Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(1): 323-332, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38153963

RESUMO

Shale oil and gas production and wind energy generation both expanded rapidly across the United States between 2000 and 2020, raising concerns over impacts on wildlife. I combine longitudinal microdata from the National Audubon Society's Christmas Bird Count with geolocated registries of all wind turbines and shale wells constructed in the contiguous U.S. during this period to estimate the causal effects of these contrasting types of energy infrastructure on bird populations and biodiversity, which are key bellwethers of ecosystem health. Results show that the onset of shale oil and gas production reduces subsequent bird population counts by 15%, even after adjusting for location and year fixed effects, weather, counting effort, and land-use changes. Wind turbines do not have any measurable impact on bird counts. Negative effects of shale are larger when wells are drilled within important bird habitats.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Estados Unidos , Conservação dos Recursos Naturais/métodos , Biodiversidade , Animais Selvagens , Aves
2.
Environ Sci Technol ; 58(2): 1097-1108, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38175714

RESUMO

Associations between gaseous pollutant exposure and stillbirth have focused on exposures averaged over trimesters or gestation. We investigated the association between short-term increases in nitrogen dioxide (NO2) and ozone (O3) concentrations and stillbirth risk among a national sample of 116 788 Medicaid enrollees from 2000 to 2014. A time-stratified case-crossover design was used to estimate distributed (lag 0-lag 6) and cumulative lag effects, which were adjusted for PM2.5 concentration and temperature. Effect modification by race/ethnicity and proximity to hydraulic fracturing (fracking) wells was assessed. Short-term increases in the NO2 and O3 concentrations were not associated with stillbirth in the overall sample. Among American Indian individuals (n = 1694), a 10 ppb increase in NO2 concentrations was associated with increased stillbirth odds at lag 0 (5.66%, 95%CI: [0.57%, 11.01%], p = 0.03) and lag 1 (4.08%, 95%CI: [0.22%, 8.09%], p = 0.04) but not lag 0-6 (7.12%, 95%CI: [-9.83%, 27.27%], p = 0.43). Among participants living in zip codes within 15 km of active fracking wells (n = 9486), a 10 ppb increase in NO2 concentration was associated with increased stillbirth odds in single-day lags (2.42%, 95%CI: [0.37%, 4.52%], p = 0.02 for lag 0 and 1.83%, 95%CI: [0.25%, 3.43%], p = 0.03 for lag 1) but not the cumulative lag (lag 0-6) (4.62%, 95%CI: [-2.75%, 12.55%], p = 0.22). Odds ratios were close to the null in zip codes distant from fracking wells. Future studies should investigate the role of air pollutants emitted from fracking and potential racial disparities in the relationship between short-term increases in NO2 concentrations and stillbirth.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Gravidez , Feminino , Humanos , Poluição do Ar/análise , Estudos Cross-Over , Dióxido de Nitrogênio/análise , Material Particulado/análise , Natimorto/epidemiologia , Poluentes Atmosféricos/análise , Ozônio/análise , Exposição Ambiental/análise
3.
Environ Res ; 229: 115937, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37076028

RESUMO

BACKGROUND: Chemicals used or emitted by unconventional oil and gas development (UOGD) include reproductive/developmental toxicants. Associations between UOGD and certain birth defects were reported in a few studies, with none conducted in Ohio, which experienced a thirty-fold increase in natural gas production between 2010 and 2020. METHODS: We conducted a registry-based cohort study of 965,236 live births in Ohio from 2010 to 2017. Birth defects were identified in 4653 individuals using state birth records and a state surveillance system. We assigned UOGD exposure based on maternal residential proximity at birth to active UOG wells and a metric specific to the drinking-water exposure pathway that identified UOG wells hydrologically connected to a residence ("upgradient UOG wells"). We estimated odds ratios (ORs) and 95% confidence intervals (CIs) for all structural birth defects combined and specific birth defect types using binary exposure metrics (presence/absence of any UOG well and presence/absence of an upgradient UOG well within 10 km), adjusting for confounders. Additionally, we conducted analyses stratified by urbanicity, infant sex, and social vulnerability. RESULTS: The odds of any structural defect were 1.13 times higher in children born to mothers living within 10 km of UOGD than those born to unexposed mothers (95%CI: 0.98-1.30). Odds were elevated for neural tube defects (OR: 1.57, 95%CI: 1.12-2.19), limb reduction defects (OR: 1.99, 95%CI: 1.18-3.35), and spina bifida (OR 1.93; 95%CI 1.25-2.98). Hypospadias (males only) was inversely related to UOGD exposure (OR: 0.62, 95%CI: 0.43-0.91). Odds of any structural defect were greater in magnitude but less precise in analyses using the hydrological-specific metric (OR: 1.30; 95%CI: 0.85-1.90), in areas with high social vulnerability (OR: 1.27, 95%CI: 0.99-1.60), and among female offspring (OR: 1.28, 95%CI: 1.06-1.53). CONCLUSIONS: Our results suggest a positive association between UOGD and certain birth defects, and findings for neural tube defects corroborate results from prior studies.


Assuntos
Gás Natural , Defeitos do Tubo Neural , Masculino , Gravidez , Recém-Nascido , Criança , Humanos , Feminino , Ohio/epidemiologia , Estudos de Coortes , Parto
4.
Environ Monit Assess ; 195(6): 707, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37212929

RESUMO

The exploration of unconventional hydrocarbons may be very effective in promoting economic development and confronting energy crisis around the world. However, the environmental risks associated with this practice might be an impediment if not adequately dimensioned. In this context, naturally occurring radioactive materials and ionizing radiation are sensitive aspects in the unconventional gas industry that may compromise the environmental sustainability of gas production and they should be properly monitored. This paper provides a radioecological assessment of the São Francisco Basin (Brazil) as part of an environmental baseline evaluation regarding the Brazilian potential for exploring its unconventional gas reserves. Eleven and thirteen samples of surface waters and groundwater were analyzed for gross alpha and beta using a gas flow proportional counter. A radiological background range was proposed using the ± 2 Median Absolute Deviation method. Using geoprocessing tools, the annual equivalent doses and lifetime cancer risk indexes were spatialized. Gross alpha and beta background thresholds in surface water ranged from 0.04-0.40 Bq L-1 to 0.17-0.46 Bq L-, respectively. Groundwater radiological background varies from 0.006-0.81 Bq L-1 to 0.06-0.72 Bq L-1 for gross alpha and beta, respectively. All environmental indexes are relatively higher in the south of the basin, probably a direct response to the local volcanic formations. Traçadal fault and local gas seepages might also influence the gross alpha and beta distribution. All samples have radiological indexes below the environmental thresholds, and should remain at acceptable levels with the development of the unconventional gas industry in Brazil.


Assuntos
Água Subterrânea , Gás Natural , Campos de Petróleo e Gás , Monitoramento Ambiental , Medição de Risco , Radiação Ionizante
5.
Environ Sci Technol ; 56(2): 1091-1103, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34982938

RESUMO

Health studies report associations between metrics of residential proximity to unconventional oil and gas (UOG) development and adverse health endpoints. We investigated whether exposure through household groundwater is captured by existing metrics and a newly developed metric incorporating groundwater flow paths. We compared metrics with detection frequencies/concentrations of 64 organic and inorganic UOG-related chemicals/groups in residential groundwater from 255 homes (Pennsylvania n = 94 and Ohio n = 161). Twenty-seven chemicals were detected in ≥20% of water samples at concentrations generally below U.S. Environmental Protection Agency standards. In Pennsylvania, two organic chemicals/groups had reduced odds of detection with increasing distance to the nearest well: 1,2-dichloroethene and benzene (Odds Ratio [OR]: 0.46, 95% confidence interval [CI]: 0.23-0.93) and m- and p-xylene (OR: 0.28, 95% CI: 0.10-0.80); results were consistent across metrics. In Ohio, the odds of detecting toluene increased with increasing distance to the nearest well (OR: 1.48, 95% CI: 1.12-1.95), also consistent across metrics. Correlations between inorganic chemicals and metrics were limited (all |ρ| ≤ 0.28). Limited associations between metrics and chemicals may indicate that UOG-related water contamination occurs rarely/episodically, more complex metrics may be needed to capture drinking water exposure, and/or spatial metrics in health studies may better reflect exposure to other stressors.


Assuntos
Água Potável , Água Subterrânea , Poluentes Químicos da Água , Região dos Apalaches , Monitoramento Ambiental/métodos , Campos de Petróleo e Gás , Poluentes Químicos da Água/análise
6.
Environ Res ; 212(Pt A): 113167, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35341757

RESUMO

BACKGROUND: Unconventional natural gas development (UNGD) introduces physical and psychosocial hazards into communities, which could contribute to psychosocial stress in adolescents and an increased risk of internalizing disorders, common and impactful health outcomes. OBJECTIVES: To evaluate associations between a 180-day composite UNGD activity metric and new onset of internalizing disorders, overall and separately for anxiety and depressive disorders, and effect modification by sex. METHODS: We used a nested case-control design from 2008 to 2016 in 38 Pennsylvania counties using electronic health records from adolescent Geisinger subjects. Cases were defined by at least two diagnoses or medication orders indicating new onset of an internalizing disorder, and controls frequency-matched 4:1 on age, sex, and year. To evaluate associations, we used generalized estimating equations, with logit link, robust standard errors, and an exchangeable correlation structure within community. RESULTS: We identified 7,974 adolescents (65.9% female, mean age 15.0 years) with new onset internalizing disorders. There were no associations when we used data from the entire study period. When restricted to years with higher UNGD activity (2010-2016), comparing the highest to lowest quartile, UNGD activity was associated (odds ratio [95% confidence level]) with new onset internalizing disorders (1.15 [1.06, 1.25]). Associations were slightly stronger for depressive disorders. Associations were only present in females (p = 0.009). DISCUSSION: This is the first epidemiologic study of UNGD in relation to adolescent mental health, an important health outcome in a potentially susceptible group to the environmental and community impacts of UNGD. UNGD activity was associated with new onset internalizing disorders in females in this large sample in an area of active UNGD.


Assuntos
Registros Eletrônicos de Saúde , Gás Natural , Adolescente , Ansiedade , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pennsylvania/epidemiologia
7.
Proc Natl Acad Sci U S A ; 116(5): 1532-1537, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30635428

RESUMO

While hydraulic fracturing technology, aka fracking (or fraccing, frac), has become highly developed and astonishingly successful, a consistent formulation of the associated fracture mechanics that would not conflict with some observations is still unavailable. It is attempted here. Classical fracture mechanics, as well as current commercial software, predict vertical cracks to propagate without branching from the perforations of the horizontal well casing, which are typically spaced at 10 m or more. However, to explain the gas production rate at the wellhead, the crack spacing would have to be only about 0.1 m, which would increase the overall gas permeability of shale mass about 10,000×. This permeability increase has generally been attributed to a preexisting system of orthogonal natural cracks, whose spacing is about 0.1 m. However, their average age is about 100 million years, and a recent analysis indicated that these cracks must have been completely closed by secondary creep of shale in less than a million years. Here it is considered that the tectonic events that produced the natural cracks in shale must have also created weak layers with nanocracking or microcracking damage. It is numerically demonstrated that seepage forces and a greatly enhanced permeability along the weak layers, with a greatly increased transverse Biot coefficient, must cause the fracking to engender lateral branching and the opening of hydraulic cracks along the weak layers, even if these cracks are initially almost closed. A finite element crack band model, based on a recently developed anisotropic spherocylindrical microplane constitutive law, demonstrates these findings [Rahimi-Aghdam S, et al. (2018) arXiv:1212.11023].

8.
Ecotoxicology ; 31(6): 1044-1055, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35834075

RESUMO

Unconventional natural gas development (fracking) has been a rapidly expanding technique used for the extraction of natural gas from the Marcellus Shale formation in Pennsylvania. There remains a knowledge gap regarding the ecological impacts of fracking, especially regarding the long-term health of native Brook trout (Salvelinus fontinalis) populations. During the summer of 2015, Brook trout were sampled from twelve streams located in forested, northwestern Pennsylvania in order to evaluate the impacts of fracking on Brook trout. Four stream sites were undisturbed (no fracking activity), three had a developed well pad without fracking activity, and five had active fracking with natural gas production. Liver tissue was isolated from two to five fish per stream and underwent RNA-Seq analysis to identify differentially expressed genes between ecosystems with differing fracking status. Data were analyzed individually and with samples pooled within-stream to account for hierarchical data structure and variation in sample coverage within streams. Differentially expressed and differentially alternatively spliced genes had functions related to lipid and steroid metabolism, mRNA processing, RNA polymerase and protein regulation. Unique to our study, genes related to xenobiotic and stress responses were found as well as potential markers for endocrine disruption and saline adaptation that were identified in watersheds with active fracking activity. These results support the utility of RNA-Seq to assess trout health and suggest detrimental impacts of fracking on sensitive trout populations.


Assuntos
Ecossistema , Gás Natural , Animais , Biomarcadores , Pennsylvania , RNA-Seq , Truta/genética
9.
Entropy (Basel) ; 24(9)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36141202

RESUMO

Hypothetical dry adiabatic lapse rate (DALR) air expansion processes in atmosphere climate models that predict global warming cannot be the causal explanation of the experimentally observed mean lapse rate (approx.−6.5 K/km) in the troposphere. The DALR hypothesis violates the 2nd law of thermodynamics. A corollary of the heat balance revision of climate model predictions is that increasing the atmospheric concentration of a weak molecular transducer, CO2, could only have a net cooling effect, if any, on the biosphere interface temperatures between the lithosphere and atmosphere. The greenhouse-gas hypothesis, moreover, does not withstand scientific scrutiny against the experimental data. The global map of temperature difference contours is heterogeneous with various hotspots localized within specific land areas. There are regional patches of significant increases in time-average temperature differences, (∆) = 3 K+, in a ring around the arctic circle, with similar hotspots in Brazil, South Africa and Madagascar, a 2−3 K band across central Australia, SE Europe centred in Poland, southern China and the Philippines. These global-warming map hotspots coincide with the locations of the most intensive fracking operational regions of the shale gas industry. Regional global warming is caused by an increase in geothermal conductivity following hydraulic fracture operations. The mean lapse rate (d/dz)z at the surface of the lithosphere will decrease slightly in the regions where these operations have enhanced heat transfer. Geothermal heat from induced seismic activity has caused an irreversible increase in enthalpy (H) input into the overall energy balance at these locations. Investigating global warming further, we report the energy industry's enthalpy outputs from the heat generated by all fuel consumption. We also calculate a global electricity usage enthalpy output. The global warming index, <∆T-biosphere> since 1950, presently +0.875 K, first became non-zero in the early 1970's around the same time as natural gas usage began and has increased linearly by 0.0175 K/year ever since. Le Chatelier's principle, applied to the dissipation processes of the biosphere's ΔH-contours and [CO2] concentrations, helps to explain the global warming statistics.

10.
Environ Res ; 195: 110872, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33581094

RESUMO

BACKGROUND: Whereas it is plausible that unconventional natural gas development (UNGD) may adversely affect cardiovascular health, little is currently known. We investigate whether UNGD is associated with acute myocardial infarction (AMI). METHODS: In this observational study leveraging the natural experiment generated by New York's ban on hydraulic fracturing, we analyzed the relationship between age- and sex-specific county-level AMI hospitalization and mortality rates and three UNGD drilling measures. This longitudinal panel analysis compares Pennsylvania and New York counties on the Marcellus Shale observed over 2005-2014 (N = 2840 county-year-quarters). RESULTS: A hundred cumulative wells is associated with 0.26 more hospitalizations per 10,000 males 45-54y.o. (95% CI 0.07,0.46), 0.40 more hospitalizations per 10,000 males 65-74y.o. (95% CI 0.09,0.71), 0.47 more hospitalizations per 10,000 females 65-74y.o. (95% CI 0.18,0.77) and 1.11 more hospitalizations per 10,000 females 75y.o.+ (95% CI 0.39,1.82), translating into 1.4-2.8% increases. One additional well per square mile is associated with 2.63 more hospitalizations per 10,000 males 45-54y.o. (95% CI 0.67,4.59) and 9.7 hospitalizations per 10,000 females 75y.o.+ (95% CI 1.92,17.42), 25.8% and 24.2% increases, respectively. As for mortality rates, a hundred cumulative wells is associated with an increase of 0.09 deaths per 10,000 males 45-54y.o. (95% CI 0.02,0.16), a 5.3% increase. CONCLUSIONS: Cumulative UNGD is associated with increased AMI hospitalization rates among middle-aged men, older men and older women as well as with increased AMI mortality among middle-aged men. Our findings lend support for increased awareness about cardiovascular risks of UNGD and scaled-up AMI prevention as well as suggest that bans on hydraulic fracturing can be protective for public health.


Assuntos
Infarto do Miocárdio , Gás Natural , Idoso , Exposição Ambiental , Feminino , Hospitalização , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/epidemiologia , New York/epidemiologia , Pennsylvania/epidemiologia
11.
J Environ Manage ; 284: 112069, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33581495

RESUMO

In this paper, we ask how the written composition of public policies structure an environmental governance system. We answer this question using semi-automated text analyses of 22 state-level policies governing oil and gas development in California between 2007 and 2017. The findings portray an environmental governance system that is both partitioned and connected into different focal areas (called "targeted action situations") through certain actors, issues, and rules. We conclude with substantive insights about California's oil and gas governance system, as well as theoretical and methodological contributions for analyzing the composition of public policy to advance knowledge about hybrid governance.


Assuntos
Conservação dos Recursos Naturais , Política Ambiental , California , Política Pública
12.
Public Health Nurs ; 38(6): 1015-1018, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34355436

RESUMO

Individuals have rights not only to health care but also to a safe environment including clean water sources and ambient air. These rights should be protected regardless of demographic variables. Unfortunately, there are injustices that infringe upon these human rights including the hydraulic fracturing of shale rock or "fracking." Fracking is a technique that is used to release trapped oil and gas from shale to be used as an energy source. Fracking has been shown to contaminate surrounding air and water sources. Fracking wells are disproportionately located in areas of poverty and minority. While areas of fracking can temporarily boost the local economy, there are risks to the environment and the community. Systems need to be in place to protect the affected communities. The vulnerable and poor populations need to be protected and should have input into the location of these fracking wells. In addition, nurses need to be knowledgeable of this type of environmental injustice, be active politically, and advocate for the rights of the affected populations. Nurses have a responsibility to educate ourselves, stay abreast of current affairs and policies regarding fracking, and educate patients on the health risks of fracking so that we as a group and our patients can advocate for environment justice for vulnerable populations.


Assuntos
Fraturamento Hidráulico , Monitoramento Ambiental , Humanos , Gás Natural , Água
13.
Toxicol Appl Pharmacol ; 408: 115256, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33007384

RESUMO

Hydraulic fracturing ("fracking") is a process used to enhance retrieval of gas from subterranean natural gas-laden rock by fracturing it under pressure. Sand used to stabilize fissures and facilitate gas flow creates a potential occupational hazard from respirable fracking sand dust (FSD). As studies of the immunotoxicity of FSD are lacking, the effects of whole-body inhalation (6 h/d for 4 d) of a FSD, i.e., FSD 8, was investigated at 1, 7, and 27 d post-exposure in rats. Exposure to 10 mg/m3 FSD 8 resulted in decreased lung-associated lymph node (LLN) cellularity, total B-cells, CD4+ T-cells, CD8+ T-cells and total natural killer (NK) cells at 7-d post exposure. The frequency of CD4+ T-cells decreased while the frequency of B-cells increased (7 and 27 d) in the LLN. In contrast, increases in LLN cellularity and increases in total CD4+ and CD8+ T-cells were observed in rats following 30 mg/m3 FSD 8 at 1 d post-exposure. Increases in the frequency and number of CD4+ T-cells and NK cells were observed in bronchial alveolar lavage fluid at 7-d post-exposure (10 mg/m3) along with an increase in total CD4+ T-cells, CD11b + cells, and NK cells at 1-day post-exposure (30 mg/m3). Increases in the numbers of B-cells and CD8+ T-cells were observed in the spleen at 1-day post 30 mg/m3 FSD 8 exposure. In addition, NK cell activity was suppressed at 1 d (30 mg/m3) and 27 d post-exposure (10 mg/m3). No change in the IgM response to sheep red blood cells was observed. The findings indicate that FSD 8 caused alterations in cellularity, phenotypic subsets, and impairment of immune function.


Assuntos
Poeira , Fraturamento Hidráulico , Areia , Administração por Inalação , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular , Eritrócitos , Imunoglobulina M/imunologia , Células Matadoras Naturais/imunologia , Linfonodos/imunologia , Masculino , Camundongos , Ratos Sprague-Dawley , Ovinos , Baço/imunologia
14.
Toxicol Appl Pharmacol ; 409: 115330, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33166545

RESUMO

An investigation into the potential toxicological effects of fracking sand dust (FSD), collected from unconventional gas drilling sites, has been undertaken, along with characterization of their chemical and biophysical properties. Using intratracheal instillation of nine FSDs in rats and a whole body 4-d inhalation model for one of the FSDs, i.e., FSD 8, and related in vivo and in vitro experiments, the effects of nine FSDs on the respiratory, cardiovascular and immune systems, brain and kidney were reported in the preceding eight tandem papers. Here, a summary is given of the key observations made in the organ systems reported in the individual studies. The major finding that inhaled FSD 8 elicits responses in extra-pulmonary organ systems is unexpected, as is the observation that the pulmonary effects of inhaled FSD 8 are attenuated relative to forms of crystalline silica more frequently used in animal studies, i.e., MIN-U-SIL® 5. An attempt is made to understand the basis for the extra-pulmonary toxicity and comparatively attenuated pulmonary toxicity of FSD 8.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Exposição por Inalação/efeitos adversos , Areia/química , Administração por Inalação , Animais , Poeira , Fraturamento Hidráulico , Masculino , Exposição Ocupacional/efeitos adversos , Ratos , Dióxido de Silício/efeitos adversos
15.
Toxicol Appl Pharmacol ; 409: 115300, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33141058

RESUMO

Hydraulic fracturing (fracking) is a process used to recover oil and gas from shale rock formation during unconventional drilling. Pressurized liquids containing water and sand (proppant) are used to fracture the oil- and natural gas-laden rock. The transportation and handling of proppant at well sites generate dust aerosols; thus, there is concern of worker exposure to such fracking sand dusts (FSD) by inhalation. FSD are generally composed of respirable crystalline silica and other minerals native to the geological source of the proppant material. Field investigations by NIOSH suggest that the levels of respirable crystalline silica at well sites can exceed the permissible exposure limits. Thus, from an occupational safety perspective, it is important to evaluate the potential toxicological effects of FSD, including any neurological risks. Here, we report that acute inhalation exposure of rats to one FSD, i.e., FSD 8, elicited neuroinflammation, altered the expression of blood brain barrier-related markers, and caused glial changes in the olfactory bulb, hippocampus and cerebellum. An intriguing observation was the persistent reduction of synaptophysin 1 and synaptotagmin 1 proteins in the cerebellum, indicative of synaptic disruption and/or injury. While our initial hazard identification studies suggest a likely neural risk, more research is necessary to determine if such molecular aberrations will progressively culminate in neuropathology/neurodegeneration leading to behavioral and/or functional deficits.


Assuntos
Inflamação/induzido quimicamente , Inflamação/metabolismo , Exposição por Inalação/efeitos adversos , Areia/química , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Aerossóis/efeitos adversos , Animais , Biomarcadores/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Poeira , Monitoramento Ambiental/métodos , Fraturamento Hidráulico/métodos , Masculino , Exposição Ocupacional/efeitos adversos , Ratos , Ratos Sprague-Dawley
16.
Toxicol Appl Pharmacol ; 408: 115280, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33065154

RESUMO

The pulmonary inflammatory response to inhalation exposure to a fracking sand dust (FSD 8) was investigated in a rat model. Adult male Sprague-Dawley rats were exposed by whole-body inhalation to air or an aerosol of a FSD, i.e., FSD 8, at concentrations of 10 or 30 mg/m3, 6 h/d for 4 d. The control and FSD 8-exposed rats were euthanized at post-exposure time intervals of 1, 7 or 27 d and pulmonary inflammatory, cytotoxic and oxidant responses were determined. Deposition of FSD 8 particles was detected in the lungs of all the FSD 8-exposed rats. Analysis of bronchoalveolar lavage parameters of toxicity, oxidant generation, and inflammation did not reveal any significant persistent pulmonary toxicity in the FSD 8-exposed rats. Similarly, the lung histology of the FSD 8-exposed rats showed only minimal changes in influx of macrophages following the exposure. Determination of global gene expression profiles detected statistically significant differential expressions of only six and five genes in the 10 mg/m3, 1-d post-exposure, and the 30 mg/m3, 7-d post-exposure FSD 8 groups, respectively. Taken together, data obtained from the present study demonstrated that FSD 8 inhalation exposure resulted in no statistically significant toxicity or gene expression changes in the lungs of the rats. In the absence of any information about its potential toxicity, a comprehensive rat animal model study (see Fedan, J.S., Toxicol Appl Pharmacol. 000, 000-000, 2020) has been designed to investigate the bioactivities of several FSDs in comparison to MIN-U-SIL® 5, a respirable α-quartz reference dust used in previous animal models of silicosis, in several organ systems.


Assuntos
Poeira , Fraturamento Hidráulico , Areia , Administração por Inalação , Animais , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Expressão Gênica , Inflamação/genética , Inflamação/imunologia , Contagem de Leucócitos , Pulmão/imunologia , Pneumopatias/genética , Pneumopatias/imunologia , Macrófagos/imunologia , Masculino , Ratos Sprague-Dawley
17.
Toxicol Appl Pharmacol ; 408: 115281, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33065155

RESUMO

Cultured murine macrophages (RAW 264.7) were used to investigate the effects of fracking sand dust (FSD) for its pro-inflammatory activity, in order to gain insight into the potential toxicity to workers associated with inhalation of FSD during hydraulic fracturing. While the role of respirable crystalline silica in the development of silicosis is well documented, nothing is known about the toxicity of inhaled FSD. The FSD (FSD 8) used in these studies was from an unconventional gas well drilling site. FSD 8was prepared as a 10 mg/ml stock solution in sterile PBS, vortexed for 15 s, and allowed to sit at room temperature for 30 min before applying the suspension to RAW 264.7cells. Compared to PBS controls, cellular viability was significantly decreased after a 24 h exposure to FSD. Intracellular reactive oxygen species (ROS) production and the production of IL-6, TNFα, and endothelin-1 (ET-1) were up-regulated as a result of the exposure, whereas the hydroxyl radical (.OH) was only detected in an acellular system. Immunofluorescent staining of cells against TNFα revealed that FSD 8 caused cellular blebbing, and engulfment of FSD 8 by macrophages was observed with enhanced dark-field microscopy. The observed changes in cellular viability, cellular morphology, free radical generation and cytokine production all confirm that FSD 8 is cytotoxic to RAW 264.7 cells and warrants future studies into the specific pathways and mechanisms by which these toxicities occur.


Assuntos
Poeira , Fraturamento Hidráulico , Areia , Animais , Sobrevivência Celular , Ensaio Cometa , Inflamação , Interleucina-6 , Camundongos , Células RAW 264.7 , Espécies Reativas de Oxigênio , Fator de Necrose Tumoral alfa
18.
Toxicol Appl Pharmacol ; 409: 115284, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33068619

RESUMO

Hydraulic fracturing creates fissures in subterranean rock to increase the flow and retrieval of natural gas. Sand ("proppant") in fracking fluid injected into the well bore maintains fissure patency. Fracking sand dust (FSD) is generated during manipulation of sand to prepare the fracking fluid. Containing respirable crystalline silica, FSD could pose hazards similar to those found in work sites where silica inhalation induces lung disease such as silicosis. This study was performed to evaluate the possible toxic effects following inhalation of a FSD (FSD 8) in the lung and airways. Rats were exposed (6 h/d × 4 d) to 10 or 30 mg/m3 of a FSD collected at a gas well, and measurements were performed 1, 7, 27 and, in one series of experiments, 90 d post-exposure. The following ventilatory and non-ventilatory parameters were measured in vivo and/or in vitro: 1) lung mechanics (respiratory system resistance and elastance, tissue damping, tissue elastance, Newtonian resistance and hysteresivity); 2) airway reactivity to inhaled methacholine (MCh); airway epithelium integrity (isolated, perfused trachea); airway efferent motor nerve activity (electric field stimulation in vitro); airway smooth muscle contractility; ion transport in intact and cultured epithelium; airway effector and sensory nerves; tracheal particle deposition; and neurogenic inflammation/vascular permeability. FSD 8 was without large effect on most parameters, and was not pro-inflammatory, as judged histologically and in cultured epithelial cells, but increased reactivity to inhaled MCh at some post-exposure time points and affected Na+ transport in airway epithelial cells.


Assuntos
Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Exposição Ocupacional/efeitos adversos , Areia/química , Administração por Inalação , Animais , Poeira , Células Epiteliais/efeitos dos fármacos , Fraturamento Hidráulico/métodos , Masculino , Cloreto de Metacolina/farmacologia , Ratos , Ratos Sprague-Dawley , Mucosa Respiratória/efeitos dos fármacos , Dióxido de Silício/efeitos adversos , Traqueia/efeitos dos fármacos
19.
Toxicol Appl Pharmacol ; 409: 115282, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33068622

RESUMO

Hydraulic fracturing ("fracking") is used in unconventional gas drilling to allow for the free flow of natural gas from rock. Sand in fracking fluid is pumped into the well bore under high pressure to enter and stabilize fissures in the rock. In the process of manipulating the sand on site, respirable dust (fracking sand dust, FSD) is generated. Inhalation of FSD is a potential hazard to workers inasmuch as respirable crystalline silica causes silicosis, and levels of FSD at drilling work sites have exceeded occupational exposure limits set by OSHA. In the absence of any information about its potential toxicity, a comprehensive rat animal model was designed to investigate the bioactivities of several FSDs in comparison to MIN-U-SIL® 5, a respirable α-quartz reference dust used in previous animal models of silicosis, in several organ systems (Fedan, J.S., Toxicol Appl Pharmacol. 00, 000-000, 2020). The present report, part of the larger investigation, describes: 1) a comparison of the physico-chemical properties of nine FSDs, collected at drilling sites, and MIN-U-SIL® 5, a reference silica dust, and 2) a comparison of the pulmonary inflammatory responses to intratracheal instillation of the nine FSDs and MIN-U-SIL® 5. Our findings indicate that, in many respects, the physico-chemical characteristics, and the biological effects of the FSDs and MIN-U-SIL® 5 after intratracheal instillation, have distinct differences.


Assuntos
Poluentes Ocupacionais do Ar/efeitos adversos , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Areia/química , Silicose/etiologia , Traqueia/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Poeira , Fraturamento Hidráulico/métodos , Masculino , Exposição Ocupacional/efeitos adversos , Pneumonia/induzido quimicamente , Quartzo/efeitos adversos , Ratos , Ratos Sprague-Dawley , Dióxido de Silício/efeitos adversos
20.
Toxicol Appl Pharmacol ; 409: 115329, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33181145

RESUMO

Hydraulic fracturing ("fracking") is a process in which subterranean natural gas-laden rock is fractured under pressure to enhance retrieval of gas. Sand (a "proppant") is present in the fracking fluid pumped down the well bore to stabilize the fissures and facilitate gas flow. The manipulation of sand at the well site creates respirable dust (fracking sand dust, FSD) to which workers are exposed. Because workplace exposures to FSD have exceeded exposure limits set by OSHA, a physico-chemical characterization of FSD along with comprehensive investigations of the potential early adverse effects of FSDs on organ function and biomarkers has been conducted using a rat model and related in vivo and in vitro experiments involving the respiratory, cardiovascular, immune systems, kidney and brain. An undercurrent theme of the overall hazard identification study was, to what degree do the health effects of inhaled FSD resemble those previously observed after crystalline silica dust inhalation? In short-term studies, FSD was found to be less bioactive than MIN-U-SIL® 5 in the lungs. A second theme was, are the biological effects of FSD restricted to the lungs? Bioactivity of FSD was observed in all examined organ systems. Our findings indicate that, in many respects, the physical and chemical properties, and the short-term biological effects, of the FSDs share many similarities as a group but have little in common with crystalline silica dust.


Assuntos
Poluentes Ocupacionais do Ar/efeitos adversos , Exposição por Inalação/efeitos adversos , Areia/química , Administração por Inalação , Animais , Poeira , Humanos , Fraturamento Hidráulico , Exposição Ocupacional/efeitos adversos , Ratos , Dióxido de Silício/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA