Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Transl Med ; 20(1): 356, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35962353

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) are essential regulators of tumorigenesis and the development of colorectal cancer (CRC). Here, we aimed to investigate the role of lncRNA GAS6-AS1 in CRC and its potential mechanisms. METHODS: Bioinformatics analyses evaluated the level of GAS6-AS1 in colon cancer, its correlation with clinicopathological factors, survival curve and diagnostic value. qRT-PCR were performed to detect the GAS6-AS1 level in CRC samples and cell lines. The CCK8, EdU, scratch healing, transwell assays and animal experiments were conducted to investigate the function of GAS6-AS1 in CRC. RNA immunoprecipitation (RIP) and dual-luciferase reporter gene analyses were carried out to reveal interaction between GAS6-AS1, TRIM14, FUS, and miR-370-3p/miR-1296-5p. RESULTS: GAS6-AS1 was greatly elevated in CRC and positively associated with unfavorable prognosis of CRC patients. Functionally, GAS6-AS1 positively regulates CRC proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in vitro and induces CRC growth and metastasis in vivo. Moreover, GAS6-AS1 exerted oncogenic function by competitively binding to miR-370-3p and miR-1296-5p, thereby upregulating TRIM14. Furthermore, we verified that GAS6-AS1 and TRIM14 both interact with FUS and that GAS6-AS1 stabilized TRIM14 mRNA by recruiting FUS. Besides, rescue experiments furtherly demonstrated that GAS6-AS1 facilitate progression of CRC by regulating TRIM14. CONCLUSION: Collectively, these findings demonstrate that GAS6-AS1 promotes TRIM14-mediated cell proliferation, migration, invasion, and EMT of CRC via ceRNA network and FUS-dependent manner, suggesting that GAS6-AS1 could be utilized as a novel biomarker and therapeutic target for CRC.


Assuntos
Neoplasias Colorretais , MicroRNAs , RNA Longo não Codificante , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
2.
Exp Mol Pathol ; 118: 104600, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33359886

RESUMO

Growth arrest-specific gene 6 (GAS6) is a growth factor-like cytokine whose function is related with vitamin K. This protein interacts with receptor tyrosine kinase proteins such as Tyro3, Axl, and TAM Receptor family, therefore affecting the tumorigenic processes via different mechanisms. GAS6-antisense 1 (GAS6-AS1) is a long non-coding RNAs (lncRNAs) that is transcribed from a genomic regions nearby GAS6. This lncRNA is also implicated in the pathobiology of cancer. We intended to judge the role of GAS6 and GAS6-AS1 in the pathogenesis of breast cancer through appraisal of their expression levels in breast cancer tissues and their paired neighboring non-cancerous samples. Expression of GAS6 was up-regulated in breast cancer tissues compared with neighboring tissues (Ratio of Mean Expressions = 2.18, P value = 4.98E-02). On the other hand, expression of GAS6-AS1 was down-regulated in breast tumor tissues compared with controls (Ratio of Mean Expressions = 0.37, P value = 4.26E-03). There were substantial correlations between expression levels GAS6 and GAS6-AS1 in non-cancerous tissues (r = 0.74, P value = 1.47e-13) and cancer tissues (r = 0.85, P value = 2.28e-20). Expression of GAS6-AS was associated with progesterone receptor status (P value = 1.36E-02). However, expressions of this gene and the sense transcript were not linked with any other clinical or demographic variable. Taken together, GAS6 and GAS6-AS1 might partake in the development of breast cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , RNA Longo não Codificante/genética , Adolescente , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Estudos de Casos e Controles , Criança , Feminino , Seguimentos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Pessoa de Meia-Idade , Prognóstico , Curva ROC , Receptor ErbB-2/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo
3.
Cancer Lett ; 589: 216828, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38521199

RESUMO

5-Fluorouracil (5-FU) resistance has always been a formidable obstacle in the adjuvant treatment of advanced colorectal cancer (CRC). In recent years, long non-coding RNAs have emerged as key regulators in various pathophysiological processes including 5-FU resistance. TRG is a postoperative pathological score of the chemotherapy effectiveness for CRC, of which TRG 0-1 is classified as chemotherapy sensitivity and TRG 3 as chemotherapy resistance. Here, RNA-seq combined with weighted gene correlation network analysis confirmed the close association of GAS6-AS1 with TRG. GAS6-AS1 expression was positively correlated with advanced clinicopathological features and poor prognosis in CRC. GAS6-AS1 increased the 50% inhibiting concentration of 5-FU, enhanced cell proliferation and accelerated G1/S transition, both with and without 5-FU, both in vitro and in vivo. Mechanistically, GAS6-AS1 enhanced the stability of MCM3 mRNA by recruiting PCBP1, consequently increasing MCM3 expression. Furthermore, PCBP1 and MCM3 counteracted the effects of GAS6-AS1 on 5-FU resistance. Notably, the PDX model indicated that combining chemotherapeutic drugs with GAS6-AS1 knockdown yielded superior outcomes in vivo. Together, our findings elucidate that GAS6-AS1 directly binds to PCBP1, enhancing MCM3 expression and thereby promoting 5-FU resistance. GAS6-AS1 may serve as a robust biomarker and potential therapeutic target for combination therapy in CRC.


Assuntos
Neoplasias Colorretais , MicroRNAs , RNA Longo não Codificante , Humanos , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Componente 3 do Complexo de Manutenção de Minicromossomo/genética , Componente 3 do Complexo de Manutenção de Minicromossomo/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
4.
BMC Med Genomics ; 16(1): 51, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894947

RESUMO

BACKGROUND: Stroke attributable to atrial fibrillation (AF related stroke, AFST) accounts for 13 ~ 26% of ischemic stroke. It has been found that AFST patients have a higher risk of disability and mortality than those without AF. Additionally, it's still a great challenge to treat AFST patients because its exact mechanism at the molecular level remains unclear. Thus, it's vital to investigate the mechanism of AFST and search for molecular targets of treatment. Long non-coding RNAs (lncRNAs) are related to the pathogenesis of various diseases. However, the role of lncRNAs in AFST remains unclear. In this study, AFST-related lncRNAs are explored using competing endogenous RNA (ceRNA) network analysis and weighted gene co-expression network analysis (WGCNA). METHODS: GSE66724 and GSE58294 datasets were downloaded from GEO database. After data preprocessing and probe reannotation, differentially expressed lncRNAs (DELs) and differentially expressed mRNAs (DEMs) between AFST and AF samples were explored. Then, functional enrichment analysis and protein-protein interaction (PPI) network analysis of the DEMs were performed. At the meantime, ceRNA network analysis and WGCNA were performed to identify hub lncRNAs. The hub lncRNAs identified both by ceRNA network analysis and WGCNA were further validated by Comparative Toxicogenomics Database (CTD). RESULTS: In all, 19 DELs and 317 DEMs were identified between the AFST and AF samples. Functional enrichment analysis suggested that the DEMs associated with AFST were mainly enriched in the activation of the immune response. Two lncRNAs which overlapped between the three lncRNAs identified by the ceRNA network analysis and the 28 lncRNAs identified by the WGCNA were screened as hub lncRNAs for further validation. Finally, lncRNA GAS6-AS1 turned out to be associated with AFST by CTD validation. CONCLUSION: These findings suggested that low expression of GAS6-AS1 might exert an essential role in AFST through downregulating its downstream target mRNAs GOLGA8A and BACH2, and GAS6-AS1 might be a potential target for AFST therapy.


Assuntos
Fibrilação Atrial , MicroRNAs , RNA Longo não Codificante , Acidente Vascular Cerebral , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , Fibrilação Atrial/genética , Redes Reguladoras de Genes , Acidente Vascular Cerebral/genética
5.
Exp Ther Med ; 23(1): 109, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34976151

RESUMO

Long non-coding (lnc) RNAs play crucial functions in human cancer. However, until recently, the involvement of the lncRNA GAS6-AS1 in breast cancer (BCa) malignancy has not been studied exhaustively. The roles and underlying mode of action of GAS6-AS1 action in BCa progression were examined through functional experiments. A decline in GAS6-AS1 level led to a significant decrease in BCa cell proliferation, and the ability for colony formation. Here, GAS6-AS1 competed as endogenous RNA by sequestering microRNA-215-5p (miR-215-5p) causing an enhanced expression of SRY-box transcription factor 9 (SOX9). The effects of silencing GAS6-AS1 on BCa malignant phenotypes could be ameliorated by inhibiting miR-215-5p or restoring SOX9. Thus, GAS6-AS1 acted as a lncRNA that drives tumor in BCa, and enabled progression of BCa through miR-215-5p /SOX9 axis regulation. These outcomes show that the GAS6-AS1/miR-215-5p/SOX9 axis is a potentially effective target for cancer treatment and management.

6.
J Exp Clin Cancer Res ; 40(1): 353, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34753494

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is the most common type of leukemia in adults. Its therapy has not significantly improved during the past four decades despite intense research efforts. New molecularly targeted therapies are in great need. The proto-oncogene c-Myc (MYC) is an attractive target due to its transactivation role in multiple signaling cascades. Deregulation of the MYC is considered one of a series of oncogenic events required for tumorigenesis. However, limited knowledge is available on which mechanism underlie MYC dysregulation and how long non-coding RNAs (lncRNAs) are involved in MYC dysregulation in AML. METHODS: AML microarray chips and public datasets were screened to identify novel lncRNA GAS6-AS1 was dysregulated in AML. Gain or loss of functional leukemia cell models were produced, and in vitro and in vivo experiments were applied to demonstrate its leukemogenic phenotypes. Interactive network analyses were performed to define intrinsic mechanism. RESULTS: We identified GAS6-AS1 was overexpressed in AML, and its aberrant function lead to more aggressive leukemia phenotypes and poorer survival outcomes. We revealed that GAS6-AS1 directly binds Y-box binding protein 1 (YBX1) to facilitate its interaction with MYC, leading to MYC transactivation and upregulation of IL1R1, RAB27B and other MYC target genes associated with leukemia progression. Further, lentiviral-based GAS6-AS1 silencing inhibited leukemia progression in vivo. CONCLUSIONS: Our findings revealed a previously unappreciated role of GAS6-AS1 as an oncogenic lncRNA in AML progression and prognostic prediction. Importantly, we demonstrated that therapeutic targeting of the GAS6-AS1/YBX1/MYC axis inhibits AML cellular propagation and disease progression. Our insight in lncRNA associated MYC-driven leukemogenesis may contribute to develop new anti-leukemia treatment strategies.


Assuntos
Leucemia Mieloide Aguda/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Adolescente , Adulto , Idoso , Animais , Progressão da Doença , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , Prognóstico , Transdução de Sinais , Transfecção , Adulto Jovem
7.
Mol Ther Nucleic Acids ; 25: 11-24, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34141461

RESUMO

Glucose metabolism reprogramming is one of the hallmarks of cancer cells, although functional and regulatory mechanisms of long noncoding RNA (lncRNA) in the contribution of glucose metabolism in lung adenocarcinoma (LUAD) remain incompletely understood. The aim of this study was to uncover the role of GAS6-AS1 in the regulation of progression and glucose metabolism in LUAD. We discovered that overexpression of GAS6-AS1 suppressed tumor progression of LUAD both in vitro and in vivo. Metabolism-related assays revealed that GAS6-AS1 inhibited glucose metabolism reprogramming. Mechanically, GAS6-AS1 was found to repress the expression of glucose transporter GLUT1, a key regulator of glucose metabolism. Ectopic expression of GLUT1 restored the inhibition effect of GAS6-AS1 on cancer progression and glucose metabolism reprogramming. Further investigation identified that GAS6-AS1 directly interacted with transcription factor E2F1 and suppressed E2F1-mediated transcription of GLUT1, and GAS6-AS1 was downregulated in LUAD tissues and correlated with clinicopathological characteristics and survival of patients. Taken together, our results identified GAS6-AS1 as a novel tumor suppressor in LUAD and unraveled its underlying molecular mechanism in reprogramming glucose metabolism. GAS6-AS1 potentially may serve as a prognostic marker and therapeutic target in LUAD.

8.
Front Oncol ; 11: 645771, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34513660

RESUMO

GAS6 antisense RNA 1 (GAS6-AS1) is a long non-coding RNA involved in hepatocellular carcinoma and gastric cancer. However, the functional role of GAS6-AS1 in lung adenocarcinoma (LUAD) remains unclear. In the present study, qRT-PCR was used to measure the levels of GAS6-AS1, GIMAP6 and miR-24-3p expression in LUAD samples and cell lines. CCK-8 and colony formation assays were used to determine cell proliferation. Cell migration and invasion were evaluated using wound healing and transwell assays, respectively. The potential interactions between molecules were assessed using RNA immunoprecipitation and luciferase reporter assays. Western blot analysis was used to quantify protein expression. The anti-tumor effect of over-expressed GAS6-AS1 on LUAD was also examined in vivo in xenograft tumor experiments. The expression of GAS6-AS1 was notably downregulated in LUAD samples and cell lines and associated with a poor prognosis. GAS6-AS1 overexpression inhibited the migration and invasion of A549 and H1650 cells. Down-expressed GAS6-AS1 acted as a sponge for miR-24-3p and down-regulated the expression of its target, GTPase IMAP Family Member 6. These findings suggested that GAS6-AS1 might represent a potential diagnostic biomarker for LUAD.

9.
Clin Hemorheol Microcirc ; 78(1): 69-81, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33523043

RESUMO

PURPOSE: Acute myeloid leukemia (AML) is a type of hematologic malignancy. This study was attempt to explore the effect of long noncoding RNA GAS6 antisense RNA1 (GAS6-AS1) on pediatric AML and the regulation mechanisms. METHODS: GAS6-AS1, microRNA-370-3p (miR-370-3p), and Tetraspanin3 (TSPAN3) expression in bone marrow (BM) tissues and cells was determined by qRT-PCR. The correlation between GAS6-AS1 and clinicopathological features of pediatric patients with AML was assessed. In vitro, viability and migration and invasion of AML cells were evaluated via MTT and transwell assays, respectively. Interactions among GAS6-AS1, miR-370-3p, and TSPAN3 were revealed by dual-luciferase reporter assays. Western blot was applied to confirm the protein expression of TSPAN3. RESULTS: GAS6-AS1 and TSPAN3 expression was elevated in BM tissues of pediatric patients with AML and AML cells, but miR-370-3p expression was reduced. GAS6-AS1 expression was positively related to French-American-British (FAB) classification in pediatric patients with AML. In vitro, GAS6-AS1 deficiency restrained the viability, migration, and invasion of AML cells. Additionally, GAS6-AS1 mediated miR-370-3p expression indeed and TSPAN3 was identified as a target of miR-370-3p. Furthermore, miR-370-3p overexpression repressed the protein expression of TSPAN3. The feedback experiments demonstrated that miR-370-3p inhibition or TSPAN3 overexpression mitigated the suppressive effect of sh-GAS6-AS1 on the tumorigenesis of AML cells. CONCLUSION: GAS6-AS1 silencing restrained AML cell viability, migration, and invasion by targeting miR-370-3p/TSPAN3 axis, affording a novel therapeutic target for pediatric AML.


Assuntos
Carcinogênese/genética , Leucemia Mieloide Aguda/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Tetraspaninas/metabolismo , Proliferação de Células , Humanos , Leucemia Mieloide Aguda/patologia , RNA Longo não Codificante/genética , Tetraspaninas/genética
10.
Eur J Cell Biol ; 99(8): 151124, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33223203

RESUMO

This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the current Editor in Chief, with the agreement of all authors. The article is being retracted due to inappropriate manipulation of the original data for presentation in Figures 2C, 5C and 6C. Upon further investigation and discussion with the authors, insufficient evidence was provided to support a reasonable explanation for these mistakes. In addition, the authors could not provide convincing original data supporting other figures of the manuscript, e.g. Figures 2G, 4 and 6A. Based on these findings, the Editor in Chief and the authors have decided to retract the study. The authors apologize for any inconvenience caused.


Assuntos
MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética , Progressão da Doença , Feminino , Humanos , Transfecção , Regulação para Cima
11.
Gene ; 696: 1-9, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30735718

RESUMO

OBJECTIVE: As one broader class of non-coding RNAs (lncRNAs), non-coding antisense (AS) transcripts are functionally characterized to play pivotal roles in various pathophysiological processes, including tumor biology. METHODS: In this study, the exact biological functions and regulation mechanisms of GAS6-AS1 in gastric cancer (GC) was examined. RESULTS: The expression of GAS6-AS1 was markedly upregulated in GC tissues and is associated with advanced stage (III + IV) of GC patients. Gain-of-function and loss-of-function experiments showed that GAS6-AS1 promoted cell proliferation, migration, invasion ability in vitro and xenograft tumor growth in vivo by promoting entry into S-phase. The mechanistic investigations showed that GAS6-AS1 can control the expression of its cognate sense gene GAS6 at the transcriptional or translational levels by forming a RNA-RNA duplex, consequently inducing an increase of AXL level and driveling AXL signaling pathway activation. CONCLUSIONS: Taken together, our studies indicate that GAS6-AS1 significantly driving the aggressive phenotype in GC through activating its cognate sense gene GAS6, and provides a more complete understanding of GAS6-AS1 as a potential therapeutic target for GC.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Antissenso/metabolismo , RNA Longo não Codificante/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Neoplasias Gástricas/genética , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Prognóstico , RNA Antissenso/genética , RNA Longo não Codificante/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/genética , Estômago/patologia , Neoplasias Gástricas/patologia , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor Tirosina Quinase Axl
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA