Here, for the first time, we summarize the available information on the genetic basis of cold-induced flowering in legumes with a special focus on the role of FT genes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fabaceae , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Temperatura Baixa , Fabaceae/genética , Fabaceae/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo
3.
BMC Plant Biol ; 21(1): 218, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990176

RESUMO

BACKGROUND: In angiosperms the transition to flowering is controlled by a complex set of interacting networks integrating a range of developmental, physiological, and environmental factors optimizing transition time for maximal reproductive efficiency. The molecular mechanisms comprising these networks have been partially characterized and include both transcriptional and post-transcriptional regulatory pathways. Florigen, encoded by FLOWERING LOCUS T (FT) orthologs, is a conserved central integrator of several flowering time regulatory pathways. To characterize the molecular mechanisms involved in controlling cacao flowering time, we have characterized a cacao candidate florigen gene, TcFLOWERING LOCUS T (TcFT). Understanding how this conserved flowering time regulator affects cacao plant's transition to flowering could lead to strategies to accelerate cacao breeding. RESULTS: BLAST searches of cacao genome reference assemblies identified seven candidate members of the CENTRORADIALIS/TERMINAL FLOWER1/SELF PRUNING gene family including a single florigen candidate. cDNA encoding the predicted cacao florigen was cloned and functionally tested by transgenic genetic complementation in the Arabidopsis ft-10 mutant. Transgenic expression of the candidate TcFT cDNA in late flowering Arabidopsis ft-10 partially rescues the mutant to wild-type flowering time. Gene expression studies reveal that TcFT is spatially and temporally expressed in a manner similar to that found in Arabidopsis, specifically, TcFT mRNA is shown to be both developmentally and diurnally regulated in leaves and is most abundant in floral tissues. Finally, to test interspecies compatibility of florigens, we transformed cacao tissues with AtFT resulting in the remarkable formation of flowers in tissue culture. The morphology of these in vitro flowers is normal, and they produce pollen that germinates in vitro with high rates. CONCLUSION: We have identified the cacao CETS gene family, central to developmental regulation in angiosperms. The role of the cacao's single FT-like gene (TcFT) as a general regulator of determinate growth in cacao was demonstrated by functional complementation of Arabidopsis ft-10 late-flowering mutant and through gene expression analysis. In addition, overexpression of AtFT in cacao resulted in precocious flowering in cacao tissue culture demonstrating the highly conserved function of FT and the mechanisms controlling flowering in cacao.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Cacau/crescimento & desenvolvimento , Cacau/genética , Evolução Molecular , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Meristema/genética , Meristema/crescimento & desenvolvimento
4.
J Exp Bot ; 2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34051078

RESUMO

In contrast to animals, plants cannot avoid unfavorable temperature conditions. Instead, plants have evolved intricate signaling pathways that enable them to perceive and respond to temperature. General acclimation processes that prepare the plant to respond to stressful heat and cold, usually occur throughout the whole plant. More specific temperature responses, however, are limited to certain tissues or cell types. While global responses are amenable to epigenomic analyses, responses which are highly localized are more problematic as the chromatin in question is not easily accessible. Here we review the current knowledge of the epigenetic regulation of FLOWERING LOCUS C and FLOWERING LOCUS T as examples of temperature-responsive flowering time regulators that are expressed broadly throughout the plants and in specific cell types, respectively. While undoubtably extremely successful, we reason that future analyses would benefit from higher spatiotemporal resolution. We conclude by reviewing methods and successful applications of tissue- and cell type-specific epigenomic analyses and provide a brief outlook into the future, single-cell epigenomics.

5.
J Exp Bot ; 72(7): 2301-2311, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33449083

RESUMO

This year marks the 100th anniversary of the experiments by Garner and Allard that showed that plants measure the duration of the night and day (the photoperiod) to time flowering. This discovery led to the identification of Flowering Locus T (FT) in Arabidopsis and Heading Date 3a (Hd3a) in rice as a mobile signal that promotes flowering in tissues distal to the site of cue perception. FT/Hd3a belong to the family of phosphatidylethanolamine-binding proteins (PEBPs). Collectively, these proteins control plant developmental transitions and plant architecture. Several excellent recent reviews have focused on the roles of PEBPs in diverse plant species; here we will primarily highlight recent advances that enhance our understanding of the mechanism of action of PEBPs and discuss critical open questions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteína de Ligação a Fosfatidiletanolamina , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteína de Ligação a Fosfatidiletanolamina/genética , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Fotoperíodo
6.
BMC Genomics ; 20(1): 747, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619173

RESUMO

BACKGROUND: Gibberellins (GAs) can have profound effects on growth and development in higher plants. In contrast to their flowering-promotive role in many well-studied plants, GAs can repress flowering in woody perennial plants such as apple (Malus x domestica Borkh.). Although this effect of GA on flowering is intriguing and has commercial importance, the genetic mechanisms linking GA perception with flowering have not been well described. RESULTS: Application of a mixture of bioactive GAs repressed flower formation without significant effect on node number or shoot elongation. Using Illumina-based transcriptional sequence data and a newly available, high-quality apple genome sequence, we generated transcript models for genes expressed in the shoot apex, and estimated their transcriptional response to GA. GA treatment resulted in downregulation of a diversity of genes participating in GA biosynthesis, and strong upregulation of the GA catabolic GA2 OXIDASE genes, consistent with GA feedback and feedforward regulation, respectively. We also observed strong downregulation of numerous genes encoding potential GA transporters and receptors. Additional GA-responsive genes included potential components of cytokinin (CK), abscisic acid (ABA), brassinosteroid, and auxin signaling pathways. Finally, we observed rapid and strong upregulation of both of two copies of a gene previously observed to inhibit flowering in apple, MdTFL1 (TERMINAL FLOWER 1). CONCLUSION: The rapid and robust upregulation of genes associated with GA catabolism in response to exogenous GA, combined with the decreased expression of GA biosynthetic genes, highlights GA feedforward and feedback regulation in the apple shoot apex. The finding that genes with potential roles in GA metabolism, transport and signaling are responsive to GA suggests GA homeostasis may be mediated at multiple levels in these tissues. The observation that TFL1-like genes are induced quickly in response to GA suggests they may be directly targeted by GA-responsive transcription factors, and offers a potential explanation for the flowering-inhibitory effects of GA in apple. These results provide a context for investigating factors that may transduce the GA signal in apple, and contribute to a preliminary genetic framework for the repression of flowering by GAs in a woody perennial plant.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Giberelinas/metabolismo , Malus/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Genes de Plantas/genética , Giberelinas/farmacologia , Malus/genética , Meristema/genética , Meristema/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/farmacologia , Transdução de Sinais/genética , Fatores de Transcrição/genética
7.
Plant Cell Environ ; 42(1): 174-187, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29677403

RESUMO

Narrow-leafed lupin (Lupinus angustifolius L.) cultivation was transformed by 2 dominant vernalization-insensitive, early flowering time loci known as Ku and Julius (Jul), which allowed expansion into shorter season environments. However, reliance on these loci has limited genetic and phenotypic diversity for environmental adaptation in cultivated lupin. We recently predicted that a 1,423-bp deletion in the cis-regulatory region of LanFTc1, a FLOWERING LOCUS T (FT) homologue, derepressed expression of LanFTc1 and was the underlying cause of the Ku phenotype. Here, we surveyed diverse germplasm for LanFTc1 cis-regulatory variation and identified 2 further deletions of 1,208 and 5,162 bp in the 5' regulatory region, which overlap the 1,423-bp deletion. Additionally, we confirmed that no other polymorphisms were perfectly associated with vernalization responsiveness. Phenotyping and gene expression analyses revealed that Jul accessions possessed the 5,162-bp deletion and that the Jul and Ku deletions were equally capable of removing vernalization requirement and up-regulating gene expression. The 1,208-bp deletion was associated with intermediate phenology, vernalization responsiveness, and gene expression and therefore may be useful for expanding agronomic adaptation of lupin. This insertion/deletion series may also help resolve how the vernalization response is mediated at the molecular level in legumes.


Assuntos
Flores/crescimento & desenvolvimento , Genes de Plantas/genética , Mutação INDEL/genética , Lupinus/genética , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas/fisiologia , Variação Genética/genética , Mutação INDEL/fisiologia , Desequilíbrio de Ligação/genética , Lupinus/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética , Estações do Ano
8.
New Phytol ; 217(3): 1335-1345, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29120038

RESUMO

Soybean flowering and maturation are strictly regulated by photoperiod. Photoperiod-sensitive soybean varieties can undergo flowering reversion when switched from short-day (SD) to long-day (LD) conditions, suggesting the presence of a 'floral-inhibitor' under LD conditions. We combined gene expression profiling with a study of transgenic plants and confirmed that GmFT1a, soybean Flowering Locus T (FT) homolog, is a floral inhibitor. GmFT1a is expressed specifically in leaves, similar to the flowering-promoting FT homologs GmFT2a/5a. However, in Zigongdongdou (ZGDD), a model variety for studying flowering reversion, GmFT1a expression was induced by LD but inhibited by SD conditions. This was unexpected, as it is the complete opposite of the expression of flowering promoters GmFT2a/5a. Moreover, the key soybean maturity gene E1 may up-regulate GmFT1a expression. It is also notable that GmFT1a expression was conspicuously high in late-flowering varieties. Transgenic overexpression of GmFT1a delayed flowering and maturation in soybean, confirming that GmFT1a functions as a flowering inhibitor. This discovery highlights the complex impacts of the functional diversification of the FT gene family in soybean, and implies that antagonism between flowering-inhibiting and flowering-promoting FT homologs in this highly photoperiod-sensitive plant may specify vegetative vs reproductive development.


Assuntos
Flores/fisiologia , Glycine max/genética , Proteínas de Plantas/genética , Homologia de Sequência de Aminoácidos , Flores/genética , Regulação da Expressão Gênica de Plantas , Haplótipos/genética , Modelos Biológicos , Fenótipo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Transcriptoma/genética
9.
Breed Sci ; 68(1): 109-118, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29681753

RESUMO

Flowering time regulation has significant effects on the agricultural and horticultural industries. Plants respond to changing environments and produce appropriate floral inducers (florigens) or inhibitors (anti-florigens) that determine flowering time. Recent studies have demonstrated that members of two homologous proteins, FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1 (TFL1), act as florigen and anti-florigen, respectively. Studies in diverse plant species have revealed universal but diverse roles of the FT/TFL1 gene family in many developmental processes. Recent studies in several crop species have revealed that modification of flowering responses, either due to mutations in the florigen/anti-florigen gene itself, or by modulation of the regulatory pathway, is crucial for crop domestication. The FT/TFL1 gene family could be an important potential breeding target in many crop species.

10.
New Phytol ; 213(1): 220-232, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27418400

RESUMO

Adaptation of Lupinus angustifolius (narrow-leafed lupin) to cropping in southern Australian and northern Europe was transformed by a dominant mutation (Ku) that removed vernalization requirement for flowering. The Ku mutation is now widely used in lupin breeding to confer early flowering and maturity. We report here the identity of the Ku mutation. We used a range of genetic, genomic and gene expression approaches to determine whether Flowering Locus T (FT) homologues are associated with the Ku locus. One of four FT homologues present in the narrow-leafed lupin genome, LanFTc1, perfectly co-segregated with the Ku locus in a reference mapping population. Expression of LanFTc1 in the ku (late-flowering) parent was strongly induced by vernalization, in contrast to the Ku (early-flowering) parent, which showed constitutively high LanFTc1 expression. Co-segregation of this expression phenotype with the LanFTc1 genotype indicated that the Ku mutation impairs cis-regulation of LanFTc1. Sequencing of LanFTc1 revealed a 1.4-kb deletion in the promoter region, which was perfectly predictive of vernalization response in 216 wild and domesticated accessions. Linkage disequilibrium rapidly decayed around LanFTc1, suggesting that this deletion caused the loss of vernalization response. This is the first time a legume FTc subclade gene has been implicated in the vernalization response.


Assuntos
Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Lupinus/fisiologia , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Arabidopsis/genética , Sequência de Bases , Sítios de Ligação , Genes de Plantas , Marcadores Genéticos , Mutação INDEL/genética , Desequilíbrio de Ligação/genética , Lupinus/genética , Motivos de Nucleotídeos/genética , Filogenia , Proteínas de Plantas/metabolismo , Polimorfismo Genético , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo
11.
Plant Mol Biol ; 91(4-5): 563-79, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27216814

RESUMO

To study the evolution of phosphatidylethanolamine-binding protein (PEBP) gene families in non-flowering plants, we performed a functional analysis of the PEBP gene AcMFT of the MFT clade in the pteridophyte Adiantum capillus-veneris. The expression of AcMFT was regulated by photoperiod similar to that for FT under both long day and short day conditions. Ectopic expression of AcMFT in Arabidopsis promotes the floral transition and partially complements the late flowering defect in transgenic Arabidopsis ft-1 mutants, suggesting that AcMFT functions similarly to FT in flowering plants. Interestingly, a similar partial compensation of the ft-1 late flowering phenotype was observed in Arabidopsis ectopically expressing only exon 4 of the C terminus of AcMFT and FT. This result indicated that the fourth exon of AcMFT and FT plays a similar and important role in promoting flowering. Further analysis indicated that exons 1-3 in the N terminus specifically enhanced the function of FT exon 4 in controlling flowering in Arabidopsis. Protein pull-down assays indicated that Arabidopsis FD proteins interact with full-length FT and AcMFT, as well as peptides encoded by 1-3 exon fragments or the 4th exon alone. Furthermore, similar FRET efficiencies for FT-FD and AcMFT-FD heterodimer in nucleus were observed. These results indicated that FD could form the similar complex with FT and AcMFT. Further analysis indicated that the expression of AP1, a gene downstream of FT, was up-regulated more strongly by FT than AcMFT in transgenic Arabidopsis. Our results revealed that AcMFT from a non-flowering plant could interact with FD to regulate the floral transition and that this function was reduced due to the weakened ability of AcMFT-FD to activate the downstream gene AP1.


Assuntos
Adiantum/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/metabolismo , Proteínas de Plantas/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/metabolismo , Adiantum/genética , Sequência de Aminoácidos , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Éxons/genética , Flores/genética , Flores/fisiologia , Genes de Plantas , Mutação/genética , Fenótipo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ligação Proteica
12.
Planta ; 243(4): 909-23, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26721646

RESUMO

MAIN CONCLUSION: Arabidopsis PHS1, initially known as an actor of cytoskeleton organization, is a positive regulator of flowering in the photoperiodic and autonomous pathways by modulating both CO and FLC mRNA levels. Protein phosphorylation and dephosphorylation is a major type of post-translational modification, controlling many biological processes. In Arabidopsis thaliana, five genes encoding MAPK phosphatases (MKP)-like proteins have been identified. Among them, PROPYZAMIDE HYPERSENSITIVE 1 (PHS1) encoding a dual-specificity protein tyrosine phosphatase (DsPTP) has been shown to be involved in microtubule organization, germination and ABA-regulated stomatal opening. Here, we demonstrate that PHS1 also regulates flowering under long-day and short-day conditions. Using physiological, genetic and molecular approaches, we have shown that the late flowering phenotype of the knock-out phs1-5 mutant is linked to a higher expression of FLOWERING LOCUS C (FLC). In contrast, a decline of both CONSTANS (CO) and FLOWERING LOCUS T (FT) expression is observed in the knock-out phs1-5 mutant, especially at the end of the light period under long-day conditions when the induction of flowering occurs. We show that this partial loss of sensitivity to photoperiodic induction is independent of FLC. Our results thus indicate that PHS1 plays a dual role in flowering, in the photoperiodic and autonomous pathways, by modulating both CO and FLC mRNA levels. Our work reveals a novel actor in the complex network of the flowering regulation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Flores/fisiologia , Proteínas Tirosina Fosfatases/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Mutação , Fotoperíodo , Plantas Geneticamente Modificadas , Proteínas Tirosina Fosfatases/genética , Processamento Pós-Transcricional do RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
New Phytol ; 212(3): 730-744, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27375201

RESUMO

Angiosperms and gymnosperms are two major groups of extant seed plants. It has been suggested that gymnosperms lack FLOWERING LOCUS T (FT), a key integrator at the core of flowering pathways in angiosperms. Taking advantage of newly released gymnosperm genomes, we revisited the evolutionary history of the plant phosphatidylethanolamine-binding protein (PEBP) gene family through phylogenetic reconstruction. Expression patterns in three gymnosperm taxa and heterologous expression in Arabidopsis were studied to investigate the functions of gymnosperm FT-like and TERMINAL FLOWER 1 (TFL1)-like genes. Phylogenetic reconstruction suggests that an ancient gene duplication predating the divergence of seed plants gave rise to the FT and TFL1 genes. Expression patterns indicate that gymnosperm TFL1-like genes play a role in the reproductive development process, while GymFT1 and GymFT2, the FT-like genes resulting from a duplication event in the common ancestor of gymnosperms, function in both growth rhythm and sexual development pathways. When expressed in Arabidopsis, both spruce FT-like and TFL1-like genes repressed flowering. Our study demonstrates that gymnosperms do have FT-like and TFL1-like genes. Frequent gene and genome duplications contributed significantly to the expansion of the plant PEBP gene family. The expression patterns of gymnosperm PEBP genes provide novel insight into the functional evolution of this gene family.


Assuntos
Cycadopsida/genética , Evolução Molecular , Flores/genética , Genes de Plantas , Família Multigênica , Proteína de Ligação a Fosfatidiletanolamina/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Arabidopsis/genética , Dosagem de Genes , Regulação da Expressão Gênica de Plantas , Funções Verossimilhança , Fenótipo , Proteína de Ligação a Fosfatidiletanolamina/química , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas
14.
Plant Cell Environ ; 38(6): 1157-66, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25311427

RESUMO

Dormancy-associated MADS-box (DAM) genes play an important role in endodormancy phase transition. We investigated histone modification in the DAM homolog (PpMADS13-1) from Japanese pear, via chromatin immunoprecipitation-quantitative PCR, to understand the mechanism behind the reduced expression of the PpMADS13-1 gene towards endodormancy release. Our results indicated that the reduction in the active histone mark by trimethylation of the histone H3 tail at lysine 4 contributed to the reduction of PpMADS13-1 expression towards endodormancy release. In contrast, the inactive histone mark by trimethylation of the histone H3 tail at lysine 27 in PpMADS13-1 locus was quite low, and these levels were more similar to a negative control [normal mouse immunoglobulin G (IgG)] than to a positive control (AGAMOUS) in endodormancy phase transition. The loss of histone variant H2A.Z also coincided with the down-regulation of PpMADS13-1. Subsequently, we investigated the PpMADS13-1 signalling cascade and found that PpCBF2, a pear C-repeated binding factor, regulated PpMADS13-1 expression via interaction of PpCBF2 with the 5'-upstream region of PpMADS13-1 by transient reporter assay. Furthermore, transient reporter assay confirmed no interaction between the PpMADS13-1 protein and the pear FLOWERING LOCUS T genes. Taken together, our results enhance understanding of the molecular mechanisms underlying endodormancy phase transition in Japanese pear.


Assuntos
Genes de Plantas/fisiologia , Código das Histonas/fisiologia , Proteínas de Domínio MADS/fisiologia , Dormência de Plantas/fisiologia , Proteínas de Plantas/fisiologia , Pyrus/metabolismo , Imunoprecipitação da Cromatina , Regulação para Baixo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas/genética , Código das Histonas/genética , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Dormência de Plantas/genética , Proteínas de Plantas/genética , Pyrus/genética , Pyrus/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia
15.
J Exp Bot ; 66(20): 6109-17, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26139827

RESUMO

In plants, successful reproduction requires the proper timing of flowering under changing environmental conditions. Arabidopsis FLOWERING LOCUS T (FT), which encodes a proposed phloem-mobile florigen, has a close homologue, TWIN SISTER OF FT (TSF). During the vegetative phase, TSF shows high levels of expression in the hypocotyl before FT induction, but the tsf mutation does not have an apparent flowering-time phenotype on its own under long-day conditions. This study compared the protein mobility of FT and TSF. With TSF-overexpressing plants as the rootstock, the flowering time of ft tsf scion plants was only slightly accelerated. Previous work has shown that FT is graft-transmissible; by contrast, this study did not detect movement of TSF from the roots into the shoot of the scion plants. This study used plants overexpressing FT/TSF chimeric proteins to map a region responsible for FT movement. A chimeric TSF with region II of FT (L28 to G98) expressed in the rootstock caused early flowering in ft tsf scion plants; movement of the chimeric protein from the rootstocks into the shoot apical region of the ft tsf scion plants was also detected. Misexpression of TSF in the leaf under the control of the FT promoter or grafting of 35S::TSF cotyledons accelerated flowering of ft-10 plants. FT was more stable than TSF. Taking these results together, we propose that protein mobility of FT is higher than that of TSF, possibly due to a protein domain that confers mobility and/or protein stability.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteína de Ligação a Fosfatidiletanolamina/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Reação em Cadeia da Polimerase
16.
New Phytol ; 202(1): 161-173, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24308826

RESUMO

FT/TFL1 family members have been known to be involved in the development and flowering in plants. In rose, RoKSN, a TFL1 homologue, is a key regulator of flowering, whose absence causes continuous flowering. Our objectives are to functionally validate RoKSN and to explore its mode of action in rose. We complemented Arabidopsis tfl1 mutants and ectopically expressed RoKSN in a continuous-flowering (CF) rose. Using different protein interaction techniques, we studied RoKSN interactions with RoFD and RoFT and possible competition. In Arabidopsis, RoKSN complemented the tfl1 mutant by rescuing late flowering and indeterminate growth. In CF roses, the ectopic expression of RoKSN led to the absence of flowering. Different branching patterns were observed and some transgenic plants had an increased number of leaflets per leaf. In these transgenic roses, floral activator transcripts decreased. Furthermore, RoKSN was able to interact both with RoFD and the floral activator, RoFT. Protein interaction experiments revealed that RoKSN and RoFT could compete with RoFD for repression and activation of blooming, respectively. We conclude that RoKSN is a floral repressor and is also involved in the vegetative development of rose. RoKSN forms a complex with RoFD and could compete with RoFT for repression of flowering.


Assuntos
Flores/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Proteínas Repressoras/metabolismo , Rosa/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Teste de Complementação Genética , Inflorescência/genética , Inflorescência/crescimento & desenvolvimento , Mutação/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Reprodução , Rosa/genética
17.
New Phytol ; 201(1): 312-322, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24102415

RESUMO

Previous studies in Arabidopsis thaliana have identified several histone methylation enzymes, including Arabidopsis trithorax1 (ATX1)/set domain group 27 (SDG27), ATX2/SDG30, LSD1-LIKE1 (LDL1), LDL2, SDG8, SDG25, and curly leaf (CLF)/SDG1, as regulators of the key flowering repressor flowering locus C (FLC) and the florigen flowering locus T (FT). However, the combinatorial functions of these enzymes remain largely uninvestigated. Here, we investigated functional interplays of different histone methylation enzymes by studying higher order combinations of their corresponding gene mutants. We showed that H3K4me2/me3 and H3K36me3 depositions occur largely independently and that SDG8-mediated H3K36me3 overrides ATX1/ATX2-mediated H3K4me2/me3 or LDL1/LDL2-mediated H3K4 demethylation in regulating FLC expression and flowering time. By contrast, a reciprocal inhibition was observed between deposition of the active mark H3K4me2/me3 and/or H3K36me3 and deposition of the repressive mark H3K27me3 at both FLC and FT chromatin; and the double mutants sdg8 clf and sdg25 clf displayed enhanced early-flowering phenotypes of the respective single mutants. Collectively, our results provide important insights into the interactions of different types of histone methylation and enzymes in the regulation of FLC and FT expression in flowering time control.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Metilação , Metiltransferases/genética , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cromatina/metabolismo , Expressão Gênica , Genes de Plantas , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Metiltransferases/metabolismo , Mutação , Fenótipo , Desenvolvimento Vegetal/genética
18.
J Exp Bot ; 64(18): 5795-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21586428

RESUMO

My favourite flowering image shows a section in a shoot apical meristem of Sinapis alba undertaking the very first step of its transition to flowering. This step is the activation of the SaSOC1 gene, the Sinapis orthologue of Arabidopsis SUPPRESSOR OF OVEREXPRESSION OF CO1 (SOC1), in a few central cells of the meristem. Hidden behind this picture is my long quest of physiological signals controlling flowering. Milestones of this story are briefly recounted here and this gives me an opportunity to raise a number of questions about the nature and function of florigen.


Assuntos
Citocininas/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Meristema/metabolismo , Sinapis/genética , Proteínas de Arabidopsis/genética , Hibridização In Situ , Luz , Proteínas de Domínio MADS/genética , Mitose , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/genética
19.
Front Plant Sci ; 14: 1249879, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239221

RESUMO

Introduction: Plants are sessile organisms that maximize reproductive success by adapting to their environment. One of the key steps in the reproductive phase of angiosperms is flower development, requiring the perception of multiple endogenous and exogenous signals integrated via a complex regulatory network. Key floral regulators, including the main transcription factor of the photoperiodic pathway (CONSTANS, CO) and the central floral pathway integrator (FLOWERING LOCUS T, FT), are known in many species. Methods and results: We identified several CO-like (COL) proteins in tobacco (Nicotiana tabacum). The NtCOL2a/b proteins in the day-neutral plant N. tabacum were most closely related to Arabidopsis CO. We characterized the diurnal expression profiles of corresponding genes in leaves under short-day (SD) and long-day (LD) conditions and confirmed their expression in phloem companion cells. Furthermore, we analyzed the orthologs of NtCOL2a/b in the maternal LD ancestor (N. sylvestris) and paternal, facultative SD ancestor (N. tomentosiformis) of N. tabacum and found that they were expressed in the same diurnal manner. NtCOL2a/b overexpression or knock-out using the CRISPR/Cas9 system did not support a substantial role for the CO homologs in the control of floral transition in N. tabacum. However, NsCOL2 overexpression induced flowering in N. sylvestris under typically non-inductive SD conditions, correlating with the upregulation of the endogenous NsFTd gene. Discussion: Our results suggest that NsFTd is transcriptionally regulated by NsCOL2 and that this COL2-dependent photoperiodic floral induction seems to be lost in N. tabacum, providing insight into the diverse genetics of photoperiod-dependent flowering in different Nicotiana species.

20.
Front Plant Sci ; 13: 1039500, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684773

RESUMO

FLOWERING LOCUS T (FT) are well-known key genes for initiating flowering in plants. Delineating the evolutionary history and functional diversity of FT genes is important for understanding the diversification of flowering time and how plants adapt to the changing surroundings. We performed a comprehensive phylogenetic analysis of FT genes in 47 sequenced flowering plants and the 1,000 Plant Transcriptomes (1KP) database with a focus on monocots, especially cereals. We revealed the evolutionary history of FT genes. The FT genes in monocots can be divided into three clades (I, II, and III), whereas only one monophyletic group was detected in early angiosperms, magnoliids, and eudicots. Multiple rounds of whole-genome duplications (WGD) events followed by gene retention contributed to the expansion and variation of FT genes in monocots. Amino acid sites in the clade II and III genes were preferentially under high positive selection, and some sites located in vital domain regions are known to change functions when mutated. Clade II and clade III genes exhibited high variability in important regions and functional divergence compared with clade I genes; thus, clade I is more conserved than clade II and III. Genes in clade I displayed higher expression levels in studied organs and tissues than the clade II and III genes. The co-expression modules showed that some of the FT genes might have experienced neofunctionalization and subfunctionalization, such as the acquisition of environmental resistance. Overall, FT genes in monocots might form three clades by the ancient gene duplication, and each clade was subsequently subjected to different selection pressures and amino acid substitutions, which eventually led to different expression patterns and functional diversification. Our study provides a global picture of FT genes' evolution in monocots, paving a road for investigating FT genes' function in future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA